NR潮流计算例题
- 格式:pdf
- 大小:190.57 KB
- 文档页数:3
牛顿—拉夫逊潮流计算实例“电力系统分析”课外学习设计成果报告2006级同学:熊宇指导老师:李咸善摘要:主要根据一个简单的电网潮流计算实例,来说明潮流计算的具体步骤,以及计算过程中出现的一些问题。
文章具体从潮流计算原理、功率方程、雅可比矩阵、Matlab 源程序等一些方面说明了潮流计算的一些主要内容。
关键词:节点导纳矩阵、功率方程、雅可比矩阵一、潮流计算的基本原理电力系统潮流计算是电力系统运行和规划中最基本和最经常的计算,其任务是在已知某些运行参数的情况下,计算出系统中全部的运行参数,一般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点除外),可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵和网络拓扑结构列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。
为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,一般为额定电压,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。
二、直角坐标形式的功率方程 111111111()()0g l j j j j j j j j j i j i P P P e G e B f f G f B e ∈∈∆=----+=∑∑ 111111111()()0g l j j j j j j j j j i j i Q Q Q f G e B f e G f B e ∈∈∆=---++=∑∑222222222()()0g l j j j j j j j j j i j i P P P e G e B f f G f B e ∈∈∆=----+=∑∑222222222()()0g l j j j j j j j j j i j i Q Q Q f G e B f e G f B e ∈∈∆=---++=∑∑0)()(333333333=+----=∆∑∑∈∈i j j j j j i j j j j j l g e B f G f f B e G e P P P0)()(333333333=++---=∆∑∑∈∈i j j j j j i j j j j j l g e B f G e f B e G f Q Q Q444444444()()0g l j j j j j j j j j i j i P P P e G e B f f G f B e ∈∈∆=----+=∑∑444444444()()0g l j j j j j j j jj i j iQ Q Q f G e B f e G f B e ∈∈∆=---++=∑∑555555555()()0g l j j j j j j j jj i j iP P P e G e B f f G f B e ∈∈∆=----+=∑∑555555555()()0g l j j j j j j j j j i j i Q Q Q f G e B f e G f B e ∈∈∆=---++=∑∑直角坐标形式的功率平衡方程如上,我们可以利用它来算初始的功率不平衡量,也可以通过对它求导形成雅可比矩阵。
例题:如图1所示的简单电力网中,已知变压器的参数为S N =31.5MV A ,0S S 031kW,190kW,%=10.5,%=0.7P P U I ∆=∆=;线路单位长度的参数为61110.21/km,0.416/km, 2.7410S/km r x b -=Ω=Ω=⨯。
如图所示的简单电力网中,当线路首端电压U A =120kV 时,试求:(1)线路和变压器的电压损耗;(2)变压器运行在额定变比时的低压侧电压及电压偏移。
说明:以上计算忽略电压降落的横分量。
图1解:如题画等值电路图如下:线路参数为:0.21408.40.4164016.64l l l l R rl X x l ==⨯=Ω==⨯=Ω变压器参数为Ω=⨯⨯⨯=⨯∆=317.210)105.31(110190103232322N N S T S U P R Ω=⨯⨯⨯⨯⨯=33.4010105.311001105.1010100%33232N N S T S U U X (1) 变压器的功率损耗和励磁功率为222T S 02N 2515()19031193.760.1937631.5S P P P kW MW S +∆=∆+∆=⨯+==222S 0N T N %%10.5(2515)0.731.5 3.0538var 10010010031.5100U S I S Q M S ⨯+⨯∆=+=+=⨯1点处线路的充电功率var 66308.01104074.22121222M lU b Q N l B =⨯⨯⨯==计算L S 2 为:MVAj j Q Q Q j P P S B T LD T LD L 39.1719.25)66308.00538.315(19376.025)(22+=-+++=-∆++∆+=线路阻抗中的功率损耗为:MW R U Q P P l L L l 65044.0104021.011017390251901032223222222=⨯⨯⨯+=⨯+=∆-- v a r 2885.11040416.011017390251901032223222222M X U Q P Q l L L l =⨯⨯⨯+=⨯+=∆-- 计算功率1S 为 M V Aj j Q Q j P P S l L l I 68.1884.25)2885.139.17(65044.019.25)(221+=+++=∆++∆+=线路电压损耗(忽略电压降落的横分量) 1125.848.418.6816.64 4.40120=l l l A PR Q X U kV U +⨯+⨯∆== 1点电压为:1120 4.40115.60-A l U U U kV =∆=-=计算功率TS 2 为 M V Aj j Q Q j P P S T LD T LD T 833.17163.25)833.215(163.025)(2+=+++='∆++'∆+= 变压器电压损耗 22125.163 2.3217.83340.33 6.73115.60=T T T T T P R Q X U kV U +⨯+⨯∆== (2) 变压器低压侧折算到高压侧的电压为21115.60 6.73108.87=-T U U U kV '∆=-= 变压器低压侧的实际电压 22108.8710.8910=U U kV k '== 电压偏移为2210.8910%100%8.9%10N N U U m U --=⨯==。
潮流计算实例计算潮流例题:根据给定的参数或⼯程具体要求(如图),收集和查阅资料;学习相关软件(软件⾃选:本设计选择Matlab进⾏设计)。
2.在给定的电⼒⽹络上画出等值电路图。
3.运⽤计算机进⾏潮流计算。
4.编写设计说明书。
⼀、设计原理1.⽜顿-拉夫逊原理⽜顿迭代法是取x0 之后,在这个基础上,找到⽐x0 更接近的⽅程的跟,⼀步⼀步迭代,从⽽找到更接近⽅程根的近似跟。
⽜顿迭代法是求⽅程根的重要⽅法之⼀,其最⼤优点是在⽅程f(x) = 0 的单根附近具有平⽅收敛,⽽且该法还可以⽤来求⽅程的重根、复根。
电⼒系统潮流计算,⼀般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据⽹络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率⽅程,由于功率⽅程⾥功率是已知的,电压的幅值和相⾓是未知的,这样潮流计算的问题就转化为求解⾮线性⽅程组的问题了。
为了便于⽤迭代法解⽅程组,需要将上述功率⽅程改写成功率平衡⽅程,并对功率平衡⽅程求偏导,得出对应的雅可⽐矩阵,给未知节点赋电压初值,⼀般为额定电压,将初值带⼊功率平衡⽅程,得到功率不平衡量,这样由功率不平衡量、雅可⽐矩阵、节点电压不平衡量(未知的)构成了误差⽅程,解误差⽅程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带⼊原来的功率平衡⽅程,并重新形成雅可⽐矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,⼀般迭代三到五次就能收敛。
⽜顿—拉夫逊迭代法的⼀般步骤:(1)形成各节点导纳矩阵Y。
(2)设个节点电压的初始值U和相⾓初始值e 还有迭代次数初值为0。
(3)计算各个节点的功率不平衡量。
(4)根据收敛条件判断是否满⾜,若不满⾜则向下进⾏。
(5)计算雅可⽐矩阵中的各元素。
(6)修正⽅程式个节点电压(7)利⽤新值⾃第(3)步开始进⼊下⼀次迭代,直⾄达到精度退出循环。
(8)计算平衡节点输出功率和各线路功率2.⽹络节点的优化1)静态地按最少出线⽀路数编号这种⽅法由称为静态优化法。
1、额定电压110kV 的辐射型电网各段阻抗及负荷如下图所示。
已知电源A 的电压为121kV ,求功率分布和各母线电压(注:考虑功率损耗,可以不计电压降落的横分量δU )。
20+j40Ω20+j30Ω40+j30MVA10+j8MVA解:依题意得 设:N U =110kV (1)22~2108(2030)0.270.41()110ZCS j j MVA +∆=+=+'~~~(108)0.270.41(9.737.59)()C C ZC S S S j j j MVA =-+∆=-+++=-+ ''~~~4030(9.737.59)(30.2722.41)()C B B S S S j j j MVA =-+∆=+-+=+22~230.2722.41(2030) 2.34 4.69()110ZBS j j MVA +∆=+=+''~~~30.2722.41 2.34 4.69(32.6127.1)()B A ZB S S S j j j MVA =-+∆=+++=+(2)电压降,略去横分量32.61*2027.1*4014.35()121A B A B ZB A P R Q X U kV U ++∆===12114.35106.65()B A ZB U U U kV =-∆=-=''(9.73)*207.59*403.96()106.65C C C CZC BP R Q X U kV U +--∆===-106.65 3.96110.61()C B ZC U U U kV =-∆=+=2、电网结构如图所示,其额定电压为10KV 。
已知各节点的负荷功率及线路参数如下:~2(0.30.2)S j MVA=+~3(0.50.3)S j MVA=+~4(0.20.15)S j MVA=+12(1.2 2.4)Z j =+Ω23(1.0 2.0)Z j =+Ω24(1.5 3.0)Z j =+Ω试作功率和电压计算。
例3-5利用牛顿-拉夫逊法直角坐标方式计算例3-3所示网络潮流分布情况。
解:确定例3-3系统雅可比矩阵的维数。
系统有n = 5条母线(节点),采用直角坐标方法求解时组成2(n -1) =8个方程,J(i )维数为8×8。
按题意要求,该系统中,节点1为平衡节点,保持U 1=1+j0为定值,2,4,5为PQ 节点,3为PU 节点,U 3=1.05+j0。
(1)赋初值由已知可知平衡节点:111.0,0e f == 对PQ、PU节点赋电压初值:(0)(0)(0)(0)(0)(0)(0)(0)245245331.0,0, 1.05,0e e e f f f e f ========(2)求PQ 节点有功、无功不平衡量,PU 节点有功、电压不平衡量()()(){}55(0)(0)(0)(0)(0)(0)(0)(0)222222222211()()8.0 1.00 2.6783 1.0000.8928 1.00 1.7855 1.0008.0s s j jj j jj j j j j P P P P e GeB f f Gf B e ==∆=-=---+=--⨯+⨯-++-⨯-+-⨯-+=-⎡⎤⎣⎦∑∑()()(){}55(0)(0)(0)(0)(0)(0)(0)(0)222222222211(0)(0)(0)(0)(0)(0)333333333()()2.80 1.00028.4590 1.0009.9197 1.0019.8393 1.0 1.5()(s s j jj j jj j j j j s s j jj j jQ Q Q Q f GeB f e Gf B e P P P P e GeB f f G==∆=-=--++=---⨯+-⨯+++⨯++⨯=-⎡⎤⎣⎦∆=-=---∑∑()(){}()()55(0)(0)311(0)22(0)22(0)2(0)222333333(0)(0)(0)(0)(0)(0)(0)4444444444)4.4 1.05007.4580 1.0507.4580 1.0000 4.00851.05 1.0500()(j j j j j s s s s j jj j jj j f B e U U U U e f P P P P e GeB f f Gf B e ==+=-⨯++⨯-+-⨯-++=⎡⎤⎣⎦∆=-=-+=-+=∆=-=---+∑∑()()()(){}()55(0)1155(0)(0)(0)(0)(0)(0)(0)(0)444444444411)0 1.000.8928 1.007.4580 1.05011.9219 1.00 3.57111.0000.3729()()00 1.0009.9197 1.009j j j s s j jj j jj j j j j Q Q Q Q f GeB f e Gf B e =====-⨯+-⨯-+-⨯-+⨯-+-⨯-+=⎡⎤⎣⎦∆=-=--++=--⨯++⨯++∑∑∑∑()()(){}()()()(){}55(0)(0)(0)(0)(0)(0)(0)(0)5555555555119.4406 1.050147.9589 1.0039.6768 1.0 6.052()()0 1.0 3.7290 1.00 1.7855 1.000 3.57111.009.0856 1.000s s j jj j jj j j j j P P P P e GeB f f Gf B e ==⨯+-⨯++⨯=⎡⎤⎣⎦∆=-=---+=-⨯-⨯-+-⨯-++-⨯-+⨯-+=⎡⎤⎣⎦∑∑()()()(){}55(0)(0)(0)(0)(0)(0)(0)(0)5555555555110()()00 1.0049.7203 1.0019.8393 1.00039.6786 1.00108.5782 1.00.66s s j jj j jj j j j j Q Q Q Q f GeB f e Gf B e ==∆=-=--++=--⨯+⨯++⨯+++⨯+-⨯=⎡⎤⎣⎦∑∑(3)计算雅可比矩阵以节点2(PQ )有功、无功功率和节点3(PU )电压幅值分别对各节点电压实部、虚部求导为例,其他节点的求解过程略。
目录摘要11.设计意义与要求2 1.1设计意义21.2设计要求32.牛顿—拉夫逊算法3 2.1牛顿算法数学原理:32.2 直角坐标系下牛顿法潮流计算的原理43 详细设计过程10 3.1节点类型103.2待求量103.3导纳矩阵103.4潮流方程113.5修正方程124.程序设计15 4.1 节点导纳矩阵的形成154.2 计算各节点不平衡量164.3 雅克比矩阵计算- 19 -4.4 LU分解法求修正方程- 22 -4.5 计算网络中功率分布- 25 -5.结果分析- 25 -6.小结- 29 -参考文献- 30 -附录:- 31 -摘要潮流计算是电力网络设计及运行中最基本的计算,对电力网络的各种设计方案及各种运行方式进行潮流计算,可以得到各种电网各节点的电压,并求得网络的潮流及网络中各元件的电力损耗,进而求得电能损耗。
在数学上是多元非线性方程组的求解问题,求解的方法有很多种。
牛顿—拉夫逊法是数学上解非线性方程式的有效方法,有较好的收敛性。
将牛顿法用于潮流计算是以导纳矩阵为基础的,由于利用了导纳矩阵的对称性、稀疏性及节点编号顺序优化等技巧,使牛顿法在收敛性、占用存、计算速度等方面都达到了一定的要求。
本文以一个具体例子分析潮流计算的具体方法,并运用牛顿—拉夫逊算法求解线性方程关键词:电力系统潮流计算牛顿—拉夫逊算法1.设计意义与要求1.1设计意义潮流计算是电力系统分析中的一种最基本的计算,他的任务是对给定运行条件确定系统运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布及功率损耗等。
潮流计算的结果是电力系统稳定计算和故障分析的基础。
具体表现在以下方面:(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。
(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。
牛拉法潮流计算例题首先,牛拉法潮流计算是一种用于电力系统稳态分析的方法,它可以用来计算电力系统中各个节点的电压幅值和相角,以及各个支路的电流大小和相角。
下面是一个牛拉法潮流计算的例题。
假设有一条简单的电力系统,由三个节点和两条支路组成。
节点1和节点2之间连接一条1欧姆的电阻,节点2和节点3之间连接一条0.5欧姆的电阻。
节点1的电压幅值为1.05千伏,相角为0度,节点3的电压幅值为1千伏,相角为-120度。
现在需要计算节点2的电压幅值和相角,以及两条支路的电流大小和相角,假设电力系统中各个元件均为纯电阻。
首先,我们可以列出节点间的导纳矩阵,其中导纳元素为各个支路的导纳值,节点1和节点2之间的导纳为1欧姆的导纳,节点2和节点3之间的导纳为0.5欧姆的导纳,对角线元素为各自节点所连支路的导纳之和。
接下来,我们需要选择一个节点作为参考节点,假设我们选择节点1作为参考节点。
然后,我们可以将节点电压表示为复数形式,即V1=1.05∠0度,V3=1∠-120度。
由于节点1的电压已知,我们可以将其表示为参考电压,即V1=1∠0度=1+j0。
然后,我们可以利用导纳矩阵和节点电压,求解未知节点的电压和支路电流。
具体地,我们可以列出节点2的电压方程式:I12=(V1-V2)/1I23=(V2-V3)/0.5I12=-I23其中,I12和I23分别是支路12和支路23的电流。
将节点电压表示为复数形式,并带入上式,得到:(V1-V2)/1=(1+j0-V2)/1(V2-V3)/0.5=(V2-1∠-120度)/0.5I12=I23化简上式,可得:V2=1.045-j0.2558I12=0.0045-j0.2558I23=0.0045+j0.1279因此,节点2的电压幅值为1.056千伏,相角为-14.34度,支路12的电流大小为0.2558安,相角为-83.66度,支路23的电流大小为0.1279安,相角为29.74度,计算完成。
第4章电力系统潮流的计算机计算一、填空题1.用计算机进行潮流计算时,按照给定量的不同,可将电力系统节点分为PQ节点、PV 节点、平衡节点三大类,其中,PQ节点数目最多,PV节点数目很少、可有可无,平衡节点至少要有一个。
二、选择题1.若在两个节点i、j之间增加一条支路,则下列关于节点导纳矩阵的说法正确的是(C)A.阶数增加1B.节点i的自导纳不变C.节点i、j间的互导纳发生变化D.节点j的自导纳不变2.若从节点i引出一条对地支路,则下列关于节点导纳矩阵的说法正确的是(B)A.阶数增加1B.节点i的自导纳发生变化C.节点i和其余节点间的互导纳均发生变化D.节点导纳矩阵的所有元素均不变3.若从两个节点i、j之间切除掉一条支路,则下列关于节点导纳矩阵的说法正确的是(C)A.阶数减少1B.节点i、j间的互导纳一定变为0C.节点i、j间的互导纳发生变化,但不一定变为0D.节点i、j的自导纳均不变4.若网络中增加一个节点k,且增加一条节点i与之相连的支路,则下列关于节点导纳矩阵的说法正确的是(A)(1)阶数增加1(2)节点k的自导纳等于题干中所述支路的导纳(3)节点i的自导纳等于题干中所述支路的导纳(4)节点i、k间的互导纳等于题干中所述支路的导纳A.(1)(2)B.(2)(3)C.(1)(4)D.(2)(4)三、简答题1.节点导纳矩阵有些什么特点?其自导纳和互导纳元素各自的物理含义和计算方法分别是什么?2.潮流计算有哪些约束条件?四、综合题1..如图所示,四节点简单电力系统中各线路的阻抗标幺值已列于表中,而各线路对地导纳忽略。
支路电阻电抗1-2 0.05 0.151-3 0.10 0.302-3 0.15 0.452-4 0.10 0.303-4 0.05 0.15(a)求该系统中无虚线所示线路时的节点导纳矩阵;(b)如果虚线支路被接入系统,那么,原节点导纳矩阵应作哪些修改?解:根据阻抗和导纳互为倒数的原理,求出各支路的导纳标幺值列入下表:支路电导电纳1-2 2 -61-3 1 -32-3 0.67 -22-4 1 -33-4 2 -6(a)根据网络接线图,计算出无虚线所示线路时的节点导纳矩阵中各元素,如下:311311j y Y -== 567.1)31()267.0(242322j j j y y Y -=-+-=+= 1167.3)62()267.0()31(34231333j j j j y y y Y -=-+-+-=++= 93)62()31(342444j j j y y Y -=-+-=+= 0122112=-==y Y Y 31133113j y Y Y +-=-== 0144114=-==y Y Y 267.0233223j y Y Y +-=-== 31244224j y Y Y +-=-== 62344334j y Y Y +-=-== 写出节点导纳矩阵如下(阶数为4×4):⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-+--+-+-+-+--+--=9362310621167.3267.03131267.0567.10031031j j j j j j j j j j j j Y (b ) 在系统中接入支路1-2后,节点1、2的自导纳和节点1、2间的互导纳会发生改变,原节点导纳矩阵中Y 11、Y 12、Y 21和Y 22的值应作以下修改:93)62()31(1211'11j j j y Y Y -=-+-=+=1167.3)62()567.1(1222'22j j j y Y Y -=-+-=+= 62)62(01212'21'12j j y Y Y Y +-=--=-== 写出修改以后的节点导纳矩阵如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-+--+-+-+-+--+-+-+--=9362310621167.3267.03131267.01167.3620316293'j j j j j j j j j j j j j j Y2.写出下图所示网络的节点导纳矩阵。
可编辑修改精选全文完整版《电力系统分析》复习题1. 分别列出下列潮流算法的迭代格式、收敛判据,并从收敛性、计算量和内存占用量比较其算法特点及适用范围。
(1) 直角坐标的N-R 法; (2) 极坐标的N-R 法;(3) 快速解耦潮流算法(P-Q 分解法); (4) 二阶潮流算法(保留非线性潮流算法); (5) 最优乘子法。
答: (1)极坐标N-R 法:迭代格式:P HN Q M L U U θ∆∆⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥∆∆⎣⎦⎣⎦⎣⎦()()()1k k k U U U +=+∆()()()1k k kθθθ+=+∆。
牛顿潮流算法的特点1)其优点是收敛速度快,若初值较好,算法将具有平方收敛特性,一般迭代4~5次便可以收敛到非常精确的解,而且其迭代次数与所计算网络的规模基本无关。
2)牛顿法也具有良好的收敛可靠性,对于对高斯-塞德尔法呈病态的系统,牛顿法均能可靠地敛。
3)初值对牛顿法的收敛性影响很大。
解决的办法可以先用高斯-塞德尔法迭代1~2次,以此迭代结果作为牛顿法的初值。
也可以先用直流法潮流求解一次求得一个较好的角度初值,然后转入牛顿法迭代。
(2)直角坐标N-R 法:迭代格式:2P H N e Q M L f R S U ⎡⎤∆⎡⎤∆⎡⎤⎢⎥⎢⎥∆=-⎢⎥⎢⎥⎢⎥∆⎣⎦⎢⎥⎢⎥∆⎣⎦⎣⎦()()()1k k k e e e +=+∆()()()1k k k f f f +=+∆特点同极坐标N-R(3)P-Q 分解法:迭代格式:'P U B θ∆=∆,''Q U B U ∆=∆()()()1k k k U U U +=+∆,()()()1k k k θθθ+=+∆收敛判据:max i i i P U ε∆<且max i i iQ U ε∆<特点:(1)用解两个阶数几乎减半的方程组(n-1阶和n-m-1阶)代替牛顿法的解一个(2n-m-2)阶方程组,显著地减少了内存需求量及计算量。
例题1:
某汽轮机组的参数为:P =13.24MPa, =550, Pc =0.0049MPa 0t 0℃ 若汽℃与之相配的锅炉参数 ,555= 13.83MPa,=P ,125MW =Pe b b t
轮机按朗肯循环方式运行,ηηηηri =0.911,m =0.98,g =0.985b =08., 厂用电率ξ求:=007.,
① 汽轮发电机组的汽耗量和汽耗率、热耗量和热耗率
② 锅炉设备的热耗量(不计锅炉排污热损失)、标准煤耗量
③ 发电厂的热耗量、热耗率、热效率、标准煤耗率和供电标准煤耗率 解:
思路:计算前的准备-功率方程求解汽耗量-汽耗率-热耗量和热耗率
例题2:
某汽轮机组的参数为:P =3.43MPa, =435, Pc =0.0068MPa 0t 0℃ ηηηη若回热采用一级混合式加热,ri =0.84,mg =0.958,b p =0828., P =0.585MPa,1
① 从热量利用角度,说明回热加热的热经济性的提高;
② 从给水加热过程的熵增,说明回热加热的热经济性的提高
解:
思路:① 先计算无回热时的经济性指标
过程:计算前的准备-功率方程求解汽耗量-汽耗率-热耗量和热耗率 再计算有回热时的积极性指标
② 搞清楚无回热和有回热时的熵变化(终点不变、起点发生了变化)。