生物工程下游分离与纯化
- 格式:ppt
- 大小:13.77 MB
- 文档页数:54
生物化学工程中的生物分离与纯化技术研究摘要:生物化学工程中的生物分离与纯化技术是一门重要的技术领域,对于生物制药、食品工业和环境保护等领域具有重要意义。
本文首先介绍了生物分离与纯化技术的研究背景和意义,然后综述了当前主流的生物分离与纯化技术,包括固定化酶技术、膜分离技术、离子交换技术和凝胶过滤技术等。
最后,讨论了生物分离与纯化技术在生物化学工程中的应用和发展趋势,并提出了未来研究的方向。
关键词:生物化学工程、生物分离、纯化技术、固定化酶、膜分离引言生物化学工程是将生物学、化学、工程学等多学科知识与技术相结合,应用于生物制药、食品工业、环境保护等领域的一门学科。
在生物化学工程的实践中,生物分离与纯化技术是一项关键的技术,它涉及到生物体内各种生物分子的提取、分离和纯化,对于获得高纯度的生物制品具有重要意义。
随着生物技术的不断发展和进步,越来越多的生物大分子如蛋白质、酶、抗体等被广泛应用于医药领域。
而这些生物大分子的提取、分离和纯化则面临着一系列的挑战。
首先,生物大分子在生物体内的含量相对较低,需要进行高效的分离和纯化才能得到足够的产量。
其次,生物大分子的结构复杂,需要选择合适的技术来实现选择性分离和高度纯化。
因此,生物分离与纯化技术的研究和发展对于生物化学工程的进一步发展具有重要意义。
当前,固定化酶技术是生物分离与纯化领域的研究热点之一。
固定化酶技术通过将酶固定在载体上,实现酶的稳定性和重复使用性,广泛应用于生物催化、生物制药和食品工业等领域。
另外,膜分离技术也是一种常见的生物分离与纯化技术,通过选择性透过和截留不同大小的分子,实现分离和纯化的目的。
离子交换技术则是通过固定化的离子交换基团与目标分子间的亲和作用实现分离和纯化。
凝胶过滤技术则是利用凝胶颗粒的孔隙来分离不同大小和形状的生物大分子。
尽管目前已有多种生物分离与纯化技术被广泛应用,但仍存在一些问题和挑战。
例如,某些生物大分子的纯化效率较低,且操作复杂;一些技术在大规模生产中存在成本较高的问题。
一.绪论1、从某一动物培养的细胞中分离某一抗体(一蛋白的代表)的一般工艺过程。
答:生物工程下游技术的一般工艺过程(p12)2、分离纯化某一酶制剂的主要步骤和结果如下表:((2)亲和层析的原理是什么?3、产品的分离提取工艺应考虑那些因素?答:生物分离过纯化过程的选择准则(P16)①步聚少,成本低②次序合理③产品规格(注射,非注射)④生产规模⑤物料组成⑥产品形式固体:适当结晶,液体:适当浓缩⑦产品稳定性⑧物性溶解度,分子电荷,分子大小,功能团,稳定性,挥发性⑨危害性⑩废水处理第二章发酵液预处理1.沉降速度离心的原理。
(p15)答:沉降速度法:主要用于分离沉降系数不同的物质。
2.沉降平衡离心的原理。
(p15)答:沉降平衡法:用于分离密度不同的物质。
如梯度密度离心。
3.差速离心的概念。
(p15)答:采用不同的转速将沉降系数不同的物质分开的方法。
4. rpm与RCF的换算关系。
5.已知某一离心机的转子半径为25cm,转速为1200r/min,计算相对离心力为多大?第三章细胞破碎1除去发酵液杂蛋白质的常用方法有那些?答:杂蛋白质的除去(p6)(1) 沉淀法:蛋白质是两性物质,在酸性溶液中,能与一些阴离子(三氯乙酸盐、水扬酸盐)形成沉淀;在碱性溶液中,能与一些阳离子(Ag+、Cu2+、Zn2+、Fe3+等)形成沉淀。
(2) 变性法:使蛋白质变性的方法很多,如:加热,调节pH,有机溶剂,表面活性剂等。
其中最常用的是加热法。
(3) 吸附法:加入某些吸附剂或沉淀剂吸附杂蛋白质而除去。
2产品的分离提取工艺应考虑那些因素?答:(1) 是胞内产物还是胞外产物;(2) 原料中产物和主要杂质浓度;(3) 产物和主要杂质的物理化学特性及差异;(4) 产品用途和质量标准;(5) 产品的市场价格;(6) 废液的处理方法等。
3发酵液过滤与分离的困难的原因及解决方法。
答:第一节发酵液过滤特性的改变微生物发酵液的特性可归纳为: (P3)①发酵产物浓度较低,大多为1%一10%,悬浮液中大部分是水;②悬浮物颗粒小,相对密度与液相相差不大;③固体粒子可压缩性大;④液相粘度大,大多为非牛顿型流体;⑤性质不稳定,随时间变化,如易受空气氧化、微生物污染、蛋白酶水解等作用的影响。
生物分离工程:,从生物产品的生产技术来看:指生物产品的下游加工过程(Down stream processing)。
➢从生物工程的新技术看,主要指工程菌和动植物细胞产品的分离与纯化。
➢从研究对象看,主要指生物大分子产品的分离与纯化。
➢➢➢包涵体(inclusion body):外源蛋白质在大肠杆菌中高效表达时常形成不可溶、无生物活性的聚集体。
➢初级分离是指从发酵液、细胞培养液、胞内抽提液(细胞破碎液)及其他各种生物原料初步提取目标产物,使目标产物得到浓缩和初步分离的下游加工过程。
➢胶体是一种尺寸在1~100 nm以至1000 nm的分散体。
它既非大块固体,又不是分子分散的液体,而是具有两相的微不均匀分散体系。
➢沉淀定义:物理环境的变化引起溶质溶解度降低,生成固体凝聚物(aggregrates)的现象➢盐析:蛋白质在高离子强度的溶液中溶解度降低、发生沉淀的现象称为盐析。
➢利用蛋白质在pH值等于其等电点的溶液中溶解度下降的原理进行沉淀分级的方法称为等电点沉淀法➢泡沫分离:根据表面吸附的原理,利用通气鼓泡在液相中形成的气泡为载体对液相中的溶质和颗粒进行分离,又称泡沫吸附分离,泡沫分级或鼓泡分级。
➢在一种流体相间内或者两种流体相间,有一层薄的凝聚相物质,其把流体相分隔开来成为两部分,并在两部分之间进行传质作用,这一薄层物质称为膜。
➢膜分离技术➢利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。
➢微滤( Microfiltration ,MF):以多孔细小薄膜为过滤介质,压力差为推动力,使不溶性物质得以分离的操作,孔径分布范围在0.025~14μm之间;➢超滤( Ultrafiltration ,UF):分离介质同上,但孔径更小,为0.001~0.02 μm,分离推动力仍为压力差,适合于分离酶、蛋白质等生物大分子物质;➢反渗透(Reverse osmosis, RO):是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作,孔径范围在0.0001~0.001 μm之间;(由于分离的溶剂分子往往很小,不能忽略渗透压的作用,故而成为反渗透);➢纳滤(Nanofiltration,NF ):以压力差为推动力,从溶液中分离300~1000小分子量的膜分离过程,孔径分布在平均2nm;➢电渗析(Electrodialysis,ED):以电位差为推动力,利用离子交换膜的选择透过性,从溶液中脱除或富集电解质的膜分离操作;➢超滤:根据高分子溶质之间或高分子与小分子溶质之间分子量的差别进行分离的方法。
生物工程下游技术作业及答案第三章1 凝聚:是指在电解质作用下,由于胶粒之间双电层排斥作用降低,电位下降,而使胶体体系不稳定的现象。
2 絮凝:是指在某些高分子絮凝剂存在下,基于桥架作用,使胶粒形成絮凝团的过程。
3 为有利于发酵液过滤可采用哪些方法来改变发酵液过滤特性?其简要机理如何?答:可通过以下几个方式:(1)降低液体粘度(加水稀释法和加热法);(2)调节pH;(3)凝聚与絮凝;(4)加入助滤剂;(5)加入反应剂。
4 杂蛋白是发酵液中主要杂质,常用的除去方法有哪些?答:沉淀法;变性法;吸附法。
第四章1 细胞破碎:是指选用物理、化学、酶或机械的方法来破坏细胞壁或细胞膜。
2 细胞破碎有哪些方法?简述他们的基本原理。
答:固体剪切法;液体剪切法;超声波法;其他方法。
3 高压匀浆法与球磨法比较?答:1、高压匀浆法操作参数少,易于确定,适于大规模操作,而球磨法操作参数多,一般凭经验估计,在大规模操作中,夹套冷却控温难度较大。
2、球磨机连续操作时兼具破碎和冷却双重功能,减少了产物失活的可能性,而高压匀浆机需配备换热器进行级间冷却。
3、球磨法破碎在适当条件下一次操作即可达到较高的破损率,而高压匀浆法往往需循环2-4次才行。
4、球磨机适合于各种微生物细胞的破碎,而高压匀浆机不适合丝状真菌及含有包含体的基因工程菌。
第六章1浓差极化:是指当溶剂透过膜,而溶质留在膜上,因而使膜面浓度增大,并高于主体中浓度的现象。
2 膜的污染:随着操作时间的增加,膜透过流速的迅速下降,溶质的截留率也明显下降,这一现象被称为膜的污染。
3 简要说明各种膜(超滤膜、微孔过滤膜和纳米过滤膜)的特点及用途?答:超滤膜:能截留相对分子质量500以上的高分子的膜,应用于大分子产品,主要是酶及蛋白类产品。
微孔过滤膜:主要用于分离流体中尺寸为0.1-10µm的微生物和微粒子,以达到净化、分离和浓缩的目的。
主要用于无菌液体的生产,反渗透及超过滤的前处理。
答案仅供参考1.从生物工程概念及学科分支着手,分析生物工程下游技术的概念。
生物工程是分子遗传学、微生物学、细胞生物学、生物化学、化学工程和能源学等各学科的结合,应用于医药、食品、农林、园艺、化工、冶金、采油、发酵罐新技术和新底物的环保等方面的工程技术;生物工程下游技术就是研究,应用和设计生物产品的提取、分离、纯化、精制及加工工艺,使其变为产品的一门学科。
2.谈谈生物工程下游技术课程主要研究哪些问题?在整个生物工程技术领域的地位如何?有何作用?研究生物工程产品的提取、分离、纯化、精制加工等技术的基本原理和方法。
下游技术是生物制品产业化的必经之路和关键所在,直接影响产品的质量和成本。
作用是可以培养对生物产品的分离,纯化技术的掌控和应用能力,以及对生物物质提纯最佳方案的设计能力。
3.生物工程下游技术处理对象有哪些特点?目标物质浓度低、组分复杂、产物稳定性差、质量要求高(纯度、卫生和生物活性)4.原料中目的物的浓度与产品价格是否有关联?目的物浓度越低,产品的价格就越高5.提取步骤数及各步收率对总收率有何影响?提取步骤数越多,最终的总收率就越低6.通过查阅资料,介绍生物工程发展史。
第一阶段:古代酿造业,不存在下游技术一说,主要产品是酒、酱油、醋之类的发酵产品。
第二阶段:近代酿造业,可以进行过滤、蒸馏、精馏等简单的单元操作,主要产品是丙酮、丁醇等无活性的小分子物质。
第三阶段:可以进行目前大部分的化工单元操作,主要产品是抗生素、多糖、蛋白质等具有一定生物活性的大分子物质。
第四阶段:现代生物工业,可以进行各种新型分离技术(色谱、萃取等),主要产品是基因工程的高附加值产品。
7.介绍生物下游技术的一般流程,划分依据是什么?1.预处理(固体细胞与液体发酵液)2.提取(初步分离)3.精制(高度纯化)4.成品制作(最后加工,层析、电泳等)划分依据一般是分离产物的物相,分离物的大小,难度,方法等。
8.生物下游分离与化工分离有何区别?生物下游分离常无固定操作方法可循,生物材料组成非常复杂,分离操作步骤多,不易获得高收率,培养液(或发酵液)中所含目的物浓度很低,而杂质含量却很高,分离进程必须保护化合物的生理活性,生物活性成分离开生物体后,易变性、破坏,基因工程产品,一般要求在密封环境下操作。
生物发酵工程中分离和纯化的技术生物发酵工程是指利用微生物、细胞及其代谢产物进行某些化学过程的工程学科。
在生物发酵工程中,分离和纯化技术是至关重要的步骤,通过这些技术可以分离出所需的微生物、细胞或产物,并对其进行纯化和结构分析,以实现其在工业上的广泛应用。
一、分离技术生物发酵过程中,细胞或微生物的生长和代谢过程会产生大量的代谢产物,其中包括目标产物和非目标产物。
在分离技术中,目标产物的选择和富集是至关重要的。
常用的分离技术包括离心、过滤、超滤和萃取等。
离心是利用离心力将混合物中不同密度的组分分开的一种分离技术。
在生物发酵工程中,利用离心技术可以将微生物和细胞分离出来,以进行后续的培养和富集。
此外,离心技术还可以用于大分子物质的分离和纯化,如蛋白质、DNA等。
过滤是将混合物通过不同的过滤器进行分离的一种分离技术。
根据过滤器的孔径大小不同,可以将不同大小的分子筛选出来。
在生物发酵工程中,利用过滤技术可以将微生物和其代谢产物从培养基中分离出来,达到富集目的。
超滤是利用膜过滤的方式进行分离的一种技术。
在超滤过程中,通过选择合适的膜孔径和压力,可以将不同分子量的目标产物分离出来,并进行纯化。
超滤技术在生物发酵工程中的应用非常广泛,可以富集蛋白质、酶、激素等大分子物质。
萃取是利用溶剂的不同亲水性或亲油性,将混合物中的目标组分分离出来的一种技术。
在生物发酵工程中,萃取技术可以用于分离微生物培养液中的小分子化合物和产物。
二、纯化技术在生物发酵工程中,分离是实现目标产物富集的重要手段,但是分离出来的产物并不一定是纯品。
通过纯化技术,可以将目标产物从杂质中进一步纯化和提纯,以达到最终的纯度要求。
常用的纯化技术包括电泳、层析、析出和结晶等。
电泳是将混合物中的分子在电场的作用下按照大小和电性进行分离的一种技术。
在生物发酵工程中,电泳技术可以用于蛋白质、核酸和酶等大分子物质的纯化。
层析是利用分离材料将混合物中的组分分离的一种技术。
生物工程中的分离纯化技术生物工程是一门涉及生命科学、工程科学和计算机科学等多个领域的交叉学科,其中的分离纯化技术是生物工程中最为基础和关键的环节之一。
分离纯化技术是指将混合物中的某种物质隔离出来并经过一系列的处理,得到单一的、纯度高的、特殊的产品的技术过程。
在生物工程中,分离纯化技术被广泛应用于蛋白质、酶、细胞、病毒等的分离纯化、检测测定和生产加工等方面。
1. 蛋白质的分离纯化蛋白质是生物体内一种重要的大分子有机物质,具有结构多样性、功能多样性和应用广泛性的特点,因此成为生物工程领域中一个重要的研究方向。
在蛋白质的分离纯化过程中,分子筛层析、离子交换层析、凝胶过滤层析和疏水相互作用层析等技术均可有效实现蛋白质的分离纯化。
其中,分子筛层析是指通过分子筛的孔径大小将目标蛋白质与其他杂质分子分离开来的方法。
分子筛层析技术是一种广泛应用于生物工程中的“粗制滥造”方法,具有快速、简便、高效的特点,但相应地,纯度较低。
而离子交换层析是通过分别对离子与蛋白质的吸附作用来分离不同的离子组分,具有较高的特异性和纯度,但需要更细致的操作。
2. 酶的分离纯化酶是生物体内一种重要的催化剂,具有结构多样性、反应特异性和活性高效性的特点,广泛应用于医药、农业、食品和化妆品等领域。
在酶的分离纯化过程中,离子交换层析、亲和层析和凝胶过滤层析等技术均可有效实现酶的分离纯化。
其中,亲和层析是通过将目标酶与某些特定的固定化分子结合在一起,使目标酶在混合物中优先吸附到亲和基质上,最终达到分离纯化的目的。
凭借亲和层析技术,可实现酶的高效、高特异性的分离纯化,但亲和基质的选择和对酶的影响需要精细操作。
3. 细胞的分离纯化细胞是生命离不开的基本单位,它们在物质代谢、能量交换、生长发育和免疫防御等方面发挥着重要的作用。
在细胞的分离纯化过程中,差速离心、密度梯度离心和磁珠分离技术等均可有效实现细胞的分离纯化。
其中,磁珠分离技术是通过将特定的磁性珠子与多价抗体等结合起来,利用磁性珠子对靶细胞或细胞分子的快速分离与扩增。
生物工程工厂一般分三段设计
是的,生物工程工厂一般分为三个主要的设计段落:上游工程、下游工程和分析测试。
这些段落分别负责生物制品的生产前、生产中和生产后的各个环节。
1. 上游工程:主要负责生物材料的生产和准备工作。
这包括基因工程和发酵工程,用于生产细胞培养和微生物发酵所需的培养基、载体DNA以及其他生物材料。
2. 下游工程:主要负责生物制品的提取、纯化和制备工作。
这包括对发酵过程产生的混合溶液进行固液分离、精细分离和纯化,以获取纯度较高的目标产物。
3. 分析测试:主要负责对生物制品进行质量评估和控制。
这包括对产品的物理性质、化学性质、微生物污染和潜在杂质进行检测和分析,确保最终产品符合质量标准和法规要求。
这三个设计段落在生物工程工厂中密切合作,协同完成生产流程,并确保产品的质量和安全性。
如有更详细的问题或特定领域的需求,可以详细描述我可以为您提供相关知识。