最 大 公 约 数 : 设 a1, a2是 两 个 不 全 为 零 的 整 数 . 我 们 把 a1和 a2 的 公 约 数 中 最 大 的 称 为 a1 和 a2 的 最 大 公 约 数 , 记 作 ( a1, a2 ) , 一 般 地 , 设 a1,. . . ,ak 是 k 个 不 全 为 零 的 整 数 . 我 们 把 a1,. . . , ak 的 公 约 数 中 最 大 的 称 为 a1,. . . , ak 的 最 大 公 约 数 , 记 作 ( a1,. . . , ak ) .
P 1 8 定 理 1 2 : 设 m 0,我 们 有
[ ma1,. . . , mak ] = m[a1,. . . , ak ] .
P 2 0 定 理 2 : 设 a,b是 两 个 给 定 的 整 数 , a 0. 再设 d是一个给定的整数. 那么,一定存在 惟 一 的 一 对 整 数 q1 与 r1, 满 足 b a q1 r1,d r1 a d. 此 外 , a b的 充 要 条 件 是 a r1.
P 4 4 定 理 8 : 设 a1,,ak是 不 完 全 为 零 的 整 数 . 我 们 有 ( i ) ( a1,, ak ) = m i n { s a1x1 ak xk : x j Z( 1 j k ) , s 0} , 即 a1,, ak 的 最 大 公 约 数 等 于 a1,,ak的 所 有 整 系 数 线 性 组 合 组 成 的 集 合 S中 的 最 小 正 整 数 . ( i i ) 一 定 存 在 一 组 整 数 x1,0,, xk,0使 得 ( a1,, ak ) = a1x1,0 ak xk,0.
P 4 8 定 理 1 : 设 p 是 素 数 , p a1a2 . 那 么 p a1或 p a2 至 少 有 一 个 成 立 . 一 般 地 , 若 p a1. . .ak , 则 p a1 ,. . . , p ak 至少一个成立.