电机驱动电路详细经典
- 格式:doc
- 大小:173.50 KB
- 文档页数:4
基于IR2136的无刷直流电机驱动电路的设计无刷直流电机是一种广泛应用于工业和家用设备中的驱动器件。
与传统的有刷直流电机相比,无刷直流电机具有更高的效率、更长的寿命和更低的噪音水平。
为了实现无刷直流电机的控制和驱动,需要设计相应的驱动电路。
IR2136是一种常用的无刷直流电机驱动器件。
它具有多种保护和控制功能,可以用于控制无刷直流电机的转速、方向和制动等。
下面是基于IR2136的无刷直流电机驱动电路设计的详细介绍。
首先,设计一个适合的电源电路来为驱动器件和无刷直流电机提供电源。
电源电路应具有稳定的输出电压和电流能力。
通常,使用电池或稳压电源作为驱动电路的电源。
其次,设计一个合适的电机驱动电路。
IR2136包括三个半桥驱动器,每个半桥驱动器都包括一个高侧和低侧开关管。
通过控制这三个半桥驱动器的开关管的导通和截止状态,可以实现对无刷直流电机的控制。
此外,IR2136还具有保护电路,如过温保护、过电压保护、低电压保护和短路保护等。
这些保护功能可以保证电机和驱动器的安全运行。
在设计过程中,需要根据无刷直流电机的参数和工作要求选择合适的电源电压、电流和功率。
还需要选择合适的IR2136驱动芯片和外围电路元件,如电感、电容等。
此外,还需要设计驱动器和电机之间的连接线路,保证信号传输的可靠性。
最后,进行电路的调试和测试。
通过对电路进行测试和调试,可以确保电机能够正常工作,并且具有所需的转速和扭矩。
在调试过程中,可以调整驱动器的参数和工作模式,如占空比、频率等,来优化电机的性能。
总结起来,基于IR2136的无刷直流电机驱动电路设计需要考虑电源电路、驱动器电路和保护电路等方面的设计。
通过合理选择电路元件和参数,并进行适当的调试和测试,可以实现无刷直流电机的稳定驱动和控制。
这样的电路设计可以用于各种需要无刷直流电机的应用中,如工业自动化、机器人和电动车等。
四种直流电机驱动电路图及设计思路讲解,有图有真相!下面为您详细介绍直流电机驱动设计需要注意的事项,低压驱动电路的简易栅极驱动、边沿延时驱动电路图解及其设计思路。
一、直流电机驱动电路的设计目标在直流电机驱动电路的设计中,主要考虑一下几点:1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。
如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。
2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。
1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。
2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。
要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。
3)对控制输入端的影响。
功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。
4)对电源的影响。
共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。
5)可靠性。
电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。
电机不同的部分有不同的设计要求。
1.输入与电平转换部分:输入信号线由DATA引入,1脚是地线,其余是信号线。
注意1脚对地连接了一个2K欧的电阻。
当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。
当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。
或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。
高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。
1 引言长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。
特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。
为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。
但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。
因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。
该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。
2 直流电机驱动控制电路总体结构直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图如图一由图可以看出,电机驱动控制电路的外围接口简单。
其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。
在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。
隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。
由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。
3 H桥功率驱动原理直流电机驱动使用最广泛的就是H型全桥式电路,这种驱动电路方便地实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。
H桥功率驱动原理图如图2所示。
H型全桥式驱动电路的4只开关管都工作在斩波状态。
本文摘自:《机器人探索》一、H桥式电机驱动电路图4.12中所示为一个典型的直流电机控制电路。
电路得名于“H桥式驱动电路”是因为它的形状酷似字母H。
4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。
如图所示,H桥式电机驱动电路包括4个三极管和一个电机。
要使电机运转,必须导通对角线上的一对三极管。
根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
图4.12 H桥式电机驱动电路要使电机运转,必须使对角线上的一对三极管导通。
例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。
按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。
当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。
图4.13 H桥电路驱动电机顺时针转动图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。
当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。
图4.14 H桥电路驱动电机逆时针转动二、使能控制和方向逻辑驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。
如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。
此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。
基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。
图4.155所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。
4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。
而2个非门通过提供(与本节前面的示意图一样,一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。
本文摘自:《机器人探索》一、H桥式电机驱动电路图4.12中所示为一个典型的直流电机控制电路。
电路得名于“H桥式驱动电路”是因为它的形状酷似字母H。
4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。
如图所示,H桥式电机驱动电路包括4个三极管和一个电机。
要使电机运转,必须导通对角线上的一对三极管。
根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
图4.12 H桥式电机驱动电路要使电机运转,必须使对角线上的一对三极管导通。
例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。
按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。
当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。
图4.13 H桥电路驱动电机顺时针转动图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。
当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。
图4.14 H桥电路驱动电机逆时针转动二、使能控制和方向逻辑驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。
如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。
此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。
基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。
图4.155所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。
4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。
而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。
驱动电路的性能很大程度上影响整个系统的工作性能。
有许多问题需要慎重设计,例如,导通延时、泵升保护、过压过流保护、开关频率、附加电感的选择等。
1.开关频率和主回路附加电感的选择力矩波动也即电流波动,由系统设计给定的力矩波动指标为ΔI/I N,对有刷直流电动机而言,通常在(5~10)%左右。
为了便于分析可认为ΔI/I N=ΔI/(U s/R d) (1)式中R d为电枢回路总电阻。
代入前面各种驱动控制方式的ΔI表达式中,消去U s,可求出:对于单极性控制L d/R d≥5T~2.5T(可逆或不可逆) (2) 对于双极性控制L d/R d≥10T~5T(3)式中T为功率开关的开关周期。
对于有刷直流电动机,电磁时间常数L d/R d一般在10ms至几十毫秒。
若采用GTR,开关频率可取2KHz左右,T=0.5ms。
若采用IGBT,开关频率可取18KHz以上,所以上式均能满足。
若采用GTO或可控硅功率器件,由于工作频率只有100Hz左右,此时应考虑在主回路附加电抗器,且L d=L f+L a(4)对不可逆系统还应进一步检查临界电流,I aL=U s T/8L d≤I a0应小于电机空载电流,防止空载失控。
对于低惯量电机、力矩电动机,由于电磁时间常数很小(几个毫秒或更小),此时应考虑采用开关频率高的IGBT功率开关器件。
2. 功率驱动电路的选择图1 H桥开关电路(Ⅰ) 图2 H桥开关电路(Ⅱ){{分页}}小功率驱动电路可以采用如图1所示的H桥开关电路。
U A和U B是互补的双极性或单极性驱动信号,TTL电平。
开关晶体管的耐压应大于1.5倍U s以上。
由于大功率PNP晶体管价格高,难实现,所以这个电路只在小功率电机驱动中使用。
当四个功率开关全用NPN晶体管时,需要解决两个上桥臂晶体管(BG1和BG3)的基极电平偏移问题。
图2中H桥开关电路利用两个晶体管实现了上桥臂晶体管的电平偏移。
但电阻R上的损耗较大,所以也只能在小功率电机驱动中使用。
先给大家介绍个技术交流QQ群有什么不能搞好的可以大家交流28858693 技术交流QQ群H桥驱动电路原理2008-09-05 16:11一、H桥驱动电路图4.12中所示为一个典型的直流电机控制电路。
电路得名于“H桥驱动电路”是因为它的形状酷似字母H。
4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。
如图所示,H桥式电机驱动电路包括4个三极管和一个电机。
要使电机运转,必须导通对角线上的一对三极管。
根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
图4.12 H桥驱动电路要使电机运转,必须使对角线上的一对三极管导通。
例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。
按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。
当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。
图4.13 H桥电路驱动电机顺时针转动图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。
当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。
图4.14 H桥驱动电机逆时针转动二、使能控制和方向逻辑驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。
如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。
此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。
基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。
图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。
先给大家介绍个技术交流QQ群有什么不能搞好的可以大家交流
28858693 技术交流QQ群
H桥驱动电路原理
2008-09-05 16:11
一、H桥驱动电路
图4.12中所示为一个典型的直流电机控制电路。
电路得名于“H桥驱动电路”是因为它的形状酷似字母H。
4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。
如图所示,H桥式电机驱动电路包括4个三极管和一个电机。
要使电机运转,必须导通对角线上的一对三极管。
根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
图4.12 H桥驱动电路
要使电机运转,必须使对角线上的一对三极管导通。
例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。
按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。
当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。
图4.13 H桥电路驱动电机顺时针转动
图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。
当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。
图4.14 H桥驱动电机逆时针转动
二、使能控制和方向逻辑
驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。
如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。
此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。
基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。
图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。
4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。
而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。
(与本节前面的示意图一样,图4.15所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。
)
图4.15 具有使能控制和方向逻辑的H桥电路
采用以上方法,电机的运转就只需要用三个信号控制:两个方向信号和一个使能信号。
如果DIR-L信号为0,DIR-R信号为1,并且使能信号是1,那么三极管Q1和Q4导通,电流从左至右流经电机(如图4.16所示);如果DIR -L信号变为1,而DIR-R信号变为0,那么Q2和Q3将导通,电流则反向流过电机。
图4.16 使能信号与方向信号的使用
实际使用的时候,用分立元件制作H桥是很麻烦的,好在现在市面上有很多封装好的H桥集成电路,接上电源、电机和控制信号就可以使用了,在额定的电压和电流内使用非常方便可靠。
比如常用的L293D、L298N、TA7257P、
SN754410等。
附两张分立元件的H桥驱动电路:。