李子奈计量经济学数据表3.5.1
- 格式:xls
- 大小:15.00 KB
- 文档页数:1
计量作业计量经济学第
三版李子奈
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
计量经济学第三版李子柰
12 下表是中国内地2007年各地区税收Y和国内生产总值GDP的统计资料。
单位:(亿元)
Y GDP
3357065
594
625
434
9200
88
629
要求,以手工和运用Eviews软件(或其它软件):
(1)做出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;
(2)对所建立的回归方程进行检验;
(3)若2008年某地区国内生产总值为8500亿元,求该地区税收入的预测值机预测区间。
解:下图是运用Eviews软件分析出的结果。
Dependent Variable: Y
Method: Least Squares
Date: 09/17/11 Time: 15:13
Sample: 2 32
Included observations: 31
Variable Coefficient Std. Error t-Statistic Prob.
GDP
Adjusted R-squared . dependent var
. of regression Akaike info criterion
Sum squared resid 2760310. Schwarz criterion
Log likelihood F-statistic
Durbin-Watson stat Prob(F-statistic)。
计量经济学试验——李子奈目录实验一一元线性回归 (5)一实验目的 (5)二实验要求 (5)三实验原理 (5)四预备知识 (5)五实验内容 (5)六实验步骤 (5)1.建立工作文件并录入数据 (5)2.数据的描述性统计和图形统计: (7)3.设定模型,用最小二乘法估计参数: (8)4.模型检验: (8)5.应用:回归预测: (9)实验二可化为线性的非线性回归模型估计、受约束回归检验及参数稳定性检验 (12)一实验目的: (12)二实验要求 (12)三实验原理 (12)四预备知识 (12)五实验内容 (12)六实验步骤 (13)实验三多元线性回归 (15)一实验目的 (15)三实验原理 (15)四预备知识 (15)五实验内容 (15)六实验步骤 (15)6.1 建立工作文件并录入全部数据 (15)6.2 建立二元线性回归模型 (16)6.3 结果的分析与检验 (16)6.4 参数的置信区间 (17)6.5 回归预测 (17)6.6 置信区间的预测 (19)实验四异方差性 (21)一实验目的 (21)二实验要求 (21)三实验原理 (21)四预备知识 (21)五实验内容 (21)六实验步骤 (21)6.1 建立对象: (21)6.2 用普通最小二乘法建立线性模型 (22)6.3 检验模型的异方差性 (22)6.4 异方差性的修正 (25)实验五自相关性 (29)一实验目地 (29)二实验要求 (29)三实验原理 (29)四预备知识 (29)五实验内容 (29)六实验步骤 (29)6.1 建立Workfile和对象 (30)6.2 参数估计、检验模型的自相关性 (30)6.3 使用广义最小二乘法估计模型 (34)6.4 采用差分形式作为新数据,估计模型并检验相关性 (36)实验六多元线性回归和多重共线性 (38)一实验目的 (38)二实验要求 (38)三实验原理 (38)四预备知识 (38)五实验内容 (38)六实验步骤 (38)6.1 建立工作文件并录入数据 (38)6.2 用OLS估计模型 (38)6.3 多重共线性模型的识别 (39)6.4 多重共线性模型的修正 (40)实验七分布滞后模型与自回归模型及格兰杰因果关系检验 (43)一实验目的 (43)二实验要求 (43)三实验原理 (43)四预备知识 (43)五实验内容 (43)六实验步骤 (43)6.1 建立工作文件并录入数据 (43)6.2 使用4期滞后2次多项式估计模型 (44)6.3 格兰杰因果关系检验 (46)实验八联立方程计量经济学模型 (50)一实验目的 (50)二实验要求 (50)三实验原理 (50)四预备知识 (50)五实验内容 (50)六实验步骤 (51)6.1 分析联立方程模型。
计量经济学(第4版)数据表表某社区家庭每月收入与消费支出统计表表中国各地区居民家庭人均全年可支配收入与人均全年消费性支出(元)资料来源:《中国统计年鉴》(2014)。
第2章练习12中国某年各地区税收Y和国内生产总值GDP的统计资料单位:亿元{表 2013年中国各地区城镇居民人均收入与人均消费性支出(元)表 2010年中国制造业各行业的总产出及要素投入资料来源:根据《中国统计年鉴》(2011年)整理。
表 2013年中国居民人均收入与人均生活消费支出数据(元)资料来源:《中国统计年鉴》(2014)。
表 2012年中国农村居民对蛋类食物的消费及相关食物的价格指数蛋类$消费量Q (千克)各类食品的消费价格指数(上年=100)居民消费价格指数P0(上年=100)人均消费支出X(元)蛋类P肉禽类P1水产类P2粮食P01油脂P02蔬菜P03北京(天津`河北;山西(内蒙古…辽宁'吉林…黑龙江^上海| 江苏"浙江安徽*福建:江西【山东'河南?湖北·湖南-广东、广西:海南【重庆|四川)贵州@云南|西藏|陕西*甘肃?青海@ 宁夏(新疆资料来源:《中国统计年鉴》(2013)。
第3章练习17中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资表中国粮食生产与相关投入资料表中国2001年各地区农村居民家庭人均纯收入与消费支出(单位:元)注:从事农业经营的纯收入由从事第一产业的经营总收入与从事第一产业的经营支出之差计算,其他来源的纯收入由总纯收入减去从事农业经营的纯收入后得到。
资料来源:《中国农村住户调查年鉴(2002)》、《中国统计年鉴(2002)》。
;AR · AZCA ~COCT !DE FL GAIA &ID IL IN $ KSKY 《LAMA {MD ME MIMN ;MO MS MT / NCND 】NENH ,NJ NM资源来源:根据Introduction to Econometrics (2 edition) 整理。
计量经济学试验 (完整版)——李子奈目录实验一一元线性回归 (4)一实验目的 (4)二实验要求 (4)三实验原理 (4)四预备知识 (4)五实验内容 (4)六实验步骤 (4)1.建立工作文件并录入数据 (4)2.数据的描述性统计和图形统计: (6)3.设定模型,用最小二乘法估计参数: (6)4.模型检验: (7)5.应用:回归预测: (7)实验二可化为线性的非线性回归模型估计、受约束回归检验及参数稳定性检验9一实验目的: (9)二实验要求 (10)三实验原理 (10)四预备知识 (10)五实验内容 (10)六实验步骤 (10)实验三多元线性回归 (11)一实验目的 (11)三实验原理 (11)四预备知识 (11)五实验内容 (11)六实验步骤 (12)6.1 建立工作文件并录入全部数据 (12)6.2 建立二元线性回归模型 (12)6.3 结果的分析与检验 (12)6.4 参数的置信区间 (12)6.5 回归预测 (13)6.6 置信区间的预测 (13)实验四异方差性 (14)一实验目的 (14)二实验要求 (14)三实验原理 (14)四预备知识 (14)五实验内容 (14)六实验步骤 (14)6.1 建立对象: (14)6.2 用普通最小二乘法建立线性模型 (14)6.3 检验模型的异方差性 (14)6.4 异方差性的修正 (15)实验五自相关性 (16)一实验目地 (16)二实验要求 (16)三实验原理 (16)四预备知识 (16)五实验内容 (16)六实验步骤 (17)6.1 建立Workfile和对象 (17)6.2 参数估计、检验模型的自相关性 (17)6.3 使用广义最小二乘法估计模型 (18)6.4 采用差分形式作为新数据,估计模型并检验相关性 (19)实验六多元线性回归和多重共线性 (20)一实验目的 (20)二实验要求 (20)三实验原理 (20)四预备知识 (20)五实验内容 (20)六实验步骤 (20)6.1 建立工作文件并录入数据 (20)6.2 用OLS估计模型 (20)6.3 多重共线性模型的识别 (20)6.4 多重共线性模型的修正 (21)实验七分布滞后模型与自回归模型及格兰杰因果关系检验 (21)一实验目的 (21)二实验要求 (21)三实验原理 (21)四预备知识 (21)五实验内容 (21)六实验步骤 (22)6.1 建立工作文件并录入数据 (22)6.2 使用4期滞后2次多项式估计模型 (22)6.3 格兰杰因果关系检验 (23)实验八联立方程计量经济学模型 (24)一实验目的 (24)二实验要求 (25)三实验原理 (25)四预备知识 (25)五实验内容 (25)六实验步骤 (25)6.1 分析联立方程模型。
现代计量经济学模型体系解析_李子奈·学术探讨·现代计量经济学模型体系解析*李子奈刘亚清内容提要:本文对现代计量经济学模型体系进行了系统的解析,指出了现代计量经济学的各个分支是以问题为导向,在经典计量经济学模型理论的基础上,发展成为相对独立的模型理论体系,包括基于研究对象和数据特征而发展的微观计量经济学、基于充分利用数据信息而发展的面板数据计量经济学、基于计量经济学模型的数学基础而发展的现代时间序列计量经济学、基于非设定的模型结构而发展的非参数计量经济学,并对每个分支进行了扼要的描述。
最后在“交叉与综合”的方向上提出了现代计量经济学模型理论的研究前沿领域。
关键词:经典计量经济学时间序列计量经济学微观计量经济学一、引言计量经济学自20世纪20年代末30年代初诞生以来,已经形成了十分丰富的内容体系。
一般认为,可以以20世纪70年代为界将计量经济学分为经典计量经济学(Classical Econometrics)和现代计量经济学(Mo dern Eco no metrics),而现代计量经济学又可以分为四个分支:时间序列计量经济学(Time Series Econo metrics)、微观计量经济学(Mi-cro-econometrics)、非参数计量经济学(Nonpara-m etric Econometrics)以及面板数据计量经济学(Panel Data Eco nom etrics)。
这些分支作为独立的课程已经被列入经济学研究生的课程表,独立的教科书也已陆续出版,应用研究已十分广泛,标志着它们作为计量经济学的分支学科已经成熟。
据此提出三个问题:一是经典计量经济学的地位问题。
既然现代计量经济学模型体系已经成熟,而且它们都是在经典模型理论的基础上发展的,那么经典模型还有应用价值吗?是不是凡是采用经典模型的研究都是低水平和落后的?二是现代计量经济学的各个分支的发展导向问题。
即它们是如何发展起来的?三是现代计量经济学进一步创新和发展的基点在哪里?回答这些问题,对于正确理解计量经济学的学科体系,对于计量经济学的课程设计和教学内容安排,对于正确评价计量经济学理论和应用研究的水平,对于进一步推动中国的计量经济学理论研究,都是十分有益的。
实验二 可化为线性的非线性回归模型估计、受约束回归检验及参数稳定性检验一 实验目的:(1)掌握可化为线性的非线性回归模型的估计方法; (2)模型参数的线性约束检验方法; (3)掌握Chow 检验的基本原理和主要用途;(4)掌握Chow 分割点检验和Chow 预测检验的操作过程,判断分割点。
二 实验要求:应用教材P83例子3.5.1做可化为线性的非线性回归模型估计,利剑受约束回归检验,掌握Chow 稳定性检验。
三 实验原理:普通最小二乘法、模型参数线性受约束检验法、Chow 检验法。
四 预备知识:最小二乘估计原理、t 检验、F 检验、Chow 检验。
五 实验内容:下表列出了中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y ,资产合计K 及职工人数L 。
Y Ak l eαβμ=(1)利用上述资料,进行回归分析。
(2)回答:中国概念的制造总体呈现规模报酬不变状态吗?六 实验步骤:建立工作文件并导入全部数据,如图 1所示 (1)设定并估计可化为线性的非线性回归模型:0lnY alnK lnL ββμ=+++在Eviews 软件下,点击主界面菜单Qucik/Estimate Equation ,在弹出的对话框中输入log(Y) C log(K) log(L),点击确定即可得到回归结果,如图2所示。
根据图2中的数据,得到模型的估计结果为:ln 1.15399 0.60924ln K 0.360807lnLY ∧=++(1.586) (3.454) (1.790)R 2=0.809925 2R =0.796348 D.W.=0.793209∑e i 2=5.070303 F=59.65501 df=(2,28)随机干扰项的方差估计值为:2ˆσ=()2i e /n 3∑-=5.070303/28=0.18108225 回归结果表明,这一年lnY 变化的81%可由lnK 和lnL 的变化来解释。
1、广义计量经济学和狭义计量经济学广义…是利用经济理论、数学以及统计学定量研究经济现象的方法统称。
(回归分析、投入产出分析、时间序列分析等)狭义…以揭示经济变量间的关系为目的,主要应用回归分析方法。
单方程模型和联立方程模型对股票市场的研究VS对金融市场的研究a. 横截面数据集(cross-sectional data set):即给定时点对个人、家庭、企业、城市、国家或一系列其他单位采集的样本所构成的数据集(应该忽略细小的时间差别)b.时间序列数据集(time series data set):是由一个或几个变量在不同时间的观测值所构成的。
c.混合横截面数据(pooled cross section):有些数据既有横截面数据的特点又有时间序列的特点,但每一时点的样本不同,通常是分析政府政策效果的有力数据d.综列数据(panel data):由横截面数据集中每个数据的一个时间序列组成。
(定点长期调查)回归分析是关于研究一个应变量对另一个或多个自变量的依赖关系,通过后者的已知或给定值,去估计和预测前者的(总体)均值随机干扰项的意义:1。
理论的含糊性(其他因素)2。
数据的欠缺(如财富)3。
核心变量与周边变量(或上或下的随机影响)4。
人类行为的内在随机性5。
糟糕的替代变量(永久消费和永久收入)6。
节省原则(多重共线性的影响)7。
错误的函数形式线性回归模型的假定1。
函数形式:2。
干扰项的零均值:干扰项的零均值的意思是凡是模型不显著含有的并因而归属u的因素,对y的均值都没有系统的影响;正的u值抵销了负的u值,以至于他们对y的平均值的影响为零3。
同方差性:u的同方差性同时也意味着y的同方差性,即随着x的变动,y的取值的分布是一定的,是分布不变的。
4。
无自相关:干扰项之间的无自相关意味着y的决定与其他期的u值无关,即不存在u(t-1)决定u(t)从而决定y的情况5。
回归量与干扰项的非相关:干扰项与自变量之间的非相关,干扰项本身是独立于自变量之外的,且如果干扰项与自变量存在相关,则不能独自说明其作用6。
计量经济学(第3版)例题和习题数据表表2.1.1 某社区家庭每月收入与消费支出统计表表2.3.1 参数估计的计算表表2.6.1 中国各地区城镇居民家庭人均全年可支配收入与人均全年消费性支出(元)资料来源:《中国统计年鉴》(2007)。
表2.6.3 中国居民总量消费支出与收入资料单位:亿元年份GDP CONS CPI TAX GDPC X Y 19783605.6 1759.1 46.21519.28 7802.5 6678.83806.7 19794092.6 2011.5 47.07537.828694.2 7551.64273.2 19804592.9 2331.2 50.62571.70 9073.7 7944.24605.5 19815008.8 2627.9 51.90629.899651.8 8438.05063.9 19825590.0 2902.9 52.95700.02 10557.3 9235.25482.4 19836216.2 3231.1 54.00775.5911510.8 10074.65983.2 19847362.7 3742.0 55.47947.35 13272.8 11565.06745.7 19859076.7 4687.4 60.652040.79 14966.8 11601.77729.2 198610508.5 5302.1 64.572090.37 16273.7 13036.58210.9 198712277.4 6126.1 69.302140.36 17716.3 14627.78840.0 198815388.6 7868.1 82.302390.47 18698.7 15794.09560.5 198917311.3 8812.6 97.002727.40 17847.4 15035.59085.5 199019347.8 9450.9 100.002821.86 19347.8 16525.99450.9 199122577.4 10730.6 103.422990.17 21830.9 18939.610375.8 199227565.2 13000.1 110.033296.91 25053.0 22056.511815.3 199336938.1 16412.1 126.204255.30 29269.1 25897.313004.7 199450217.4 21844.2 156.655126.88 32056.2 28783.413944.2 199563216.9 28369.7 183.416038.04 34467.5 31175.415467.9 199674163.6 33955.9 198.666909.82 37331.9 33853.717092.5 199781658.5 36921.5 204.218234.04 39988.5 35956.218080.6 199886531.6 39229.3 202.599262.80 42713.1 38140.919364.1 199991125.0 41920.4 199.7210682.58 45625.8 40277.020989.3 200098749.0 45854.6 200.5512581.51 49238.0 42964.622863.9 2001108972.4 49213.2 201.9415301.38 53962.5 46385.424370.1 2002120350.3 52571.3 200.3217636.45 60078.0 51274.026243.2 2003136398.8 56834.4 202.7320017.31 67282.2 57408.128035.0 2004160280.4 63833.5 210.6324165.68 76096.3 64623.130306.2 2005188692.1 71217.5 214.4228778.54 88002.1 74580.433214.4 2006221170.5 80120.5 217.6534809.72 101616.3 85623.136811.2资料来源:根据《中国统计年鉴》(2001,2007)整理。
计量经济学(第4版)数据表表2.1.1 某社区家庭每月收入与消费支出统计表表2.3.1 参数估计的计算表表2.6.1 中国各地区居民家庭人均全年可支配收入与人均全年消费性支出(元)资料来源:《中国统计年鉴》(2014)。
第2章练习12中国某年各地区税收Y和国内生产总值GDP的统计资料单位:亿元表3.2.1 2013年中国各地区城镇居民人均收入与人均消费性支出(元)资料来源:根据《中国统计年鉴》(2014)整理。
表3.5.1 2010年中国制造业各行业的总产出及要素投入资料来源:根据《中国统计年鉴》(2011年)整理。
表3.6.1 2013年中国居民人均收入与人均生活消费支出数据(元)表3.7.1 2012年中国农村居民对蛋类食物的消费及相关食物的价格指数蛋类消费量Q (千克)各类食品的消费价格指数(上年=100)居民消费价格指数P0(上年=100)人均消费支出X(元)蛋类P肉禽类P1水产类P2粮食P01油脂P02蔬菜P03北京11.0596.9106.7104.8102.6104.5112.0103.311878.92天津12.84101.7105.7106.7102.4103.7119.6102.78336.55河北10.4296.4101.1104.8102.9106.3114.9102.55364.14山西7.8296.2101.4107.4103.0105.2114.2102.65566.19内蒙古 6.4598.1105.3107.7105.7105.3112.3102.56381.97辽宁8.4896.2102.6107.3103.6105.0117.5102.55998.39吉林7.9094.6103.7108.5104.2105.7110.5102.46186.17黑龙江 6.3398.3105.4104.8104.6102.6115.3102.95718.05上海8.9298.2105.1105.8102.9103.8111.1102.811971.50江苏 6.9697.0102.5108.4102.3104.2109.0102.69138.18浙江 5.5697.6100.9108.8103.7103.7115.2102.310652.73安徽7.2394.398.7110.8104.2105.8113.3102.45555.99福建 5.3296.8102.0107.8103.0105.4116.5102.47401.92江西 4.2296.998.9112.6103.8104.2118.2103.05129.47山东12.3295.9101.6108.8102.5107.5111.2102.06775.95河南9.0694.499.4108.9104.1105.0113.2102.45032.14湖北 5.0298.6101.7111.1105.3105.2113.2103.05726.73湖南 4.92100.198.5110.9105.3102.5110.8101.65870.12广东 3.3998.2104.4107.3105.0106.0114.9102.97458.56广西 2.2297.3103.0104.9103.8108.2116.7103.34933.58海南 2.43102.7103.8102.2104.1106.2115.6103.24776.30重庆 5.18100.699.1106.7107.7106.0112.3102.65018.64四川 4.8797.799.9111.5104.9105.2118.1102.05366.71贵州 2.3595.7101.3107.6104.5104.4109.0102.83901.71云南 2.82100.1103.1104.9103.5102.9117.8102.34561.33西藏0.56102.4108.9102.8103.0105.5114.6103.42967.56陕西 3.9197.6101.5110.4103.3105.9111.7103.15114.68甘肃 3.9397.4104.2105.2102.3104.5108.5103.14146.24青海 1.5899.2107.6109.6102.8105.6112.8103.15338.91宁夏 3.4097.7104.8107.2101.0103.0108.7101.75351.36新疆 3.62102.1105.9105.2107.3105.3117.6104.75301.25资料来源:《中国统计年鉴》(2013)。
封面作者:Pan Hongliang仅供个人学习第一章绪论参考重点:计量经济学的一般建模过程第一章课后题(1.4.5)1.什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。
4.建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
5.模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
第二章经典单方程计量经济学模型:一元线性回归模型参考重点:1.相关分析与回归分析的概念、联系以及区别?2.总体随机项与样本随机项的区别与联系?3.为什么需要进行拟合优度检验?4.如何缩小置信区间?(P46)由上式可以看出(1).增大样本容量。
第一章绪论【2 】参考重点:计量经济学的一般建模进程第一章课后题(1.4.5)1.什么是计量经济学?计量经济学办法与一般经济数学办法有什么差别?答:计量经济学是经济学的一个分支学科,是以揭示经济运动中客不雅消失的数量关系为内容的分支学科,是由经济学.统计学和数学三者结合而成的交叉学科.计量经济学办法揭示经济运动中各个身分之间的定量关系,用随机性的数学方程加以描写;一般经济数学办法揭示经济运动中各个身分之间的理论关系,用肯定性的数学方程加以描写.4.树立与运用计量经济学模子的重要步骤有哪些?答:树立与运用计量经济学模子的重要步骤如下:(1)设定理论模子,包括选择模子所包含的变量,肯定变量之间的数学关系和拟定模子中待估参数的数值规模;(2)收集样本数据,要斟酌样本数据的完全性.精确性.可比性和—致性;(3)估量模子参数;(4)磨练模子,包括经济意义磨练.统计磨练.计量经济学磨练和模子猜测磨练.5.模子的磨练包括几个方面?其具体寄义是什么?答:模子的磨练重要包括:经济意义磨练.统计磨练.计量经济学磨练.模子的猜测磨练.在经济意义磨练中,须要磨练模子是否相符经济意义,磨练求得的参数估量值的符号与大小是否与根据人们的经验和经济理论所订定的期望值相相符;在统计磨练中,须要磨练模子参数估量值的靠得住性,即磨练模子的统计学性质;在计量经济学磨练中,须要磨练模子的计量经济学性质,包括随机扰动项的序列相干磨练.异方差性磨练.解释变量的多重共线性磨练等;模子的猜测磨练重要磨练模子参数估量量的稳固性以及对样本容量变化时的敏锐度,以肯定所树立的模子是否可以用于样本不雅测值以外的规模.第二章经典单方程计量经济学模子:一元线性回归模子参考重点:1.相干剖析与回归剖析的概念.接洽以及差别?2.总体随机项与样本随机项的差别与接洽?3.为什么须要进行拟合优度磨练?4.若何缩小置信区间?(P46)由上式可以看出(1).增大样本容量.样本容量变大,可使样本参数估量量的标准差减小;同时,在同样置信程度下,n 越大,t 散布表中的临界值越小.(2)进步模子的拟合优度.因为样本参数估量量的标准差和残差平方和呈正比,模子的拟合优度越高,残差平方和应越小.5.以一元线性回归为例,写出β0的假设磨练1).对总体参数提出假设H 0:β0=0,H 1:β0≠02)以原假设H0构造t 统计量,3)由样本盘算其值 4)给定明显性程度α,查t 散布表得临界值t α/2(n-2)0ˆ0ˆββS t =)2(~ˆˆˆ0ˆ0022200--=-=∑∑n t S x n X t i i βββσββαβββββαα-=⨯+<<⨯-1)ˆˆ(ˆˆ22i i s t s t P i i i5)比较,断定若|t|> t α/2(n-2),则谢绝H0,接收H1;若|t|≤ t α/2(n-2),则谢绝H1,接收H0;上届重点:一元线性回归模子的根本假设.随机误差项产生的原因.最小二乘法.参数经济意义.决议系数.第二章PPT里的表(中国居平易近人均花费支出对人均GDP的回归).t磨练(△(平方)代表意义;△(平方)的熟习).可以或许读懂Eviews输出的估量成果第二章课后题(1.3.9.10)1.为什么计量经济学模子的理论方程中必须包含随机干扰项?(经典模子中产生随机误差的原因)答:计量经济学模子考核的是具有因果关系的随机变量间的具体接洽方法.因为是随机变量,意味着影响被解释变量的身分是庞杂的,除了解释变量的影响外,还有其他无法在模子中自力列出的各类身分的影响.如许,理论模子中就必须运用一个称为随机干扰项的变量宋代表所有这些无法在模子中自力表示出来的影响身分,以保证模子在理论上的科学性.3.一元线性回归模子的根本假设重要有哪些?违反根本假设的模子是否不可以估量?答:线性回归模子的根本假设有两大类:一类是关于随机干扰项的,包括零均值,同方差,不序列相干,知足正态散布等假设;另一类是关于解释变量的,重要有:解释变量长短随机的,若是随机变量,则与随机干扰项不相干.现实上,这些假设都是针对通俗最小二乘法的.在违反这些根本假设的情形下,通俗最小二乘估量量就不再是最佳线性无偏估量量,是以运用通俗最小二乘法进行估量己无多大意义.但模子本身照样可以估量的,尤其是可以经由过程最大似然法等其他道理进行估量.假设1. 解释变量X是肯定性变量,不是随机变量;假设2. 随机误差项μ具有零均值.同方差和不序列相干性:E(μi)=0i=1,2, …,nVar (μi)=σμ2 i=1,2, …,nCov(μi, μj )=0i≠j i,j= 1,2, …,n假设3. 随机误差项μ与解释变量X 之间不相干:Cov(X i , μi )=0 i=1,2, …,n假设4.μ屈服零均值.同方差.零协方差的正态散布μi ~N(0, σμ2 ) i=1,2, …,n假设5. 跟着样本容量的无穷增长,解释变量X 的样本方差趋于一有限常数.即∞→→-∑n Q n X X i ,/)(2假设6. 回归模子是精确设定的9.10题为盘算题,见教材P52,答案见P17第三章 经典单方程计量经济学模子:多元线性回归模子上届重点:F 磨练.t 磨练 调剂的样本决议系数.“多元”里为什么要对△(平方)系数进行调剂?第三章课后题(1.2.7.9.10)1.多元线性回归模子的根本假设是什么?在证实最小二乘估量量的无偏性和有用性的进程中,哪些根本假设起了感化?答:多元线性回归模子的根本假定仍然是针对随机干扰项与针对解释变量两大类的假设.针对随机干扰项的假设有:零均值,同方差,无序列相干且屈服正态散布.针对解释量的假设有;解释变量应具有非随机性,假如后随机的,则不能与随机干扰项相干;各解释变量之间不消失(完全)线性相干关系.在证实最小二乘估量量的无偏性中,运用了解释变量非随机或与随机干扰项不相干的假定;在有用性的证实中,运用了随机干扰项同方差且无序列相干的假定.2.在多元线性回归剖析中,t 磨练和F 磨练有何不同?在一元线性回归剖析中二者是否有等价感化?(见教材P70)答:在多元线性回归剖析中,t 磨练常被用作磨练回归方程中各个参数的明显性,而F 磨练则被用作磨练全部回归关系的明显性.各解释变量结合起来对被解释变量有明显的线性关系,并不意味着每一个解释变量分离对被解释变量有明显的线性关系.在一元线性回归剖析中,二者具有等价感化,因为二者都是对配合的假设——解释变量的参数等于零一一进行磨练.7.9.10题为盘算题,见教材P91,答案见P53第四章经典单方程计量经济学模子:放宽根本假定的模子重点控制:参考重点:1.以多元线性回归为例解释异方差性会产生如何的后果?(可能为阐述题)2.磨练.修改异方差性的办法?3.以多元线性回归为例解释序列相干会产生如何的后果?(猜测,矩阵表达式推到)4.磨练.修改序列相干的办法?5.什么是DW磨练法(前提前提)?6.以多元线性回归为例解释多重共线性会产生如何的后果7.磨练.修改多重共线性的办法?8.随机解释变量问题的三种分类?分离造成的后果是什么?9.对象变量法的前提假设1)与所替代的随机解释变量高度相干2)与随机干扰项不相干3)与模子中其他解释变量不相干,以避免消失多重共线性上届重点:异方差.序列相干.多重共线性等违反根本假设的情形产生原因.后果.辨认方法办法.D.W.广义差分法第四章课后题(1.2)1.2题为盘算题,见教材P134,答案见P84第五章经典单方程计量经济学模子:专门问题上届重点:虚拟变量的寄义与设定.滞后变量的寄义.为何参加滞后和虚拟变量第五章课后题(1.3.4.10)1.回归模子中引入虚拟变量的感化是什么?有哪几种根本的引入方法?它们各合实用于什么情形?答:在模子中引入虚拟变量,主如果为了查找某(些)定性身分对解释变量的影响.加法方法与乘法方法是最重要的引入方法.前者重要实用于定性身分对截距项产生影响的情形,后者重要实用于定性身分对斜率项产生影响的情形.除此外,还可以加法与乘法组合的方法引入虚拟变量,这时可测度定性身分对截距项与斜率项同时产生影响的情形.3.滞后变量模子有哪几种类型?散布滞后模子运用OLS办法消失哪些问题?答:滞后变量模子有散布滞后模子和自回归模子两大类,前者只有解释变量及其滞后变量作为模子的解释变量,不包含被解释变量的滞后变量作为模子的解释变量;尔后者则以当期解释变量与被解释变量的若干期滞后变量作为模子的解释变量.散布滞后模子有无穷期的散布滞后模子和有限日的散布滞后模子;自回归模子又以Coyck模子.自顺应预期模子和局部调剂模子最为多见.散布滞后模子运用OLS法消失以下问题:(1)对于无穷期的散布滞后模子,因为样本不雅测值的有限性,使得无法直接对其进行估量.(2)对于有限日的散布滞后模子,运用OLS办法会碰到:没有先验准则肯定滞后期长度,对最大滞后期的肯定往往带有主不雅随便性;假如滞后期较长,因为样本容量有限,当滞后变量数量增长时,必然使得自由度削减,将缺少足够的自由度进行估量和磨练;同名变量滞后值之间可能消失高度线性相干,即模子可能消失高度的多重共线性.4.产生模子设定偏误的重要原因是什么?模子设定偏误的后果以及磨练办法有哪些?答:产生模子设定偏误的原因重要有:模子制订者不熟习响应的理论常识;对经济问题本身熟习不够或不熟习前人的相干工作:模子制订者手头没有相干变量的数据;解释变量无法测量或数据本身消失测量误差.模子设定偏误的后果有:(1)假如漏掉了重要的解释变量,会造成OLS估量量在小样本下有偏,在大样本下非一致;对随机干扰项的方差估量也是有偏的.(2)假如包含了无关的解释变量,尽管OLS估量量具有无偏性与一致性,但不具有最小方差性.(3)假如选择了错误的函数情势,则后果是全方位的,不但会造成估量的参数具有完全不同的经济意义,并且估量成果也不同.对模子设定偏误的磨练办法有:磨练是否含有无关变量,可以运用t磨练与F磨练完成:磨练是否有相干变量的漏掉或函数情势设定偏误,可以运用残差图示法,Ramsey提出的RESET磨练来完成.10.简述约化建模理论与传统理论的异同点?答:Hendry的约化建模理论的焦点是“从一般到简略”的建模思惟,即起首提出一个包括各类身分在内的“一般”模子,然后再经由过程不雅测数据,运用各类磨练对模子进行磨练并化简,最后得到一个相对简略的模子.传统建模理论的主导思惟是“从简略到庞杂”的建模思惟,它起首提出一个简略的模子,然后从各类可能的备选变量中选择恰当的变量进入模子,最后得到一个与数据拟合较好的较为庞杂的模子.从二者的重要接洽上看,它们都以对经济现象的解释为目的,以已有的经济理论为建模根据,以对数据的拟合程度作为模子好坏的重要的剖断标准之一,也都有若干磨练标推.从二者的重要差别上看,传统的建模理论往往更依附于某种单一的经济理论,旧“从一般到简略”的建模理论则更重视将各类不同经济理论纳入到最初的“一般”模子中,甚至更多地是从直觉和经验来树立“一般”的模子;尽管两者都有若干种磨练标准,但约化建模理论从实践上有更大量的诊断性磨练来看每一步建模的可行性,或查找改良模子的路径:与传统建模实践中消失的过渡“数据开采”问题比拟,因为约化建模理论的初估模子是一个包括所有可能变量的“一般”模子,是以也就避免了过度的“数据开采”问题;别的,因为初始模子的“一般”性,所有研讨者在建模的初期往往有着雷同的“起点”,是以,在雷同的约化程序下,最后得到的最终模子也应当是雷同的.而传统建模实践中对统一经济问题往往有各类不同经济理论来解释,假如不同的研讨者采用不同的经济理论建模,得到的最终模子也会不同.当然,因为约化建模理论有更多的磨练,使得建模进程更庞杂,比拟之下,传统建模方轨则加倍“灵巧”.第六章联立方程计量经济学模子理论与办法上届重点:内生变量.外生变量.先定变量.构造式模子.简化式模子.参数关系体系.模子辨认第六章课后题(1.2.3.)1.为什么要树立联立方程计量经济学模子?联立方程计量经济学模子实用于什么样的经济现象?答:经济现象是极为庞杂的,个中诸身分之间的关系,在许多情形下,不是单一方程所能描写的那种简略的单向因果关系,而是互相依存,互为因果的,这时,就必须用联立的计量经济学方程才能描写清晰.所以与单方程实用于单一经济现象的研讨比拟,联立方程计量经济学模子实用于描写庞杂的经济现象,即经济体系.2.联立方程计量经济学模子的辨认状态可以分为几类?其寄义各是什么?答:联立方程计量经济学模子的辨认状态可以分为可辨认和不可辨认,可辨认又分为正好辨认和过度辨认.假如联立方程计量经济学模子中某个构造方程不具有肯定的统计情势,则称该方程为不可辨认,或者根据参数关系体系,在已知简化式参数估量值时,假如不能得到联立方程计量经济学模子中某个构造方程的肯定的构造参数估量值,称该方程为不可辨认.假如一个模子中的所有随机方程都是可以辨认的,则以为该联立方程计量经济学模子体系是可以辨认的.反过来,假如一个模子体系中消失一个不可辨认的随机方程,则以为该联立方程汁量经济学模子体系是不可以辨认的.假如某一个随机方程具有独一一组参数估量量,称其为正好辨认;假如某一个随机方程具有多组参数估量量,称其为过度辨认.3.联立方程计量经济学模子的单方程估量有哪些重要办法?其实用前提和统计性质各是什么?答:单方程估量的重要办法有:狭义的对象变量法(IV),间接最小二乘法(ILS),两阶段最小二乘法(2SLS).狭义的对象变量法(IV)和间接最小二乘法(ILS)只实用于正好辨认的构造方程的估量.两阶段最小二乘法(2SLs)既实用于正好辨认的构造方程,又实用于过度辨认的构造方程.用对象变量法估量的参数,一般情形下,在小样本下是有偏的,但在大样本下是渐近无偏的.假如拔取的对象变量与方程随机干扰项完全不相干,那么其参数估量量是无偏估量量.对于间接最小二乘法,对简化式模子运用通俗最小二乘法得到的参数估量量具有线性性.无偏性.有用性.经由过程多半关系体系盘算得到构造方程的构造参数估量量在小样本下是有偏的,在大样本下是渐近无偏的.采用二阶段最小二乘法得到构造方程的构造参数估量量在小样本下是有偏的,在大样本下是渐近无偏的.补充材料盘算题(一)给出多元线性回归的成果1.断定模子估量的成果若何,拟合后果若何?2.解释每一个参数所代表的经济意义?3.断定有没有违反四个根本假设?盘算题(二)给出数值,盘算:1.t磨练,F磨练的自由度2.在给定明显性程度下参数是否明显?3.估量值是有偏.无偏.有用?盘算题(三)参加虚拟变量D1,D2,D3问:虚拟变量的经济寄义?。
第二章例2.1.1(p24)(1)表2.1.2中E(Y|X=800)即条件均值的求法,将数据直接复制到stata 中。
程序: sum y if x==800程序:程序:(2)图2.1.1的做法:程序:twoway(scatter y x )(lfit y x ),title("不同可支配收入水平组家庭消费支出的条件分布图")xtitle("每月可支配收入(元)")ytitle("每月消费支出(元)")xtick(500(500)4000)ytick(0(500)3500)例2.3.1(p37)将数据直接复制到stata 中程序:(1)total xiyireturn listscalars:r(skip) = 0r(first) = 1r(k_term) = 0r(k_operator) = 0r(k) = 0r(k_level) = 0r(output) = 1r(b) = 4974750r(se) = 1507820.761894463g a=r(b) in 1 total xi2 xiyi 4974750 1507821 1563822 8385678Total Std. Err. [95% Conf. Interval]Scatter 表示散点图选项,lfit 表示回归线,title 表示题目,xtick 表示刻度,(500(500)4000)分别表示起始刻度,中间数表示以单位刻度,4000表示最后的刻度。
要注意的是命令中的符号都要用英文字符,否则命令无效。
这个图可以直接复制的,但是由于我的软件出问题,只能直接剪切,所以影响清晰度。
return listg b=r(b) in 1di a/b.67(2)mean Yigen m=r(b) in 1mean Xig n=r(b) in 1di m-n*0.67142.4由此得到回归方程:Y=142.4+0.67Xi例2.6.2(p53)程序:(1)回归reg y x(2)求X的样本均值和样本方差:mean xMean estimation Number of obs = 31 Mean Std. Err. [95% Conf. Interval] x 11363.69 591.7041 10155.27 12572.11sum x ,d(d表示detail的省略,这个命令会产生更多的信息)xPercentiles Smallest1% 8871.27 8871.275% 8920.59 8920.5910% 9000.35 8941.08 Obs 3125% 9267.7 9000.35 Sum of Wgt. 3150% 9898.75 Mean 11363.69Largest Std. Dev. 3294.46975% 12192.24 16015.5890% 16015.58 18265.1 Variance 1.09e+0795% 19977.52 19977.52 Skewness 1.69197399% 20667.91 20667.91 Kurtosis 4.739267di r(Var)(特别注意Var的大小写)10853528例2.6.2(P56)(1)reg Y XSource SS df MS Number of obs = 29F( 1, 27) = 2214.60Model 2.4819e+09 1 2.4819e+09 Prob > F = 0.0000Residual 30259023.9 27 1120704.59 R-squared = 0.9880Adj R-squared = 0.9875 Total2.5122e*************.8RootMSE=1058.6Y Coef. Std. Err. t P>|t| [95% Conf. Interval]X .4375268 .0092973 47.06 0.000 .4184503 .4566033_cons 2091.295 334.987 6.24 0.000 1403.959 2778.632(2)图2.6.1的绘制:twoway (line Y X year),title("中国居民可支配总收入X与消费总支出Y 的变动图")第三章例3.2.2(p72)reg Y X1 X2Source SS df MS Number of obs = 31F( 2, 28) = 560.57Model 166971988 2 83485994.2 Prob > F = 0.0000Residual 4170092.27 28 148931.867 R-squared = 0.9756Adj R-squared = 0.9739Total 171142081 30 5704736.02 Root MSE = 385.92Y Coef. Std. Err. t P>|t| [95% Conf. Interval]X1 .5556438 .0753076 7.38 0.000 .4013831 .7099046X2 .2500854 .1136343 2.20 0.036 .0173161 .4828547_cons 143.3266 260.4032 0.55 0.586 -390.0851 676.7383例3.5.1(p85)g lnP1=ln(P1)g lnP0=ln(P0)g lnQ=ln(Q)g lnX=ln(X)Source SS df MS Number of obs = 22 F( 3, 18) = 258.84 Model .765670868 3 .255223623 Prob > F = 0.0000 Residual .017748183 18 .00098601 R-squared = 0.9773 Adj R-squared = 0.9736 Total .783419051 21 .037305669 Root MSE = .0314 lnQ Coef. Std. Err. t P>|t| [95% Conf. Interval]lnX .5399167 .0365299 14.78 0.000 .4631703 .6166631 lnP1 -.2580119 .1781856 -1.45 0.165 -.632366 .1163422 lnP0 -.2885609 .2051844 -1.41 0.177 -.7196373 .1425155 _cons 5.53195 .0931071 59.41 0.000 5.336339 5.727561 drop lnX lnP1 lnP0g lnXP0=ln(X/P0)g lnP1P0=ln(P1/P0)reg lnQ lnXP0 lnP1P0Source SS df MS Number of obs = 22F( 2, 19) = 408.93Model .765632331 2 .382816165 Prob > F = 0.0000Residual .01778672 19 .000936143 R-squared = 0.9773Adj R-squared = 0.9749Total .783419051 21 .037305669 Root MSE = .0306lnQ Coef. Std. Err. t P>|t| [95% Conf. Interval]lnXP0 .5344394 .0231984 23.04 0.000 .4858846 .5829942lnP1P0 -.2753473 .1511432 -1.82 0.084 -.5916936 .040999_cons 5.524569 .0831077 66.47 0.000 5.350622 5.698515练习题13(p105)g lnY=ln(Y)g lnK=ln(K)g lnL=ln(L)reg lnY lnK lnLSource SS df MS Number of obs = 31 F( 2, 28) = 59.66 Model 21.6049266 2 10.8024633 Prob > F = 0.0000 Residual 5.07030244 28 .18108223 R-squared = 0.8099 Adj R-squared = 0.7963 Total 26.6752291 30 .889174303 Root MSE = .42554 lnY Coef. Std. Err. t P>|t| [95% Conf. Interval]lnK .6092356 .1763779 3.45 0.002 .2479419 .9705293 lnL .3607965 .2015915 1.79 0.084 -.0521449 .7737378 _cons 1.153994 .7276114 1.59 0.124 -.33645 2.644439第二问:test b_[lnk]+b_[lnl]==1第四章例4.1.4 (P116)(1)回归g lnY=ln(Y)g lnX1=ln(X1)g lnX2=ln(X2)reg lnY lnX1 lnX2Source SS df MS Number of obs = 31 F( 2, 28) = 49.60 Model 2.9609923 2 1.48049615 Prob > F = 0.0000 Residual .835744123 28 .029848004 R-squared = 0.7799 Adj R-squared = 0.7642 Total 3.79673642 30 .126557881 Root MSE = .17277 lnY Coef. Std. Err. t P>|t| [95% Conf. Interval]lnX1 .1502137 .1085379 1.38 0.177 -.072116 .3725435 lnX2 .4774534 .0515951 9.25 0.000 .3717657 .5831412 _cons 3.266068 1.041591 3.14 0.004 1.132465 5.39967于是得到方程:lnY=3.266+0.1502lnX1+0.4775lnX2(2)绘制参差图:predict e, residg ei2=e^2scatter ei2 lnX2,title("图4.1.3 异方差性检验图")xtick(6(0.4)9.2)ytick(0(0.04)0.24)predict在回归结束后,需要对拟合值以及残差进行分析,需要使用此命令。
计量经济学试验完整版--李子奈计量经济学试验??李子奈目录实验一一元线性回归5一实验目的 5二实验要求 5三实验原理 5四预备知识 5五实验内容 5六实验步骤 51.建立工作文件并录入数据 52.数据的描述性统计和图形统计: 73.设定模型,用最小二乘法估计参数: 84.模型检验: 85.应用:回归预测: 9实验二可化为线性的非线性回归模型估计、受约束回归检验及参数稳定性检验12一实验目的: 12二实验要求12三实验原理12四预备知识12五实验内容12六实验步骤13实验三多元线性回归14一实验目的14三实验原理15四预备知识15五实验内容15六实验步骤156.1 建立工作文件并录入全部数据 15 6.2 建立二元线性回归模型156.3 结果的分析与检验166.4 参数的置信区间166.5 回归预测176.6 置信区间的预测18实验四异方差性20一实验目的20二实验要求20三实验原理20四预备知识20五实验内容20六实验步骤206.1 建立对象: 206.2 用普通最小二乘法建立线性模型216.3 检验模型的异方差性216.4 异方差性的修正24实验五自相关性28一实验目地28二实验要求28三实验原理28四预备知识28五实验内容28六实验步骤286.1 建立Workfile和对象 296.2 参数估计、检验模型的自相关性296.3 使用广义最小二乘法估计模型 336.4 采用差分形式作为新数据,估计模型并检验相关性35 实验六多元线性回归和多重共线性37一实验目的37二实验要求37三实验原理37四预备知识37五实验内容37六实验步骤376.1 建立工作文件并录入数据386.2 用OLS估计模型386.3 多重共线性模型的识别386.4 多重共线性模型的修正39实验七分布滞后模型与自回归模型及格兰杰因果关系检验 41 一实验目的41二实验要求41三实验原理41四预备知识41五实验内容41六实验步骤426.1 建立工作文件并录入数据426.2 使用4期滞后2次多项式估计模型426.3 格兰杰因果关系检验45实验八联立方程计量经济学模型49一实验目的49二实验要求49三实验原理49四预备知识49五实验内容49六实验步骤506.1 分析联立方程模型。
第5章 时间序列计量经济学模型5.1 复习笔记一、时间序列模型的序列相关性 1.序列相关性序列相关:当其他基本假设成立的条件下,在线性模型Y t =β0+β1X t1+β2X t2+…+βk X tk +μt (t =1,2,…,T )中,有Cov (μi ,μj )=E (μi μj )≠0;用矩阵可表示为:()()()()2211221122Var T T T T E E E Iσμμσσμμμμμσσσσσ⎛⎫⎛⎫⎪ ⎪'===⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=Ω≠如果仅存在E (μt μt +1)≠0,则称为一阶序列相关或自相关,是最常见的一种序列相关形式,可表示为μt =ρμt -1+εt (-1<ρ<1,ρ为一阶自相关系数,εt 是均值为0、同方差、无自相关的随机扰动项)。
2.实际经济问题中的序列相关性表5-1 实际经济问题中的序列相关性序列相关性存在于非独立随机抽取的截面数据与时间序列模型中,其表现以时间序列样本最为显著。
由于对于不同的样本观测值,非自变量因素存在着某种时间上的连续性,非自变量因素会对因变量产生连续影响,因此时间序列分析往往都存在序列相关性。
3.序列相关性的后果表5-2 序列相关性的后果4.序列相关性的检验检验方法的共同思路:首先采用普通最小二乘法估计模型,以求得随机干扰项的“近似估计量”()ˆt t tOLS e Y Y =-然后通过分析这些“近似估计量”自身的相关性以达到判断随机干扰项是否具有序列相关性的目的。
(1)图示法由于残差e t可以作为μt的估计,因此,如果μt存在序列相关性,必然会由残差项e t 反映出来,因此可利用e t的变化图形来判断随机干扰项的序列相关性。
(2)回归检验法以e t为被解释变量,以各种可能的相关量如e t-1,e t-2,e t2等为解释变量,建立各种方程:e t=ρe t-1+εt,t=2,…,Te t=ρe t-1+ρe t-2+εt,t=3,…,T对方程进行估计并进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。