(完整版)生物化学知识点重点整理
- 格式:doc
- 大小:44.88 KB
- 文档页数:10
生物化学重点整理生物化学是一门研究生物体化学组成和生命过程中化学变化的科学。
它涵盖了广泛的领域,从分子水平揭示生命的奥秘。
以下是对生物化学重点内容的整理。
一、蛋白质化学蛋白质是生物体内最为重要的大分子之一。
1、蛋白质的组成蛋白质主要由碳、氢、氧、氮等元素组成,其基本组成单位是氨基酸。
氨基酸通过肽键相连形成多肽链,进而折叠形成具有特定空间结构的蛋白质。
2、蛋白质的结构蛋白质具有一级、二级、三级和四级结构。
一级结构指的是氨基酸的排列顺序;二级结构包括α螺旋、β折叠等;三级结构是整个多肽链的三维构象;四级结构则是由多个亚基组成的蛋白质的空间排列。
3、蛋白质的性质蛋白质具有两性解离、胶体性质、变性与复性等特性。
变性会导致蛋白质的空间结构破坏,从而失去生物活性,但在一定条件下可以复性。
二、核酸化学核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
1、核酸的组成核酸由核苷酸组成,核苷酸包含碱基、戊糖和磷酸。
DNA 中的碱基有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C);RNA 中的碱基用尿嘧啶(U)代替了胸腺嘧啶。
2、 DNA 的结构DNA 是双螺旋结构,两条链反向平行,碱基之间遵循互补配对原则(A 与 T 配对,G 与 C 配对)。
3、 RNA 的种类与功能RNA 包括信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体RNA(rRNA)。
mRNA 携带遗传信息,指导蛋白质合成;tRNA 转运氨基酸;rRNA 是核糖体的组成部分。
三、酶酶是生物体内具有催化作用的蛋白质或 RNA。
1、酶的特点酶具有高效性、专一性和可调节性。
高效性使得酶能够大大加快反应速率;专一性保证了酶对特定底物的作用;可调节性使酶的活性能够适应生物体的需求。
2、酶的作用机制酶通过降低反应的活化能来加速反应。
它与底物结合形成酶底物复合物,然后经过一系列的中间步骤完成催化反应。
3、影响酶活性的因素温度、pH 值、底物浓度、酶浓度、抑制剂和激活剂等都会影响酶的活性。
生物化学知识点总结1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级结构、二级结构(α-螺旋、β-折叠)、三级结构、四级结构。
- 核酸:DNA和RNA的化学结构、碱基配对原则、双螺旋结构。
- 糖类:单糖、二糖、多糖的结构和功能。
- 脂质:甘油三酯、磷脂、固醇的结构和生物学功能。
2. 酶学- 酶的定义、催化机制、酶活性的影响因素(pH、温度、底物浓度)。
- 酶动力学:米氏方程、最大速率(Vmax)、米氏常数(Km)。
- 酶抑制:竞争性抑制、非竞争性抑制、不可逆抑制。
3. 代谢途径- 糖酵解:步骤、ATP产量、调节点。
- 柠檬酸循环(TCA循环):反应步骤、能量产生。
- 电子传递链和氧化磷酸化:电子载体、质子梯度、ATP合成。
- 光合作用:光依赖反应、光合电子传递链、ATP和NADPH的生成。
- 氨基酸代谢:脱氨基作用、尿素循环。
- 脂质代谢:脂肪酸的氧化、合成、甘油代谢。
4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。
- 第二信使:cAMP、IP3、DAG、Ca2+。
- 信号传导途径:MAPK途径、PI3K/Akt途径、Wnt/β-catenin途径。
5. 基因表达与调控- DNA复制:半保留复制、DNA聚合酶。
- 转录:RNA聚合酶、启动子、增强子、沉默子。
- 翻译:核糖体结构、tRNA作用、密码子、起始和终止密码子。
- 基因调控:表观遗传学、非编码RNA、microRNA。
6. 分子生物学技术- PCR技术:原理、引物设计、扩增过程。
- 克隆技术:载体选择、限制性内切酶、连接酶。
- 基因编辑:CRISPR-Cas9系统、基因敲除、基因敲入。
- 蛋白质组学:质谱分析、蛋白质标记、蛋白质互作。
7. 生物化学研究方法- 分子杂交技术:Southern印迹、Northern印迹、Western印迹。
- 色谱法:离子交换色谱、凝胶渗透色谱、亲和色谱。
- 光谱学方法:紫外光谱、红外光谱、核磁共振(NMR)。
生物化学考试重点总结
1. 生物化学基本概念
- 生物大分子:蛋白质、核酸、多糖、脂质
- 酶:催化生化反应的生物催化剂
- 代谢路径:物质在生物体内相互转化的路径
2. 生物大分子的结构与功能
- 蛋白质:结构、功能、种类、合成和降解
- 核酸:DNA和RNA的结构、功能、复制和转录
- 多糖:单糖、二糖、多糖的结构、功能、合成和降解- 脂质:脂肪酸、甘油三酯、磷脂的结构、功能和代谢
3. 代谢途径与调控
- 糖代谢:糖酵解、糖异生、糖原代谢
- 脂肪代谢:脂肪酸氧化、甘油三酯合成、脂肪酸合成- 蛋白质代谢:蛋白质降解、蛋白质合成、氨基酸代谢- 核酸代谢:DNA和RNA的代谢途径及调控机制
4. 其他重点知识点
- 酶动力学:酶的活性、酶动力学参数、酶抑制剂
- 信号转导与调控:细胞信号传导、信号通路、蛋白质磷酸化- 生物膜:细胞膜结构、跨膜转运和信号传导
5. 实验技术
- 分子生物学实验技术:PCR、DNA测序、蛋白质电泳
- 生物化学分离和分析方法:色谱技术、质谱技术、光谱技术
以上是生物化学考试的重点内容总结,希望对你的备考有所帮助。
祝你考试顺利!。
完整版)生物化学知识点重点整理生物分子本章节将介绍生物分子的基本概念和特征,包括蛋白质、核酸、多糖和脂质的结构和功能。
本章节将讨论酶在生化反应中的作用机制和催化过程。
包括酶的分类、酶动力学和酶抑制剂等内容。
本章节将介绍生物体内的代谢途径,包括糖代谢、脂肪代谢和蛋白质代谢等重要过程。
本章节将探讨生物能量转化的过程,包括光合作用和呼吸作用等机制,以及相关的能量产生和消耗。
本章节将介绍生物体内遗传信息的传递过程,包括DNA复制、RNA转录和蛋白质翻译等重要步骤。
DNA复制DNA复制是遗传信息传递的第一步。
在细胞分裂过程中,DNA分子能够准确地复制自身,并将遗传信息传递给下一代细胞。
复制过程中,双链DNA分离,每条链作为模板合成新的互补链,形成两个完全一样的DNA分子。
RNA转录RNA转录是将DNA中的遗传信息转录成RNA的过程。
在细胞核中,RNA聚合酶将DNA作为模板合成RNA分子。
转录的产物是一条与DNA互补的RNA链,它可以是信使RNA(mRNA)、转移RNA(tRNA)或核糖体RNA(rRNA),这些RNA分子携带着遗传信息参与到蛋白质的合成过程中。
蛋白质翻译蛋白质翻译是将RNA中的遗传信息翻译成氨基酸序列,从而合成蛋白质的过程。
蛋白质翻译发生在细胞质的核糖体上,通过配对规则,每个三个核苷酸对应一个特定的氨基酸,从而组成特定的蛋白质。
翻译过程可分为启动、延伸和终止三个阶段。
以上是生物体内遗传信息的传递过程的重要步骤。
深入了解这些过程有助于理解生物体内的遗传机制和生命周期的维持。
本章节将讨论基因调控的机制和影响因素,包括转录因子、表观遗传学和信号转导等内容。
本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。
本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。
第一章绪论一、生物化学的的概念:生物化学〔biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学与物理学之间的一门边缘学科。
二、生物化学的开展:1.表达生物化学阶段:是生物化学开展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以与生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃开展的时期。
就在这一时期,人们根本上弄清了生物体各种主要化学物质的代途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以与水、无机盐等组成,此外还含有一些低分子物质。
2.物质代:物质代的根本过程主要包括三大步骤:消化、吸收→中间代→排泄。
其中,中间代过程是在细胞进展的,最为复杂的化学变化过程,它包括合成代,分解代,物质互变,代调控,能量代几方面的容。
3.细胞信号转导:细胞存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代、生理活动与生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,提醒结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的根本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
教学目标:1.掌握蛋白质的概念、重要性和分子组成。
2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。
3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。
4.了解蛋白质结构与功能间的关系。
5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。
德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。
英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。
佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。
1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。
蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。
蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。
单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。
生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。
新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。
生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。
生物的运动、生物体的防御体系离不开蛋白质。
蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。
随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。
生物化学知识点总整理一、蛋白质1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。
2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。
3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。
4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点:在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。
5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。
6.半胱氨酸连接用二硫键(—S—S—)7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。
8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的α羧基,称为羧基端或C端。
9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键,其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用。
10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要 3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。
生物化学复习重点第一章蛋白质1.蛋白质的元素组成:C、H、O、N、S及其他微量元素,N为特征性元素2.氨基酸通式特点:α-L -氨基酸,只有甘氨酸没有手性(旋光性),脯氨酸为亚氨基酸。
3.氨基酸分类:(1)、酸性氨基酸:一氨基二羧基氨基酸,有天冬氨酸、谷氨酸,带负电荷(2)、碱性氨基酸:二氨基一羧基氨基酸,有赖氨酸、精氨酸、组氨酸,带正电荷(3)、中性氨基酸:一氨基一羧基氨基酸,有甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、色氨酸、酪氨酸、脯氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸。
不带电荷。
4.两性解离:氨基酸是两性电解质是指在溶液中既可以给出H+而表现酸性,其氨基可以结合H+而表现碱性。
在一定条件下,氨基酸是一种既带正电荷,又带负电荷的离子,这种离子称为兼性离子。
5.等电点:在某一pH值条件下,氨基酸解离成阳离子和阴离子的程度相等,溶液中的氨基酸以兼性离子的形式存在,且净电荷为0 此时溶液的pH值称为该氨基酸的等电点。
肽键:存在于蛋白质和肽分子中,是由一个氨基酸的α羧基与另一个氨基酸的α氨基缩合形成的化学键。
肽键:一个氨基酸的a-COOH 和相邻的另一个氨基酸的a-NH2脱水形成共价键。
氨基酸通过钛键连接成肽,根据所含氨基酸的多少分为寡肽和多肽;根据结构功能分为生物活性肽和蛋白质。
肽键结构的六个原子构成一个钛单元,六个原子处于同一个平面上称为肽平面pI=(pK1,+pK2,)/25.氨基酸紫外吸收:280nm,苯丙氨酸、色氨酸、酪氨酸有紫外吸收6.蛋白质的一级结构(Primary structure):它是指蛋白质中的氨基酸按照特定的排列顺序通过肽键连接起来的多肽链结构。
7.蛋白质二级结构的概念:是指蛋白质多肽链局部片段的构象该片段的氨基酸序列是连续的,而主链构象通常是规则的的基础上,按照一定的方式有规律的旋转或折叠形成的空间构象。
其实质是多肽链在空间的排列方式蛋白质二级结构主要类型有:a-螺旋、β-折叠、β-转角维持二级结构的作用力:氢键a-螺旋(a-Helix):是指蛋白质多肽通过肽平面旋转盘绕形成的一种右手螺旋结构。
(完整版)生物化学知识点重点整理1.生物化学的概述生物化学是研究生物体内化学组成、结构、功能和变化的学科,是生物学和化学的交叉学科。
它研究的内容包括生物大分子(蛋白质、核酸、多糖和脂质)、酶、代谢、信号传导等生物体内的化学过程和物质的转化。
生物化学的研究对于理解生命的机理和病理过程具有重要意义。
2.蛋白质结构与功能蛋白质是生物体中最重要的生化分子之一,它们具有结构多样性和功能多样性。
蛋白质的结构包括四级结构:一级结构是氨基酸的线性序列;二级结构是氨基酸间的氢键形成的α螺旋和β折叠;三级结构是螺旋和折叠的空间结构;四级结构是多个多肽链的组合形成的复合体。
蛋白质的功能包括催化酶活性、调节信号传导、结构支架等。
3.核酸结构与功能核酸是生物体中的遗传物质,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是双螺旋结构,由磷酸二酯键连接的脱氧核苷酸组成。
RNA是单链结构,由磷酸二酯键连接的核苷酸组成。
核酸的功能包括存储遗传信息、传递遗传信息和调控基因表达。
4.代谢与能量转化代谢是生物体内的化学反应过程,包括合成反应和分解反应。
合成反应是通过合成物质来维持生物体的正常生理功能;分解反应是通过分解物质来提供能量。
能量转化是代谢过程中最重要的一环,包括能量的捕获、传递和释放。
生物体通过代谢和能量转化来获取能量、转化能量和维持生命活动。
5.酶的催化机制酶是生物体内催化反应的生物分子,能够加速化学反应的速率,降低反应的活化能。
酶的催化机制包括底物识别、底物结合、酶底物复合物的形成、催化反应和生成产物。
酶的催化过程中涉及到酶活性位点的氨基酸残基和底物之间的相互作用。
6.信号传导与细胞通讯细胞内和细胞间的信号传导是维持生物体内稳态和调节机体功能的重要手段。
信号传导包括外部信号的接受、内部信号的传递和效应的产生。
细胞间的信号传导有兴奋性传导和化学信号传导两种方式。
7.糖的分类与代谢糖是生物体内最重要的能量源,也是合成生物大分子的前体。
第一章蛋白质的结构与功能第一节蛋白质的分子组成一、组成蛋白质的元素1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。
2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。
3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮克数× 6.25×100二、氨基酸——组成蛋白质的基本单位(一)氨基酸的分类1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸( Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2): 天冬氨酸(Asp ) 谷氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg)组氨酸( His)(二)氨基酸的理化性质1. 两性解离及等电点等电点 :在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
2. 紫外吸收(1)色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。
(2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。
3. 茚三酮反应氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。
由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法三、肽(一)肽1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。
2、肽是由氨基酸通过肽键缩合而形成的化合物。
第19章代谢总论1、分解代谢: 有机营养物, 不管是从环境获得的, 还是自身储存的, 通过一系列反应步骤变为较小的, 较简单的物质的过程称为分解代谢。
2、合成代谢: 又称生物合成, 是生物体利用小分子或大分子的结构原件建造成自身大分子的过程。
3、ATP储存自由能为生物体的一切生命活动提供能量。
满足以下四方面的需要: ①生物合成、②肌肉收缩、③营养物逆浓度梯度跨膜运送、④在DNA、RNA、蛋白质能生物合成中, 以特殊方式起递能作用。
4、能够直接提供自由能推动生物体多种化学反应的核苷酸类分子除ATP外, 还有GTP, UTP, CTP。
GTP对G蛋白的活化, 蛋白质的生物合成, 蛋白质的寻靶作用, 蛋白质的转运等等都作为推动力提供自由能。
5、FMN, 黄素腺嘌呤单核苷酸, FAD, 黄素腺嘌呤二核苷酸, 它们是另一类在传递电子和氢原子中起作用的载体。
FMN和FAD都能接受两个电子和两个氢原子, 它们在氧化还原反应中, 特别是在氧化呼吸链中起着传递电子和氢原子的作用。
6、辅酶A, 简写为CoA, 分子中含有腺嘌呤、D-核糖、磷酸、焦磷酸、泛酸和巯基乙胺。
在水解时释放出大量的自由能。
第20章遗传缺欠症缺乏尿黑酸氧化酶, 导致酪氨酸的代谢中间物尿黑酸不能氧化而随尿排出体外, 在空气中使尿变成黑色。
苯丙酮尿症, 是苯丙氨酸发生异常代谢的结果, 这是尿中出现苯丙氨酸。
但酪氨酸的代谢仍然正常。
通过以上两种不正常的代谢现象, 是苯丙氨酸的代谢途径得到了阐明。
第21章生物能学1、高能磷酸化合物的类型.碳氧键..氮磷键型-如胍基磷酸化合物。
1.磷酸肌酸。
2.磷酸精氨酸..硫酯键型-活性硫酸基.1.3’-腺苷磷酸5’-磷酰硫酸.2.酰基辅酶A..甲硫键型-活性甲硫氨.2、ATP水解释放的自由能收到许多因素的影响。
当ph升高时ATP释放的自由能明显升高。
还受到Mg2+等其他一些2价阳离子的复杂的影响。
3、ATP在磷酸基团转移中作为中间递体而起作用。
生物化学复习题第一章绪论1. 名词解释生物化学:生物化学指利用化学的原理和方法,从分子水平研究生物体的化学组成,及其在体内的代谢转变规律,从而阐明生命现象本质的一门科学.其研究内容包括①生物体的化学组成,生物分子的结构、性质及功能②生物分子的分解与合成,反应过程中的能量变化③生物信息分子的合成及其调控,即遗传信息的贮存、传递和表达.生物化学主要从分子水平上探索和解释生长、发育、遗传、记忆与思维等复杂生命现象的本质2. 问答题1生物化学的发展史分为哪几个阶段生物化学的发展主要包括三个阶段:①静态生物化学阶段20世纪之前:是生物化学发展的萌芽阶段,其主要工作是分析和研究生物体的组成成分以及生物体的排泄物和分泌物②动态生物化学阶段20世纪初至20世纪中叶:是生物化学蓬勃发展的阶段,这一时期人们基本弄清了生物体内各种主要化学物质的代谢途径③功能生物化学阶段20世纪中叶以后:这一阶段的主要研究工作是探讨各种生物大分子的结构与其功能之间的关系.2组成生物体的元素有多少种第一类元素和第二类元素各包含哪些元素组成生物体的元素共28种第一类元素包括C、H、O、N四中元素,是组成生命体的最基本元素.第二类元素包括S、P、Cl、Ca、Na、Mg,加上C、H、O、N是组成生命体的基本元素.第二章蛋白质1. 名词解释1蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物2氨基酸等电点:当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点3蛋白质等电点:当蛋白质溶液处于某一pH时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH称为蛋白质的等电点4N端与C端:N端也称N末端指多肽链中含有游离α-氨基的一端,C端也称C末端指多肽链中含有α-羧基的一端5肽与肽键:肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽6氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残余部分称为氨基酸残基7肽单元肽单位:多肽链中从一个α-碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH 间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转8结构域:多肽链的二级或超二级结构基础上进一步绕曲折叠而形成的相对独立的三维实体称为结构域.结构域具有以下特点①空间上彼此分隔,具有一定的生物学功能②结构域与分子整体以共价键相连,一般难以分离区别于蛋白质亚基③不同蛋白质分子中结构域数目不同,同一蛋白质分子中的几个结构域彼此相似或很不相同9分子病:由于基因突变等原因导致蛋白质的一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化而引起的疾病10蛋白质的变构效应:蛋白质或亚基因与某小分子物质相互作用而发生构象变化,导致蛋白质或亚基功能的变化,称为蛋白质的变构效应酶的变构效应称为别构效应11蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象,称为协同效应,其中具有促进作用的称为正协同效应,具有抑制作用的称为负协同效应12蛋白质变性:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,变性的本质是非共价键和二硫键的破坏,但不改变蛋白质的一级结构.造成变性的因素有加热、乙醇等有机溶剂、强碱、强酸、重金属离子和生物碱等,变形后蛋白质的溶解度降低、粘度增加,结晶能力消失、生物活性丧失、易受蛋白酶水解14蛋白质复性:若蛋白质的变性程度较轻,去除变性因素后,蛋白质仍可部分恢复其原有的构象和功能,称为复性2. 问答题1组成生物体的氨基酸数量是多少氨基酸的结构通式、氨基酸的等电点及计算公式组成生物的氨基酸有22种,组成人体和大多数生物的为20种,结构通式如右图.氨基酸的等电点指当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点,计算公式如下:中性氨基酸)''(2121pKpKpI+=一氨基二羧基氨基酸)''(2121pKpKpI+=二氨基一羧基氨基酸)''(2132pKpKpI+=2氨基酸根据R基团的极性和在中性条件下带电荷的情况如何分类并举例分类名称结构缩写丙氨酸AlaA缬氨酸ValV非极性氨基酸疏水,8种非极性氨基酸疏水,8种亮氨酸LeuL异亮氨酸IleI脯氨酸ProP甲硫氨酸也称蛋氨酸MetM苯丙氨酸PheF色氨酸TrpW极性氨基酸亲水,12种甘氨酸中性氨基酸,不带电GlyG丝氨酸中性氨基酸,不带电SerS苏氨酸中性氨基酸,不带电ThrT半胱氨酸中性氨基酸,不带电CysC酪氨酸中性氨基酸,不带电TyrY极性氨基酸亲水,12种天冬酰胺中性氨基酸,不带电AsnN谷氨酰胺中性氨基酸,不带电GlnQ天冬氨酸酸性氨基酸,带负电AspD谷氨酸酸性氨基酸,带负电GluE极性氨基酸亲水,12种赖氨酸碱性氨基酸,带正电LysK精氨酸碱性氨基酸,带正电ArgR组氨酸碱性氨基酸,带正电HisH3蛋白质中氮含量是多少,如何测定粗蛋白的氮含量各种蛋白质的氮含量很接近,平均为16%.生物样品中,每得得1g氮就相当于100/16=6.25g蛋白质.通常采用定氮法测量蛋白质含量,其中较为经典的是凯氏定氮法粗蛋白测定的经典方法4蛋白质的二级结构有哪几种形式其要点包括什么蛋白质的二级结构包括α-螺旋、β-折叠、β-转角和无规卷曲四种.①α-螺旋要点:多肽链主链围绕中心轴形成右手螺旋,侧链伸向螺旋外侧;每圈螺旋含个氨基酸,螺距为;每个肽键的亚胺氢和第四个肽键的羰基氧形成的氢键保持螺旋稳定,氢键与螺旋长轴基本平行②β-折叠要点:多肽链充分伸展,相邻肽单元之间折叠形成锯齿状结构,侧链位于锯齿的上下方;两段以上的β-折叠结构平行排列,两链间可以顺向平行,也可以反向平行;两链间肽键之间形成氢键,以稳固β-折叠,氢键与螺旋长轴垂直③β-转角要点:肽链内形成180°回折;含4个氨基酸残基,第一个氨基酸残基与第四个氨基酸残基形成氢键;第二个氨基酸残基常为Pro脯氨酸④无规卷曲要点:没有确定规律性的肽链结构;是蛋白质分子的一些没有规律的松散的肽链构象,对蛋白质分子的生物功能有重要作用,可使蛋白质在功能上具有可塑性5一个螺旋片段含有180个氨基酸残基,该片段中共有多少圈螺旋计算该片段的轴长螺旋数为180/=50,轴长为×50=27nm6维持蛋白质一级结构的作用力有哪些维持空间结构的作用力有哪些维持蛋白质一级结构的作用力主要的化学键:肽键,有些蛋白质还包括二硫键维持空间结构的作用力:氢键、疏水键、离子键、范德华力等统称次级键非化学键和二硫键7简述蛋白质结构与功能的关系蛋白质的一级结构:一级结构是空间构象的基础;同源蛋白质在不同生物体内的作用相同或相似的蛋白质的一级结构的种属差异揭示了进化的历程,如细胞色素C;一级结构的变化引起分子生物学功能的减退、丧失,造成生理功能的变化,甚至引起疾病;肽链的局部断裂是蛋白质的前体激活的重要步骤蛋白质的空间结构:变构蛋白可以通过空间结构的变化使其能够更充分、更协调地发挥其功能,完成复杂的生物功能;蛋白质的变性与复性与其空间结构关系密切;蛋白质的构象改变可影响其功能,严重时导致疾病的发生蛋白质构象病,如疯牛病8简述蛋白质的常见分类方式根据分子形状分类:球状蛋白质、纤维状蛋白质、膜蛋白质根据化学组成分类:简单蛋白质、结合蛋白质结合蛋白质=简单蛋白质+非蛋白质组分辅基根据功能分类:酶、调节蛋白、贮存蛋白、转运蛋白、运动蛋白、防御蛋白和毒蛋白、受体蛋白、支架蛋白、结构蛋白、异常蛋白9简述蛋白质的主要性质①两性解离和等电点:蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团.当蛋白质溶液处于某一pH时,蛋白质解离成正负离子的趋势相等,即成为兼性离子,净电荷为0,此时溶液的pH为蛋白质的等电点②蛋白质的胶体性质:蛋白质属生物大分子,其分子直径可达1-100nm之间,为胶粒范围之内,因而具有胶体的性质③蛋白质的变性、沉淀和凝固:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,称为变性.若变性程度较轻,除去变性因素后蛋白质仍可恢复或部分恢复其原有的构象及功能,称为复性.在一定条件下,蛋白疏水侧链暴露在外,肽链因互相缠绕继而聚集,因而从溶液中析出,称为蛋白质的沉淀,变性的蛋白易于沉淀,有时蛋白质发生沉淀,但并不变性.蛋白质变性后的絮状物加热可变成比较坚固的凝块,此凝块不易溶解于强酸和强碱中,称为蛋白质的凝固作用④蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有波长的特征性吸收峰,其吸收率和蛋白质浓度成正比用来测含量⑤蛋白质的显色反应:经水解产生的氨基酸可发生于茚三酮的反应;蛋白质和多肽分子中的肽键在稀碱溶液中与硫酸铜共热,呈现紫色或红色称为双缩脲反应,用以检测水解程度第三章核酸1. 名词解释1核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物,在大多数情况下,核苷是由核糖或脱氧核糖的C1β-羟基与嘧啶碱或嘌呤碱的N1或N9进行缩合生成的化学键称为β,N糖苷键2核苷酸:核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核苷酸两类,由于与磷酸基团羧基缩合的位置不同,分别生成2’-核苷酸、3’-核苷酸和5’-核苷酸最常见为5’-核苷酸3核酸的一级结构:核苷酸通过3’,5’-磷酸二酯键连接成核酸即多聚核苷酸,DNA的一级结构就是指DNA分值中脱氧核糖核苷酸的排列顺序及连接方式,RNA的一级结构就是指RNA分子中核糖核苷酸的排列顺序及连接方式4DNA的复性与变性:核酸的变性指核酸双螺旋区的多聚核苷酸链间的氢键断裂,形成单链结构的过程,使之是失去部分或全部生物活性,但其变性并不涉及磷酸二酯键的断裂,所以其一级结构并不改变.能够引起核酸变性的因素很多,升温、酸碱度改变、甲醛和尿素都可引起核酸变性.注意,DNA的变性过程是突变性的.复性指变性核酸的互补链在适当的条件下重新地和成双螺旋结构的过程5分子杂交:在退火条件下,不同来源的DNA互补链形成双链,或DNA单链和RNA单链的互补区域形成DNA-RNA杂合双链的过程称为分子杂交6增色效应:核酸变性后,260nm处的紫外吸收明显增加,这种现象称为增色效应7减色效应:核酸复性后,紫外吸收降低,这种现象称为减色效应8基因与基因组:基因指遗传学中DNA分子中最小的功能单位,某物种所含有的全部遗传物质称为该生物体的基因组,基因组的大小与生物的复杂性有关9Tm熔解温度:通常把加热变形使DNA的双螺旋结构失去一半时的温度或紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度,又称熔解温度或熔点10Chargaff定律:①所有的DNA分子中A=T,G=C,即A/T=G/C=1②嘌呤的总数等于嘧啶的总数相等即A+T=G+C③含氮基与含酮羰基的碱基总数相等A+C=G+T④同一种生物的所有体细胞DNA 的碱基组成相同,与年龄、健康状况、外界环境无关,可作为该物种的特征,用不对称比率A+T/G+C衡量⑤亲缘越近的生物,其DNA碱基组成越相近,即不对称比率越相近11探针:在核酸杂交的分析过程中,常将已知顺序的核苷酸片段用放射性同位素或荧光标记,这种带有一定标记的已知顺序的核酸片段称为探针2. 问答题1某DNA样品含腺嘌呤%按摩尔碱基计,计算其余碱基的百分含量由已知A=%,所以T=A=%,因此G+C=%,又G=C,所以G=C=%2DNA和RNA在化学组成、分子结构、细胞内分布和生理功能上的主要区别是什么①化学组成:DNA的基本单位是脱氧核糖核苷酸,每一分子脱氧核糖核苷酸包含一分子磷酸,一分子脱氧核糖和一分子含氮碱基,DNA的含氮碱基有腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T四种;RNA的基本单位是核糖核苷酸,每一分子核糖核苷酸包含一分子磷酸、一分子核糖和一分子含氮碱基,RNA的含氮碱基有腺嘌呤A、鸟嘌呤G、胞嘧啶C、尿嘧啶U四种.②分子结构:DNA为双链分子,其中大多数是是链状结构大分子,也有少部分呈环状;RNA为单链分子.③细胞内分布:DNA90%以上分布于细胞核,其余分布于核外如线粒体、叶绿体、质粒等;RNA 在细胞核和细胞液中都有分布.④生理功能:DNA分子包含有生物物种的所有遗传信息;RNA主要负责DNA遗传信息的翻译和表达,分子量要比DNA小得多,某些病毒RNA也可作为遗传信息的载体3简述DNA双螺旋结构模型的要点及生物学意义DNA双螺旋结构的要点:①DNA分子由两条多聚脱氧核糖核苷酸链DNA单链组成.两条链沿着同一根轴平行盘绕,形成右手双螺旋结构.螺旋中两条链的方向相反,其中一条链的方向为5’→3’ ,另一条链的方向3’→5’.②碱基位于螺旋的内侧,磷酸和脱氧核糖位于螺旋外侧,碱基环平面与轴垂直,糖基环平面与碱基环平面呈90°角.③螺旋横截面的直径为2nm,每条链相邻碱基平面之间的距离为,每10个核酸形成一个螺旋,其螺距高度为.④维持双螺旋的力是链间的碱基对所形成的氢键,碱基的互相结合具有严格的配对规律,嘌呤碱基的总数等于嘧啶碱基的总数生物学意义:双螺旋结构模型提供了DNA复制的机理,解释了遗传物质自我复制的机制.模型是两条链,而且碱基互补.复制之前,氢键断裂,氢键断裂,两条链彼此分开,每条链作为一个模板复制除一条新的互补链,这样就得到了两对链,解决了遗传复制中样板的分子基础4DNA的三级结构在原核生物和真核生物中各有什么特征绝大多数原核生物的DNA都是共价封闭的环状双螺旋,如果再进一步盘绕则形成麻花状的超螺旋三级结构.真核生物中,双螺旋的DNA分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构,称为核小体,属于DNA的三级结构5细胞内含哪几种主要的RNA其结构和功能是什么细胞内的主要RNA是mRNA、tRNA和rRNA.mRNA:单链RNA,功能是将DNA的遗传信息传递到蛋白质合成基地——核糖核蛋白体tRNA:单链核酸,但在分子中的某些局部部位也可形成双螺旋结构,保守性最强.二级结构由于局部双螺旋的形成而呈现三叶草形,三级结构由三叶草形折叠而成,呈倒L型.功能是将氨基酸活化搬运到核糖体,参与蛋白质的合成rRNA:细胞中含量最多RNA总量的80%,与蛋白质组成核蛋白体,作为蛋白质生物合成的场所.在原核生物中,有5S、16S、23S,16S 的rRNA参与构成蛋白体的小亚基,5S和23S的rRNA参与构成核蛋白体的大亚基;在真核生物中,rRNA有四种5S、、18S、28S,其中18S参与构成核蛋白体小亚基,其余参与构成核蛋白体大亚基6简述tRNA的二级结构要点tRNA的二级结构呈三叶草形,包含以下区域:①氨基酸接受区:包含tRNA的3’-末端和5’-末端,3’-末端的最后三个核苷酸残基都是CCA,A为核苷,氨基酸可与之形成酯,该去区在蛋白质合成中起携带氨基酸的作用②反密码区:与氨基酸接受区相对的一般含有七个核苷酸残基的区域,中间的三个核苷酸残基称为反密码子③二氢尿嘧啶区:该区域含有二氢尿嘧啶④T ψC区:该区与二氢尿嘧啶区相对,假尿嘧啶核苷-胸腺嘧啶核糖核苷组成环TψC由7个核苷酸组成,通过由5对碱基组成的双螺旋区TψC臂与tRNA其余部分相连,除个别例外,几乎所有的tRNA在此环中都含有TψC⑤可变区:位于反密码去与TψC 之间,不同的tRNA在该区域中变化较大7简述核酸的主要性质①一般理化性质:固体DNA为白色纤维状固体,RNA为白色粉末状固体,均溶于水,不溶于一般的有机溶剂,在70%乙醇中形成沉淀,具有很强的旋光性,DNA粘度较大,RNA粘度小得多②两性和等电点:由于核酸分子中既具有酸性基团,有具有碱性基团,因而核酸具有两性性质.DNA的等电点为4至,RNA的等电点2至RNA存在核苷酸内的分子内氢键,促进电离③紫外吸收:核酸的吸收峰为260nm左右的紫外线④核酸的水解:核酸的水解有碱水解和酶水解两种方式,前者通过在碱性条件下没有选择性地断裂磷酸二酯键完成,后者可采用DNA水解酶或RNA水解酶,可以有选择性地切断磷酸二酯键限制性核酸内切酶或者没有选择性地切断⑤核酸的变性:核酸的变性本质上是氢键的断裂,变成单链结构.DNA的热变性过程是突变的,在很窄的温度区间内完成,其熔解温度满足Tm—=100G+C;RNA由于只有局部的双螺旋区,所以变性行为引起的性质变化不明显⑥核酸的复性:在适当条件下,变性核酸的互补链能够重新结合成双螺旋结构,DNA的生物活性只能得到部分恢复,且出现减色效应,将热变性的DNA骤然冷却时,DNA不可能复性,缓慢冷却可以复性,分子量越大复性越困难,浓度越大,复性越困难⑦核酸的分子杂交:在退火条件下,不同来源的DNA互补链能够形成双链或者DNA单链和RNA单链的互补区形成DNA-RNA 杂合双链⑧含氮碱基的性质:存在酮式-烯醇式或氨式-亚胺式的互变异构,具有芳环、氨、酮、烯醇等相应的化学性质,并且具有弱碱性第四章糖1. 名词解释糖:糖指多羟基醛或者多羟基酮及其衍生物或缩聚物的总称,俗称碳水化合物2. 问答题1简述糖的功能及分类并举例说明糖的功能:糖是生物体的能源物质,是细胞的结构组分,具有细胞识别、机体免疫、信息传递的作用.糖的分类:根据大小分为单糖大约20种、寡糖2-10种、多糖和糖缀合物.单糖按照其中碳原子的数目分为丙糖醛糖如甘油醛,酮糖如二羟丙酮、丁糖醛糖如赤藓糖,酮糖如赤藓酮糖、戊糖醛糖如核糖,酮糖如核酮糖、己糖醛糖如葡萄糖、半乳糖、甘露糖,酮糖如果糖、山梨糖、庚糖景天酮糖.寡糖按照所含糖基多少分为二糖蔗糖、麦芽糖、乳糖、三糖棉籽糖…六糖.多糖分为均多糖淀粉、糖原、甲壳素、纤维素和杂多糖半纤维素、粘多糖.糖缀合物分为糖蛋白和糖脂两类2说明麦芽糖组成淀粉的基本单位、纤维二糖组成纤维素的基本单位所含单糖的种类、糖苷键的类型.一分子麦芽糖中含有两分子α-葡萄糖1-C和4-C上的羟基均在环平面下方,糖苷键为1-4糖苷键;一分子纤维二糖中含有两分子β-葡萄糖1-C和4-C上的羟基均在环平面上方,糖苷键为1-4糖苷键3列举出四种多糖的名称均多糖由一种单糖聚合而成:淀粉有直链淀粉和支链淀粉两种,后者存在1-6糖苷键,两者均是植物细胞的能源储存形式、糖原动物及细菌的储能物质,贮存于动物的肝脏和肌肉中,结构于支链淀粉类似,遇碘显红紫色、纤维素葡萄糖β1-4糖苷键连接而成的无分支的同多糖,形成植物细胞细胞壁、甲壳素2-N-乙酰-D-氨基葡萄糖β1-4糖苷,基本单位为β-葡萄糖的2-C上经过氨基修饰后的产物杂多糖由几种不同的单糖聚合而成:半纤维素存在于植物细胞壁中的所有杂多糖的总称、粘多糖糖胺聚糖.是含氨基己糖的杂多糖的总称,表现为一定的粘性和酸性,如透明质酸和肝素、药物多糖中药的有效成分、其他杂多糖如琼脂和果胶第五章脂类及生物膜1. 名词解释脂:指由酸和醇发生脱水酯化反应形成的化合物,包括某些不溶于水的大分子脂肪酸和大分子的醇类,分为简单脂不与脂肪酸结合的脂,如固醇类、萜类、前列腺素和结合脂与脂肪酸结合的脂,如三酰甘油酯、磷脂酰甘油酯、鞘脂、蜡和脂蛋白2. 问答题1简述脂的功能.①脂是生物细胞重要的储能物质,因为其具有热值高、不溶于水、易于聚集的特点②位于体表的脂类具有机械性的保护作用③脂类磷脂酰甘油酯是组成细胞膜的主要成分④简单的脂类在体内是维生素及激素的前体物质2简述生物膜的流动镶嵌模型生物膜分为细胞膜和细胞器膜,其共同特点是单层的生物膜细胞膜是流动的磷脂双分子层构成的连续体,蛋白质无规则地分布在磷脂双分子层中.脂类的流动性使得生物膜具有一定的流动性,方便蛋白质的运动,也使得细胞可变形;膜的流动性与脂的种类和温度有关.蛋白质是选择性透过的运输通道,同时也是细胞间信息传递、识别的受体.细胞器膜的结构与细胞膜类似,但由于功能的分化而多为双层膜,内层膜出现扩大现象,成为新陈代谢的部位.第6章酶1. 名词解释1酶:酶是一类具有高效性和专一性的生物催化剂2单酶单纯蛋白酶:除了蛋白质外,不含有其他物质的酶,如脲酶等一般水解酶3全酶结合蛋白酶:含酶蛋白脱辅酶,决定反应底物的种类,即酶的专一性和非蛋白小分子物质传递氢、电子、基团,决定反应的类型、性质的酶.酶蛋白与辅助因子单独存在时,没有催化活力,两部分结合称为全酶4辅酶:与酶蛋白结合较松、容易脱离酶蛋白、可用透析法除去的小分子有机物或金属离子等辅助因子,如辅酶I和辅酶II 5辅基:与酶蛋白结合较为紧密、不能通过透析除去,需要经过一定的化学处理才能与蛋白分开的小分子物质,如细胞色素氧化酶中的铁卟啉※辅酶可辅基之间没有严格的界限,只是辅酶和辅基与酶蛋白结合的牢固程度不同。
第一部分:名词解释1.蛋白质:是由许多氨基酸通过肽键相连形成的高分子含氮化合物。
2.氨基酸:含有氨基和羧基的一类有机化合物的通称。
3.等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。
4.肽键:一个氨基酸的a-羧酸与另一个氨基酸的a-氨基脱水缩和形成的化学键。
5.蛋白质的别构效应:又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。
6.蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响寡聚体中另一个亚基与配体结合的现象。
7.蛋白质的变性:蛋白质在某些物理和化学因素作用下其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质的变性。
8.凝胶过滤:利用具有网状结构的凝胶的分子筛作用利用各蛋白质分子大小不同来进行分离9.层析:待分离的蛋白质溶液经过一个固定物质时,根据待分离的蛋白质颗粒的大小,电荷多少及亲和力使待分离的蛋白质在两相中反复分配,并以不同流速经固定相而达到分离蛋白质的目的。
10.胶原蛋白:胶原纤维经过部分降解后得到的具有较好水溶性的蛋白质。
P6211.结构域:相对分子质量较大的蛋白质三级结构通常可分割成一个或数个球状或者纤维状的区域,折叠得较为紧密,各行期能,成为结构域。
12.免疫球蛋白:是一组具有抗体活性的蛋白质血清中含量最丰富的蛋白质之一13.波尔效应:pH对血红蛋白氧亲和力的这种影响。
14.热休克蛋白:是在从细菌到哺乳动物中广泛存在一类热应急蛋白质。
当有机体暴露于高温的时候,就会由热激发合成此种蛋白,来保护有机体自身。
15.次级键:除了典型的强化学键(共价键、离子键和金属键)等依靠氢键、盐键以及弱的共价键和范德华作用力(即分子间作用力)相结合的各种化学键的总称。
16.肽平面:肽键具有一定程度的双键(C-N键)性质(参与肽键的六个原子C、H、O、N、Cα1、Cα2不能自由转动,位于同一平面)。
生物化学重点知识归纳第一章绪论1.生物化学的发展过程大致分为三阶段:叙述生物化学、动态生物化学和机能生物化学。
2.生物化学研究的内容大体分为三部分:①生物体的物质组成及生物分子的结构与功能②代谢及其调节③基因表达及其调控第二章糖类化学1.糖类通常根据能否水解以及水解产物情况分为单糖、寡糖和多糖。
2.单糖的分类:①按所含C原子的数目分为:丙糖、丁糖......②按所含羰基的特点分为:醛糖和酮糖。
3.葡萄糖既是生物体内最丰富的单糖,又是许多寡糖和多糖的组成成分。
4.甘油醛是最简单的单糖。
5.两种环式结构的葡萄糖:6.核糖和脱氧核糖的环式结构:(见下图)7.单糖的重要反应有成苷反应、成酯反应、氧化反应、还原反应和异构反应。
8.蔗糖是自然界分布最广的二糖。
9.多糖根据成分为:同多糖和杂多糖。
同多糖又称均多糖,重要的同多糖有淀粉、糖原、纤维素等;杂多糖以糖胺聚糖最为重要。
10.淀粉包括直链淀粉和支链淀粉。
糖原分为肝糖原和肌糖原。
11.糖胺聚糖包括透明质酸、硫酸软骨素和肝素。
第三章脂类化学1. 亚油酸、α亚麻酸和花生四烯酸是维持人和动物正常生命活动所必必需的脂肪酸,是必需脂肪酸。
2. 类花生酸是花生四烯酸的衍生物,包括前列腺素、血栓素和白三烯。
3. 脂肪又称甘油三酯。
下图是甘油三酯、甘油和脂肪酸的结构式:1. 皂化值:水解1克脂肪所消耗KOH的毫克数。
皂化值越大,表示脂肪中脂肪酸的平均分子量越小。
6.磷脂根据所含醇的不同分为甘油磷脂和鞘磷脂。
7.糖脂包括甘油糖脂和鞘糖脂。
8.类固醇是胆固醇及其衍生物,包括胆固醇、胆固醇脂、维生素D、胆汁酸和类固醇激素等。
9.胆汁酸有游离胆汁酸和结合胆汁酸两种形式。
10.类固醇激素包括肾上腺皮质激素(如醛固酮、皮质酮和皮质醇)和性激素(雄激素、雌激素和孕激素)。
11.肾上腺皮质激素具有升高血糖浓度和促进肾脏保钠排钾的作用。
其中皮质醇对血糖的调节作用较强,而对肾脏保钠排钾的作用很弱,所以称为糖皮质激素;醛固酮对水盐平衡的调节作用较强,所以称为盐皮质激素。
完整版)生物化学知识点重点整理蛋白质是由C、H、O、N、S等元素构成的,其中N是其特征性元素。
根据含氮量可以计算蛋白质的含量,即样品蛋白质含量=样品含氮量*6.25(各种蛋白质的含氮量接近,平均值为16%)。
蛋白质由20种氨基酸构成,其中酸性氨基酸/带负电荷的R基氨基酸有天冬氨酸(D)和谷氨酸(E);碱性氨基酸/带正电荷的R基氨基酸有赖氨酸(K)、组氨酸(H)和精氨酸(R);非极性脂肪族R基氨基酸有甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)和甲硫氨酸(M);极性不带电荷R基氨基酸有丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)和谷氨酰胺(Q);芳香族R基氨基酸有苯丙氨酸(F)、络氨酸(Y)和色氨酸(W)。
肽是蛋白质的基本组成单元,其基本特点包括:一级结构的定义通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。
维持稳定的化学键有肽键(主)和二硫键(可能存在)。
二级结构的种类包括α螺旋、β折叠、β转角、无规卷曲和超二级结构。
四级结构的特点是肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构。
蛋白质的一级结构与功能密切相关,因为一级结构决定了蛋白质的构象,一级结构相似则其功能也相似,改变蛋白质的一级结构可以直接影响其功能。
基因突变可能导致蛋白质结构或合成量异常而导致的疾病称为分子病,如镰状细胞贫血(溶血性贫血)和疯牛病是二级结构改变引起的。
等电点(pI)是蛋白质的一个重要指标,定义为在某一pH值条件下,蛋白质的净电荷为零。
蛋白质在不同pH条件下的带电情况取决于该蛋白质所带酸碱基团的解离状态。
若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。
碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶。
生物化学必看知识点总结(一)生物大分子的结构和功能1、组成蛋白质的20种氨基酸的化学结构和分类。
2、氨基酸的理化性质。
3、肽键和肽。
4、蛋白质的一级结构及高级结构。
5、蛋白质结构和功能的关系。
6、蛋白质的理化性质(两性解离、沉淀、变性、凝固及呈色反应等)。
7、分离、纯化蛋白质的一般原理和方法。
8、核酸分子的组成,5种主要嘌呤、嘧啶碱的化学结构,核苷酸。
9、核酸的一级结构。
核酸的空间结构与功能。
10、核酸的变性、复性、杂交及应用。
11、酶的基本概念,全酶、辅酶和辅基,参与组成辅酶的维生素,酶的活性中心。
12、酶的作用机制,酶反应动力学,酶抑制的类型和特点。
13、酶的调节。
14、酶在医学上的应用。
(二)物质代谢及其调节1、糖酵解过程、意义及调节。
2、糖有氧氧化过程、意义及调节,能量的产生。
3、磷酸戊糖旁路的意义。
4、糖原合成和分解过程及其调节机制。
5、糖异生过程、意义及调节。
乳酸循环。
6、血糖的来源和去路,维持血糖恒定的机制。
7、脂肪酸分解代谢过程及能量的生成。
8、酮体的生成、利用和意义。
9、脂肪酸的合成过程,不饱和脂肪酸的生成。
10、多不饱和脂肪酸的意义。
11、磷脂的合成和分解。
12、胆固醇的主要合成途径及调控。
胆固醇的转化。
胆固醇酯的生成。
13、血浆脂蛋白的分类、组成、生理功用及代谢。
高脂血症的类型和特点。
14、生物氧化的特点。
15、呼吸链的组成,氧化磷酸化及影响氧化磷酸化的因素,底物水平磷酸化,高能磷酸化合物的储存和利用。
16、胞浆中NADH的氧化。
17、过氧化物酶体和微粒体中的酶类。
18、蛋白质的营养作用。
19、氨基酸的一般代谢(体内蛋白质的降解,氧化脱氨基,转氨基及联合脱氨基)。
20、氨基酸的脱羧基作用。
21、体内氨的来源和转运。
22、尿素的生成--鸟氨酸循环。
23、一碳单位的定义、来源、载体和功能。
24、甲硫氨酸、苯丙氨酸与酪氨酸的代谢。
25、嘌呤、嘧啶核苷酸的合成原料和分解产物,脱氧核苷酸的生成。
生物化学知识点总结一、生物大分子1. 蛋白质蛋白质是生物体内功能最为多样的大分子化合物,其分子量从几千到上百万不等。
蛋白质是由氨基酸通过肽键连接而成的,其结构包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶、结构蛋白、免疫蛋白等。
在生物体内,蛋白质不断地受到合成和降解的调控。
2.核酸核酸也是生物体内非常重要的大分子,主要包括DNA和RNA。
DNA是生物遗传信息的分子载体,其双螺旋结构具有很高的稳定性,基因组里的信息以DNA的形式存在,RNA则是DNA的复制和表达过程中的关键参与者。
核酸的功能包括遗传信息的传递、蛋白质的合成控制等。
3.多糖多糖是由多个单糖分子经由糖苷键链接而成的高分子化合物。
生物体内包括多种多糖类物质,如纤维素、淀粉、糖原、聚合葡萄糖和壳多糖等。
在生物体中,多糖具有贮存能量、提供结构支持以及信号识别等生理功能。
4.脂质脂质是一类疏水性的生物大分子,其结构包括脂类、脂肪酸、甘油和磷脂等。
脂质在细胞膜的形成和维护、能量的储存和释放以及信号转导等生理过程中扮演着重要的角色。
二、酶和酶动力学1. 酶的结构和功能酶是生物体内催化生物化学反应的分子,在酶的作用下,生物体内的化学反应可以以更快的速度进行。
酶的结构包括活性位、辅基和蛋白质结构。
酶的功能包括催化特定的反应、特异性和高效性等。
2. 酶动力学酶动力学研究的是酶催化反应的速率和反应机理。
酶动力学参数包括最大反应速率(Vmax)、米氏常数(Km)、酶的抑制和激活等。
酶动力学研究为理解生物化学反应提供了重要的信息。
三、生物体内代谢途径糖代谢包括糖异生途径、糖酵解途径、糖原代谢和半乳糖代谢等,主要在细胞内进行,产生能量和代谢产物。
2. 脂质代谢脂质代谢包括脂质合成、脂质分解、脂蛋白代谢和胆固醇代谢等,涉及到脂肪酸、三酰甘油、磷脂和胆固醇等的合成和降解过程。
3. 氨基酸代谢氨基酸代谢包括氨基酸合成、氨基酸降解、氨基酸转运等,对于蛋白质的降解和合成具有重要的作用,同时参与许多代谢途径。
(完整版)生物化学知识点总结生物化学知识点总结一、蛋白质蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。
6.25称作蛋白质系数。
样品中蛋白质含量=样品中含氮量×6.25蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。
脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。
氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。
肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。
生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。
1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。
由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。
寡肽:10个以下氨基酸脱水缩合形成的肽多肽:10个以上氨基酸脱水缩合形成的肽蛋白质与多肽的区别:蛋白质:空间构象相对稳定,氨基酸残基数较多多肽:空间构象不稳定,氨基酸残基数较少蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。
-螺旋的结构特点:1)以肽键平面为单位,以α-碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。
2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。
3)每一个氨基酸残基中的NH 和前面相隔三个残基的C=O之间形成氢键,氢键的方向与中心轴大致平行,是稳定螺旋的主要作用力4)肽链中的氨基酸R基侧链分布在螺旋的外侧,R基团的大小、性状及带电荷情况都对螺旋的形成与稳定起作用。
第一章蛋白质的结构与功能一、名词解释肽键:一个氨基酸的a--羧基与另一个氨基酸的a--氨基脱水缩合所形成的结合键,称为肽键。
等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。
蛋白质的一级结构:是指多肽链中氨基酸的排列顺序。
三、填空题1,组成体内蛋白质的氨基酸有20种,根据氨基酸侧链(R)的结构和理化性质可分为①非极性侧链氨基酸;②极性中性侧链氨基酸:;③碱性氨基酸:赖氨酸、精氨酸、组氨酸;④酸性氨基酸:天冬氨酸、谷氨酸。
3,紫外吸收法(280 nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子含有色氨酸,苯丙氨酸,或酪氨酸。
5,蛋白质结构中主键称为肽键,次级键有氢键、离子键、疏水作用键、范德华力、二硫键等,次级键中属于共价键的有范德华力、二硫键第二章核酸的结构与功能一、名词解释DNA的一级结构:核酸分子中核苷酸从5’-末端到3’-末端的排列顺序即碱基排列顺序称为核酸的一级结构。
DNA双螺旋结构:两条反向平行DNA链通过碱基互补配对的原则所形成的右手双螺旋结构称为DNA的二级机构。
三、填空题1,核酸可分为DNA 和RNA 两大类,前者主要存在于真核细胞的细胞核和原核细胞拟核部位,后者主要存在于细胞的细胞质部位2,构成核酸的基本单位是核苷酸,由戊糖、含氮碱基和磷酸3个部分组成6,RNA中常见的碱基有腺嘌呤、鸟嘌呤,尿嘧啶和胞嘧啶7,DNA常见的碱基有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶四、简答题1,DNA与RNA 一级结构和二级结构有何异同?DNA RNA一级结构相同点1,以单链核苷酸作为基本结构单位2,单核苷酸间以3’,5’磷酸二脂键相连接3,都有腺嘌呤,鸟嘌呤,胞嘧啶一级结构不同点:1,基本结构单位2,核苷酸残基数目3,碱基4,碱基互补脱氧核苷酸几千到几千万胸腺嘧啶A=T,G≡C核苷酸几十到几千尿嘧啶A=U,G≡C二级结构不同点:双链右手螺旋单链茎环结构4,叙述DNA双螺旋结构模式的要点。
一、蛋白质化学蛋白质的特征性元素(N),主要元素:C、H、O、N、S,根据含氮量换算蛋白质含量:样品蛋白质含量=样品含氮量*6.25 (各种蛋白质的含氮量接近,平均值为16%),组成蛋白质的氨基酸的数量(20种),酸性氨基酸/带负电荷的R基氨基酸:天冬氨酸(D)、谷氨酸(E);碱性氨基酸/带正电荷的R基氨基酸:赖氨酸(K)、组氨酸(H)、精氨酸(R)非极性脂肪族R基氨基酸:甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、甲硫氨酸(M);极性不带电荷R基氨基酸:丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)、谷氨酰胺(Q);芳香族R基氨基酸:苯丙氨酸(F)、络氨酸(Y)、色氨酸(W)肽的基本特点一级结构的定义:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。
维持稳定的化学键:肽键(主)、二硫键(可能存在),二级结构的种类:α螺旋、β折叠、β转角、无规卷曲、超二级结构,四级结构的特点:肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构蛋白质的一级结构与功能的关系:1、蛋白质的一级结构决定其构象 2、一级结构相似则其功能也相似3、改变蛋白质的一级结构可以直接影响其功能因基因突变造成蛋白质结构或合成量异常而导致的疾病称分子病,如镰状细胞贫血(溶血性贫血),疯牛病是二级结构改变等电点(pI)的定义:在某一pH值条件下,蛋白质的净电荷为零,则该pH值为蛋白质的等电点(pI)。
蛋白质在不同pH条件下的带电情况(取决于该蛋白质所带酸碱基团的解离状态):若溶液pH<pI,则蛋白质带正电荷,在电场中向负极移动;若溶液pH>pI,则蛋白质带负电荷,在电场中向正极移动。
(碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶),蛋白质稳定胶体溶液的条件:(颗粒表面电荷同性电荷、水化膜),蛋白质变性:指由于稳定蛋白质构象的化学键被破坏,造成其四级结构、三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变。
实质:空间结构被破坏。
变性导致蛋白质理化性质改变,生物活性丧失。
变性只破坏稳定蛋白质构象的化学键,即只破坏其构象,不破坏其氨基酸序列。
变性本质:破坏二硫键沉降速度与分子量及分子形状有关沉降系数:沉降速度与离心加速度的比值为一常数,称沉降系数沉淀的蛋白质不一定变性变性的蛋白质易于沉淀二、核酸化学核酸的特征性元素:P,组成元素:C、H、O、N、P,核苷酸的组成成分:一分子磷酸、一分子戊糖、一分子碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T、尿嘧啶U),DNA的组成单位:一分子磷酸、一分子脱氧核糖、一分子碱基(A、G、C、T);RNA的组成单位:磷酸、核糖、碱基(A、G、C、U)核苷酸连接的化学键(磷酸二酯键):一个核苷酸与另一个核苷酸通过三五磷酸二酯键连接,互补碱基通过氢键相连一磷酸脱氧核苷通过酸酐键结合第二个第三个磷酸基DNA二级结构特点:1、为右手双螺旋,两条链以反平行方式排列;2 、两条由磷酸和脱氧核糖形成的主链骨架位于螺旋外侧,碱基位于内侧;3 、两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);4 、碱基平面与螺旋纵轴接近垂直,糖环平面接近平行5 、螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对6 、螺旋结构中,围绕中心轴形成两个螺旋形的凹槽.(即有大小沟)或1、Chargaff法则,不同物种DNA的碱基组成不同,同一个体不同组织DNA的碱基组成相同,DNA的碱基组成不随个体的年龄、营养状况和环境改变而改变,A=T G=C A+G=T+C2、右手双螺旋结构:两股DNA反向互补形成双链结构、DNA双链进一步形成右手螺旋结构、氢键和碱基堆积力维系DNA双螺旋结构的稳定性RNA含有较多的稀有碱基,它们各具不同功能mRNA(是在蛋白质合成过程中负责传递遗传信息、直接指导蛋白质合成的RNA。
含量少、种类多、寿命短、大小差异大。
由编码区和非翻译区密码子构成)结构特点:1 真核生物mRNA有5’端帽子结构(m7G)和3’端的Poly(A)尾巴(组氨酸不具尾巴哈)~2 真核细胞的前mRNA有许多内含子(会被加工剪接为成熟的mRNA翻译)~3 真核细胞的mRNA多是单顺反子,即一条mRNA编码一条多肽~4 原核的转录翻译在一个空间(因为无细胞核),但是真核的就在不同的区域~5 还有就是半衰期不同,原核的降解得很快~大多时候都是边转录边翻译边降解的,真核相对要慢点tRNA(是在蛋白质合成过程中负责转运氨基酸、解读mRNA遗传密码的RNA。
)结构特点:(一级)1、是一类单链小分子RNA,长73~93nt。
2、是含有碱基最多的RNA,含7~15个稀有碱基,分布在非配对区。
3、5’端核苷酸往往是鸟苷酸。
4、3’端是CCA序列,其3’-羟基是氨基酸结合位点。
5、二级结构呈三叶草形TψC环识别核糖体一:结构特点:①含有稀有碱基较多,达核苷酸总量的5%-20%.②不同的tRNA尽管核苷酸组分和排列顺序各异,但其3’端都含有CCA序列,是所有tRNA接受氨基酸的特定位置.③所有的tRNA分子都折叠成紧密的三叶草二级结构和L型立体构象,结构较稳定,半衰期均在24小时以上.二:主要功能:①运输功能②在逆转录作用中作为合成互补链DNA链的引物.③在细菌细胞壁、叶绿素、脂多糖和氨酰磷脂酰甘油的合成中都与某些tRNA的参与有关.核酸的紫外吸收性质:在260mm附近存在吸收峰核酸变性的定义;在一定条件下断开双链核酸碱基对氢键,可以使其局部解离,甚至完全解离成单链,形成无规线团,称为核酸的溶解、变性。
增色效应:变性导致核酸紫外吸收值增大的现象解链温度(Tm):使双链DNA解链度达到50%所需要的温度,也叫变性温度、熔点三、酶酶活性中心(能与直接与底物分子结合,并催化底物化学反应的部位)的特点:(1)活性部位在酶分子的总体积中只占相当小的部分;(2)酶的活性部位是一个三维实体;(3)酶的活性部位与底物诱导契合;(4)酶的活性部位是位于酶分子表面的一个裂缝内;(5)底物通过次级键较弱的力结合到酶上;(6)酶活性部位具有柔性或可运动性。
、从Vmax可以计算酶的转换数:酶的转换数(催化常数)即酶-底物复合物分解生成产物的速度常数k3.温度对酶活性的影响:酶是蛋白质,温度对酶的影响有两重性1、升高反应温度,提高活化分子数,使酶促反应加快2、过高导致蛋白质变性失活,使酶促反应减慢(当反应温度低于最适温度时,每升温10℃,反应可加快1~2倍;当反应温度高于最适温度时,多数酶在60℃以上变性显著,80℃以上发生不可逆变性)抑制作用的分类:不可逆抑制作用(不可逆抑制剂:巯基酶抑制剂、丝氨酸酶抑制剂);可逆抑制剂-可逆抑制作用(竞争性抑制剂-竞争性抑制作用、非竞争性抑制剂-非竞争性抑制作用、反竞争性抑制剂-反竞争性抑制作用)有机磷农药中毒机制:有机磷中毒时乙酰胆碱酯酶受到抑制,造成乙酰胆碱在接头间隙内积累,出现胆碱能神经兴奋性增强的中毒症状(肌束颤动、瞳孔缩小、胸闷、恶心呕吐、腹痛腹泻、大小便失禁、大汗、汗泪流涎、气道分泌物增多、心率减慢等)。
竞争性抑制作用的定义:指的是有些抑制剂和酶底物结构相似,可与底物竞争酶活性中心,从而抑制酶和底物结合成中间产物。
作用特点:1 抑制剂和底物的结构相似,都能与酶的活性中心结合。
2 抑制剂与底物存在竞争,即不能同时结合活性中心。
3 抑制剂通过与活性中心结合抑制酶促反应。
4 动力学特征是表现Km值增大,表现Vmax不变,因此提高底物浓度可以削弱甚至消除竞争性抑制剂的抑制作用。
酶原:某些酶在细胞内合成或初分泌时只是酶的无活性前体,此前体物质称为酶原。
酶原激活:有些酶在刚合成时、初分泌时或发挥作用前只是无活性的前体,必需水解一个或者几个特定肽键,使酶蛋白的构象发生改变,从而表现出酶的活性,酶原向酶转化的过程。
实质:酶的活性中心形成或暴露的过程。
生理意义:酶原是酶的安全转运形式、酶原是酶的安全储存形式。
四、维生素维生素的分类:水溶性维生素、脂溶性维生素。
水溶性维生素的分类:维生素C、B族维生素(硫胺素、核黄素、烟酰胺、吡哆醛、泛酸、生物素、叶酸、钴胺素和硫辛酸等)。
特点:1 易溶于水,不溶或微溶于有机溶剂。
2 机体储存量很少,必须经常摄取。
3 摄取过多部分可以随尿液排出体外,一般不会导致积累而引起中毒脂溶性维生素的分类:维生素A、维生素D、维生素E和维生素K等。
维生素A和维生素D是激素前体。
特点:1、易溶于脂肪及有机溶剂,不溶于水。
2、在食物中常与脂类共存。
3、在血浆中与脂蛋白或特异的结合蛋白结合运输。
4、可以在脂肪组织、肝脏内储存。
5、会因脂类吸收不足而吸收不足,甚至出现缺乏症。
6、摄取过多会发生中毒维生素C:维生素C是多种羟化酶的辅助因子(1、在胶原蛋白的翻译后修饰过程中参与脯氨酸和赖氨酸的羟化,促进成熟胶原蛋白的合成。
2、参与胆固醇转化。
3、参与芳香族氨基酸代谢。
4、参与肉碱合成。
5、参与肽类激素酰胺化);维生素C参与其他代谢(1、维持巯基酶活性中心巯基的还原状态,保护巯基酶。
2、把氧化型谷胱甘肽(GSSG)还原成还原型谷胱甘肽(GSH)。
3、把高铁血红蛋白还原成血红蛋白,恢复其运氧能力。
4、把Fe3+还原成Fe2+,有利于非血红素铁的吸收。
5、保护低密度脂蛋白不被氧化。
6、保护叶酸不被氧化。
7、胃液中维生素C浓度极高,可以防止形成具有致癌性的N-亚硝基化合物。
)临床上主要用于防治坏血病,治疗高铁血红蛋白症,还用于病毒性疾病、缺铁性贫血、组织创伤、血小板减少性紫癜等的辅助治疗。
活性形式:维生素C(去氢抗坏血酸)缺乏坏血病维生素B1(硫胺素)活性形式焦磷酸硫胺素维生素B2(视黄素)活性形式黄素辅酶维生素PP(维生素B3 )活性形式辅酶Ⅰ和辅酶Ⅱ维生素B6 活性形式磷酸吡哆醛和磷酸吡哆胺泛酸活性形式辅酶A和酰基载体蛋白叶酸活性形式5,6,7,8-四氢叶酸缺乏巨幼细胞性贫血维生素B12 (钴胺素)活性形式甲钴胺素和5’-脱氧腺苷钴胺素维生素A缺乏夜盲干眼病过多中毒五、生物氧化生物氧化的定义:指糖、脂肪和蛋白质等营养物质在体内氧化分解、最终生成二氧化碳和水并释放能量满足机体生命活动需要的过程。
特点:营养物质在体内、外氧化分解的化学本质相同,耗氧量相同,终产物相同,释放能量相同;1、生物氧化过程是由发生在细胞内的一系列酶促反应完成的,反应是在生理条件下进行的。
2、营养物质在生物氧化过程中逐步释放能量,并尽可能多地以化学能的形式储存于高能化合物中,使其得到最有效的利用。