不等关系与不等式基础+复习+习题+练习)
- 格式:doc
- 大小:560.50 KB
- 文档页数:5
不等式及不等式的性质复习题不等式及不等式的性质中考要求不等式基本性质:基本性质1:不等式两边都加上(或减去) 同一个数(或式子) ,不等号方向不变.如果a >b ,那么a ±c >b ±c如果a基本性质2:不等式两边都乘以(或除以) 同一个正数,不等号的方向不变.a b 如果a >b ,并且c >0,那么ac >bc (或>) c ca b 如果a 0,那么ac基本性质3:不等式两边都乘以(或除以) 同一个负数,不等号的方向改变.a b 如果a >b ,并且c如果a bc (或ax >b )易错点:不等式两边都乘(或除以) 同一个负数,不等号的方向改变.在计算的时候符号方向容易忘记改变.另外,不等式还具有互逆性和传递性.不等式的互逆性:如果a>b,那么bb.不等式的传递性:如果a>b,b>c,那么a>c.注意:⑴在不等式两边都乘以(或除以) 同一个负数,要改变不等号的方向.⑵在不等式两边不能乘以0,因为乘以0后不等式将变为等式,以不等式3>2为例,在不等式3>2两边都乘同一个数a 时,有下面三种情形:①如果a>0,那么3a>2a;②如果a=0时,那么3a=2a;③如果a一、不等式的基本概念【例1】用不等式表示数量的不等关系.⑴ a 是正数⑵ a 是非负数⑶ a 的相反数不大于1 ⑷ x 与y 的差是负数⑸ m 的4倍不小于8 ⑹ q 的相反数与q 的一半的差不是正数1⑺ x 的3倍不大于x 的⑻ a 不比0大 3【例2】用不等式表示:12⑴ x 的与6的差大于2;⑵ y 的与4的和小于x ; 351⑶ a 的3倍与b 的的差是非负数;⑷ x 与5的和的30%不大于-2. 2【例3】下列各式中,是一元一次不等式的为( )1A .5x =10 B .5x +y >10 C .5x 2>10 D .>2 E .5x >10 x【例4】关于x 的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为__________.【例5】用不等式表示下列数量关系(1)代数式4x +3的值不大于2;(2)m 和n 的和是非负数。
一、选择题1.若0,0,0a b m n >>>>,则a b ,b a ,b m a m ++,a n b n++按由小到大的顺序排列为( ) A .b b m a n a a a m b n b ++<<<++ B .b a n b m a a b n a m b ++<<<++ C .b b m a a n a a m b b n++<<<++ D .b a a n b m a b b n a m++<<<++ 2.已知函数22()x x af x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ). A .(,0)-∞ B .(0,)+∞ C .[0,)+∞ D .(1,)+∞3.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+4.已知x ,y ∈R ,且0x y >>,则( ) A .11x y> B .11()()22xy<C .1122x y <D .sin sin x y >5.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,则ac 2>bc 2 D .若a >b ,c >d ,则ac >bd 6.下列命题中错误..的是( ) A .若,a b b c >>,则a c > B .若0a b >>,则ln ln b a < C .若a b >,则22a b > D .若a b >, 则22ac bc > 7.若a >b ,c 为实数,下列不等式成立是()A .ac >bcB .ac <bcC . 22ac bc >D . 22ac bc8.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y->D .ln x +ln y >09.不等式536x x -++≥的解集是 ( ) A .[]5,7- B .(),-∞+∞C .()(),57,-∞-+∞ D .[]4,6-10.已知a ,b R ∈,且a b >,则下列不等式恒成立的是( )A .22a b >B .lg()0a b ->C .11()()22ab<D .1a b> 11.若,则下列结论不正确的是A .B .C .D .12.实数,a b 满足0a b >>,则下列不等式成立的是( ) A .1a b< B .1133a b<C a b a b <-.2a ab <二、填空题13.已知实数a ,b ,c 满足a >c ﹣2且1333abc++<,则333a bc-的取值范围是_______.14.已知不等式116a x y x y+≥+对任意正实数,x y 恒成立,则正实数a 的最小值为_______. 15.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.16.已知,,a b c R +∈,设a b c S b c a c a b=+++++,则S 与1的大小关系是__________.(用不等号连接) 17.已知ln ln x y <,则21x y y x-++的最小值为___________________. 18.设5x >,45P x x --23Q x x --,则P 与Q 的大小关系是P ______Q .19.设()f x x a x =-+,且|()|2f x ≤在[1,1]x ∈-上恒成立,则实数a 的取值范围为_________.20.定义运算x ·y ,,1,,x x y m y x y ≤⎧=-⎨>⎩若·m=|m-1|,则m 的取值范围是_____. 三、解答题21.已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式22()log (3)2f x a a -->恒成立,求实数a 的取值范围. 22.(1)解不等式:1|1||2|2x x --->; (2)设集合P 表示不等式121x x a -+->对任意x ∈R 恒成立的a 的集合,求集合P ; (3)设关于x 的不等式22||200ax x a +--<的解集为A ,试探究是否存在a ∈N ,使得不等式.220x x +-<与|212x x -<+的解都属于A ,若不存在,说明理由.若存在,请求出满足条件的a 的所有值.23.(1)已知a <b <c ,且a +b +c =0,证明:a a a cb c--<. (224.已知数列{}n a 满足:12a =,1122n n n a a ++=+,*n N ∈.(1)求证2n n a ⎧⎫⎨⎬⎩⎭是等差数列并求n a ; (2)求数列{}n a 的前n 项和n S ; (3)求证:2132431111112n n a a a a a a a a ++++⋅⋅⋅+<----. 25.比较log (1) n n +与()*(1)log (2),2n n n N n ++∈≥大小,并证明.26.(1)若0a >,0b >,求证:11()4a b a b ⎛⎫++≥ ⎪⎝⎭; (2【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据不等式的性质,利用怍差法求解. 【详解】()()()-++---==+++b a m b b m ba bm ab am a a m a a m a a m , 因为0,0a b m >>>,所以()()0-<+b a m a a m ,所以b b m a a m+<+, ()()()()()()()()22b a b a b a n m b m a n b bn bm mn a am an nm a m b n a m b n a m b n +-+-++++++-----==++++++,因为0,0,0a b m n >>>>,所以()()()()()()0+-+-+<++b a b a b a n m a m b n ,所以++<++b m a na mb n, ()()()-++---==+++b a na n a ab bn ab an b n b b b n b b n , 因为0,0>>>a b n ,所以()()0-<+b a n b b n ,所以a n ab n b+<+, 所以b b m a n a a a m b n b ++<<<++。
不等关系一、选择题1.(2014·四川理,4)若a>b>0,c<d<0,则一定有( )A.ac>bdB.ac<bdC.ad>bcD.ad<bc[答案] D[解析] 本题考查不等式的性质,ac-bd=ad-bccd,cd>0,而ad-bc的符号不能确定,所以选项A、B不一定成立.ad-bc=ac-bddc,dc>0,由不等式的性质可知ac<bd,所以选项D成立.2.如果a∈R,且a2+a<0,那么a,a2,-a,-a2的大小关系为( ) A.a2>a>-a2>-a B.-a>a2>-a2>aC.-a>a2>a>-a2D.a2>-a>a>-a2[答案] B[解析] 因为a2+a<0,所以a2<-a,a<-a2,又由于a≠0,∴-a2<a2,即a<-a2<a2<-A.故选B.3.设a,b∈R,若a-|b|>0,则下列不等式中正确的是( )A.b-a>0 B.a3+b3<0C.a2-b2<0 D.b+a>0[答案] D[解析] 利用赋值法:令a=1,b=0排除A,B,C,选D.4.若a>b>c,a+2b+3c=0,则( )A.ab>ac B.ac>bcC.ab>bc D.a|b|>c|b|[答案] A[解析] ∵a>b>c且a+2b+3c=0,∴a>0,c<0.又∵b>c且a>0,∴ab>aC.选A.5.若-1<α<β<1,则下面各式中恒成立的是( )A.-2<α-β<0 B.-2<α-β<-1C.-1<α-β<0 D.-1<α-β<1[答案] A[解析] 由题意得-1<α<1,-1<-β<1,α-β<0,故-2<α-β<2且α-β<0,故-2<α-β<0,因此选A.6.如果a>0,且a≠1,M=log a(a3+1),N=log a(a2+1),那么( ) A.M>N B.M<NC.M=N D.M、N的大小无法确定[答案] A[解析] 当a>1时a3+1>a2+1,y=log a x单增,∴loga(a3+1)>log a(a2+1).当0<a<1时a3+1<a2+1,y=log a x单减.∴log a(a3+1)>log a(a2+1),或对a取值检验.选A.二、填空题7.如果a>b,那么下列不等式:①a3>b3;②1a<1b;③3a>3b;④lg a>lg B.其中恒成立的是________.[答案] ①③[解析] ①a3-b3=(a-b)(a2+b2+ab)=(a-b)[(a+b2)2+34b2]>0;③∵y=3x是增函数,a>b,∴3a>3b当a>0,b<0时,②④不成立.8.设m=2a2+2a+1,n=(a+1)2,则m、n的大小关系是________.[答案] m≥n[解析] m-n=2a2+2a+1-(a+1)2=a2≥0.三、解答题9.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:机架数所满足的所有不等关系的不等式.[解析] 设需安排x 艘轮船和y 架飞机,则⎩⎨⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎨⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.10.(1)已知a >b ,e >f ,c >0.求证:f -ac <e -bC . (2)若bc -ad ≥0,bd >0.求证:a +b b ≤c +dd. [证明] (1)∵a >b ,c >0,∴ac >bc ,∴-ac <-bc ,∵f <e ,∴f -ac <e -bC . (2)∵bc -ad ≥0,∴ad ≤bc , 又∵bd >0,∴a b ≤cd, ∴a b +1≤c d+1, ∴a +b b ≤c +dd.。
不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性: (2)传递性:a b b a <⇔>ca cb b a >⇒>>,(3)加法法则:;(同向可加)c b c a b a +>+⇒>d b c a d c b a +>+⇒>>,(4)乘法法则:; bc ac c b a >⇒>>0,bcac c b a <⇒<>0,(同向同正可乘)bd ac d c b a >⇒>>>>0,0(5)倒数法则: (6)乘方法则:b a ab b a 110,<⇒>>)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式的解集:()00022≠<++>++a c bx ax c bx ax 或设相应的一元二次方程的两根为,,则不等式的解的各种情()002≠=++a c bx ax 2121x x x x ≤且、ac b 42-=∆况如下表:2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
不等关系与不等式班级___________ 姓名_____________ 学号__________层级一 学业水平达标1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤4002.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <03.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( ) A .M >N B .M <N C .M =ND .不确定6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.7.比较大小:a 2+b 2+c 2________2(a +b +c )-4.8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).9.(1)若a <b <0,求证:b a <ab ; (2)已知a >b ,1a <1b ,求证:ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -12.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<14.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x ,y ,z ,则下列选项中能反映x ,y ,z 关系的是( )A .x +y +z =65B.⎩⎪⎨⎪⎧x +y +z =65,x >y >z ,x ,y ,z ∈N *C.⎩⎪⎨⎪⎧x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N*D.⎩⎪⎨⎪⎧x +y +z =65,x <65,y <65,z <65,x ,y ,z ∈N*5.已知|a |<1,则11+a与1-a 的大小关系为________. 6.设a ,b 为正实数,有下列命题: ①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1; ③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号). 7.比较a 2+b 2与2(2a -b )-5的大小;答案解析1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤400解析:选B x 月后他至少有400元,可表示成30x +60≥400. 2.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <0解析:选D 由a >0,d <0,且abcd <0,知bc >0, 又∵b >c ,∴0<c <b 或c <b <0.3.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bd D .若a 2>b 2,则-a <-b解析:选B 选项A ,若a =4,b =2,c =5,显然不成立,选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不成立,故选B.4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 解析:选D 0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π.5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( ) A .M >N B .M <N C .M =ND .不确定 解析:选A ∵2x >0,∴M =2x +1>1,而x 2+1≥1, ∴11+x 2≤1,∴M >N ,故选A. 6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.解析:根据题意得:⎩⎪⎨⎪⎧30(x -1)<213,30x >213.答案:⎩⎪⎨⎪⎧30(x -1)<213,30x >2137.比较大小:a 2+b 2+c 2________2(a +b +c )-4. 解析:a 2+b 2+c 2-[2(a +b +c )-4] =a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0, 故a 2+b 2+c 2>2(a +b +c )-4. 答案:>8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).解析:∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是[3,8]. 答案:[3,8]9.(1)若a <b <0,求证:b a <ab ;(2)已知a >b ,1a <1b ,求证:ab >0. 证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab , ∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <ab .(2)∵1a <1b ,∴1a -1b<0,即b -aab <0,而a >b ,∴b -a <0,∴ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -1解析:选A 因为x 2+y 2-(2xy -1)=x 2-2xy +y 2+1=(x -y )2+1>0,所以x 2+y 2>2xy-1,故选A.2.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N解析:选B ∵a 1∈(0,1),a 2∈(0,1),∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B.3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<1解析:选A 由-1<α<1,-1<β<1,得-1<-β<1, ∴-2<α-β<2.又∵α<β,故知-2<α-β<0.4.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x ,y ,z ,则下列选项中能反映x ,y ,z 关系的是( )A .x +y +z =65B.⎩⎪⎨⎪⎧x +y +z =65,x >y >z ,x ,y ,z ∈N *C.⎩⎪⎨⎪⎧x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N*D.⎩⎪⎨⎪⎧x +y +z =65,x <65,y <65,z <65,x ,y ,z ∈N*解析:选C 由题意得x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N *.故选C. 5.已知|a |<1,则11+a与1-a 的大小关系为________. 解析:由|a |<1,得-1<a <1. ∴1+a >0,1-a >0. 即11+a 1-a =11-a 2∵0<1-a 2≤1,∴11-a 2≥1,∴11+a≥1-a . 答案:11+a≥1-a 6.设a ,b 为正实数,有下列命题:①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1;③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号).解析:对于①,由题意a ,b 为正实数,则a 2-b 2=1⇒a -b =1a +b ⇒a -b >0⇒a >b >0,故a +b >a -b >0.若a -b ≥1,则1a +b ≥1⇒a +b ≤1≤a -b ,这与a +b >a -b >0矛盾,故a-b <1成立.对于②,取特殊值,a =3,b =34,则a -b >1.对于③,取特殊值,a =9,b =4时,|a -b |>1. 对于④,∵|a 3-b 3|=1,a >0,b >0, ∴a ≠b ,不妨设a >b >0. ∴a 2+ab +b 2>a 2-2ab +b 2>0, ∴(a -b )(a 2+ab +b 2)>(a -b )(a -b )2. 即a 3-b 3>(a -b )3>0, ∴1=|a 3-b 3|>(a -b )3>0, ∴0<a -b <1, 即|a -b |<1.因此正确. 答案:①④7.(1)比较a 2+b 2与2(2a -b )-5的大小; (2)已知a ,b ∈(0,+∞),求证:a a b b ≥(ab )2+a b ,当且仅当a =b 时等号成立.解:(1)∵a 2+b 2-[2(2a -b )-5]=(a -2)2+(b +1)2≥0, ∴a 2+b 2≥2(2a -b )-5,当且仅当a =2,b =-1时,等号成立.。
(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)一、选择题1.a 的一半与b 的差是负数,用不等式表示为( )A .102a b -< B .102a b -≤ C .()102a b -< D .102a b -< 【答案】D【解析】【分析】列代数式表示a 的一半与b 的差,是负数即小于0. 【详解】解:根据题意得102a b -< 故选D .【点睛】 本题考查了列不等式,首先要列出表示题中数量关系的代数式,再由不等关系列不等式.2.不等式的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】 先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.3.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.4.关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰有五个整数解,那么m 的取值范围为( ) A .21m -≤<-B .21m -<<C .1m <-D .2m ≥-【答案】A【解析】【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出m 的取值范围.【详解】 解:()02332x m x x ->⎧⎨-≥-⎩解不等式①,得:x m >,解不等式②,得:3x ≤,∴不等式组的解集为:3m x <≤,∵不等式组恰有五个整数解,∴整数解分别为:3、2、1、0、1-;∴m 的取值范围为21m -≤<-;【点睛】本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求出不等式组的解集,从而求出m 的取值范围.5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a 的取值范围是a <1.【详解】 解:0122x a x x -≥⎧⎨->-⎩①②, 由①得:x≥a ,由②得:x <1,∵不等式组有解,∴a <1,故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.6.若a b >,则下列不等式中,不成立的是( )A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 【答案】A【解析】【分析】 根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立;D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.8.不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可. 详解:解不等式①,得:x 1<;解不等式②,得:x 3≥-;∴原不等式组的解集为:3x 1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.9.若a b <,则下列变形错误的是( )A .22a b <B .22a b +<+C .1122a b <D .22a b -<- 【答案】D【解析】【分析】根据不等式的性质解答.【详解】∵a b <,∴22a b <,故A 正确;∵a b <,∴22a b +<+,故B 正确;∵a b <,∴1122a b <,故C 正确; ∵a b <,∴2-a>2-b ,故D 错误,故选:D.【点睛】此题考查不等式的性质,熟记性质定理并运用解题是关键.10.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C【解析】【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【详解】解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x >11,所以,x 的取值范围是11<x≤23.故选:C .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.11.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.A .6折B .7折C .8折D .9折【答案】C【解析】【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%,解得:x≥8.答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.若关于x 的不等式组0521x a x -⎧⎨-<⎩…的整数解只有3个,则a 的取值范围是( ) A .6≤a <7B .5≤a <6C .4<a ≤5D .5<a ≤6【答案】B【解析】【分析】根据解不等式可得,2<x ≤a ,然后根据题意只有3个整数解,可得a 的范围.【详解】解不等式x ﹣a ≤0,得:x ≤a ,解不等式5﹣2x <1,得:x >2,则不等式组的解集为2<x ≤a .∵不等式组的整数解只有3个,∴5≤a <6.故选:B .【点睛】本题主要考查不等式的解法,根据题意得出a 的取值范围是解题的关键.13.若不等式组236x x x m -<-⎧⎨<⎩无解,那么m 的取值范围是( ) A .m >2B .m <2C .m ≥2D .m ≤2 【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】解:236x x x m -<-⎧⎨<⎩②①由①得,x >2,由②得,x <m ,又因为不等式组无解,所以根据“大大小小解不了”原则,m ≤2.故选:D .【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.14.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】 解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4, 因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.15.已知关于x 的不等式4x a 3+>1的解都是不等式2x 13+>0的解,则a 的范围是( ) A .a 5=B .a 5≥C .a 5≤D .a 5< 【答案】C【解析】【分析】先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】 由413x a +>得,34a x ->, 由210,3x +> 得,1,2x >- ∵关于x 的不等式413x a +>的解都是不等式2103x +>的解, ∴3142a -≥-, 解得 5.a ≤即a 的取值范围是: 5.a ≤故选:C.【点睛】考查不等式的解析,掌握一元一次不等式的求法是解题的关键.16.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B .m ≥4C .m ≤4D .无法确定 【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m 的范围即可.【详解】解不等式﹣x+2<x ﹣6得:x >4,由不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,得到m≤4, 故选:C .【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b > 【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误. 故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.18.如图,不等式组315215x x --⎧⎨-<⎩…的解集在数轴上表示为( ) A . B .C .D .【答案】C【解析】【分析】根据解一元一次不等式组的步骤:先解第一个不等式,再解第二个不等式,然后在数轴上表示出两个解集找公共部分即可.【详解】由题意可知:不等式组315215xx①②--⎧⎨-<⎩…,不等式①的解集为2x≥-,不等式②的解集为3x<,不等式组的解集为23x-≤<,在数轴上表示应为.故选C.【点睛】本题主要考查了一元一次不等式组的解法,熟知和掌握不等式组解法的步骤和在数轴上表示解集是解题关键.19.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键20.下列命题中逆命题是真命题的是()A.若a > 0,b > 0,则a·b > 0 B.对顶角相等C.内错角相等,两直线平行D.所有的直角都相等【答案】C【解析】【分析】先写出各命题的逆命题,再分别根据不等式的性质、对顶角、平行线的性质、角的概念逐项判断即可.【详解】A 、逆命题:若0a b ->,则0,0a b >>反例:2,1a b ==-时,2(1)0a b -=-->即此逆命题是假命题,此项不符题意B 、逆命题:如果两个角相等,那么这两个角是对顶角相等的角不一定是对顶角即此逆命题是假命题,此项不符题意C 、逆命题:两直线平行,内错角相等此逆命题是真命题,此项符合题意D 、逆命题:相等的角都是直角此逆命题是假命题,此项不符题意故选:C .【点睛】本题考查了不等式的性质、对顶角、平行线的性质、角的概念,熟记各性质与定义是解题关键.。
一、选择题 1.不等式2122x x a a ++-≥-恒成立,则a 的取值范围是( ) A .[]1,3-B .][),33,(-∞⋃+∞C .(),3-∞D .()3,+∞) 2.若2a ≠-,(21)(2)m a a =-+,(2)(3)n a a =+-,则m 、n 的大小关系是( ) A .m n = B .m n < C .m n > D .m 、n 关系不确定 3.下列结论中一定正确的是( )A .若,0a b c <≠,则ac bc <B .若33a b >,则a b >C .若,0a b c >≠,则a b c c >D .若a b c d>⎧⎨>⎩,则a c b d ->- 4.已知函数22()x x a f x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ).A .(,0)-∞B .(0,)+∞C .[0,)+∞D .(1,)+∞ 5.对任意x ∈R ,不等式22|sin ||sin |x x a a +-≥恒成立,则实数a 的取值范围是( ) A .01a ≤≤ B .11a -≤≤ C .12a -≤≤ D .22a -≤≤ 6.已知01x y a <<<<,log log a a m x y =+,则有( )A .0m <B .01m <<C .12m <<D .2m > 7.已知全集U =R ,{|13}P x x x =+-<,{|213}Q x x =-<,则集合P ,Q 之间的关系为( )A .集合P 是集合Q 的真子集B .集合Q 是集合P 的真子集C .P Q =D .集合P 是集合Q 的补集的真子集 8.若0,a b <<则下列不等关系中,不能成立的是( )A .11a b> B .11a b a >- C .2233a b > D .22a b > 9.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y ->- B .cos cos 0x y -<C .110x y-> D .ln x +ln y >0 10.若()0,2x π∈,则不等式sin sin x x x x +<+的解集为( )A .()0,πB .5,44ππ⎛⎫ ⎪⎝⎭C .3,22ππ⎛⎫ ⎪⎝⎭D .(),2ππ 11.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( )A .()1,+∞B .[)1,+∞C .(),1-∞D .(],1-∞ 12.对于任意实数,,,,a b c d 以下四个命题正确的是( )A .若,,a b c d >>则a c b d +>+B .22a b ac bc >>若,则C .若,a b >则11a b< D .若,,a b c d >>则ac bd > 二、填空题13.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 14.已知,,a b c R +∈,设a b c S b c a c a b =+++++,则S 与1的大小关系是__________.(用不等号连接)15.函数11y x x =+--的最大值是___________16.已知不等式222xy ax y +,对任意[1,2],[4,5]x y ∈∈恒成立,则实数a 的取值范围是__________.17.若1a 2-<<,21b -<<,则-a b 的取值范围是 .18.设x ∈R ,如果()lg 37a x x <++-恒成立,那么实数a 的取值范围是________.19.设函数2()||(,)f x x a x b a b R =+++∈,当[2,2]x ∈-时,记()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为______.20.已知()2|1|f x x =-,记1()()f x f x =,21()(())f x f f x =,…,1()(())n n f x f f x +=,…,若对于任意的*n N ∈,0|()|2n f x ≤恒成立,则实数0x 的取值范围是_______.三、解答题21.设函数()2|1||2|f x x x =-+-.(1)求不等式()2f x >的解集;(2)若不等式()(1)f x a x +的解集非空,求实数a 的取值范围.22.(1)解不等式:1|1||2|2x x --->; (2)设集合P 表示不等式121x x a -+->对任意x ∈R 恒成立的a 的集合,求集合P ; (3)设关于x 的不等式22||200ax x a +--<的解集为A ,试探究是否存在a ∈N ,使得不等式.220x x +-<与|212x x -<+的解都属于A ,若不存在,说明理由.若存在,请求出满足条件的a 的所有值.23.当,p q 都为正数且1p q +=时,试比较代数式2()px qy +与22+px qy 的大小. 24.已知函数()|23||1|f x x x =+--.(1)求不等式()3f x ≤的解集;(2)若不等式()2|33|f x a x >--对任意x ∈R 恒成立,求实数a 的取值范围.25.已知0a >,0b >,22143a b ab+=+. (1)求证:1ab ≤;(2)若b a >,求证:3311113a b a b ⎛⎫->- ⎪⎝⎭. 26.设函数3211()132f x ax bx cx =+++,f x 为()f x 的导函数,(1)2a f '=-,322a cb >>. (1)用a ,b 表示c ,并证明:当0a >时,334b a -<<-; (2)若12a =-,2b =,32c ,求证:当1x ≥时,()ln x f x '≥.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A 【分析】 利用绝对值三角不等式求得12x x ++-的最小值,由此可得出关于实数a 的不等式,进而可解得实数a 的取值范围. 【详解】 由绝对值三角不等式可得()()12123x x x x ++-≥++-=,当12x -≤≤时等号成立, 由于不等式2122x x a a ++-≥-恒成立,则223a a -≤,解得13a -≤≤.因此,实数a 的取值范围是[]1,3-.故选:A.【点睛】本题考查利用绝对值不等式恒成立求参数,考查了绝对值三角不等式的应用,考查计算能力,属于中等题. 2.C解析:C【分析】由条件可得22232,6m a a n a a =+-=--,两式作差即可得大小关系.【详解】(21)(2)m a a =-+,(2)(3)n a a =+-,22232,6m a a n a a ∴=+-=--,2244(2)m n a a a ∴-=++=+,由2a ≠-知,2(2)0m n a -=+>,m n ∴>,故选:C【点睛】本题主要考查了利用作差法比较不等式的大小,属于基础题.3.B解析:B【分析】通过反例可判断A 、C 、D 均错误,利用函数的单调性可证明B 正确.【详解】对于A ,取2,1,1a b c =-=-=-,则a b <,但ac bc >,故A 错误.对于C ,取2,1,1b a c =-=-=-,则a b >,但a b c c<,故C 错误. 对于B ,因为3y x =为R 上的增函数,故33a b >等价于a b >,故B 正确.对于D ,取1,2,1,100a b c d =-=-=-=-,满足a b c d >⎧⎨>⎩,但a c b d -<-,故D 错误. 故选:B.【点睛】本题考查不等式的性质,注意说明一个不等式不成立,只需要举出一个反例即可,另外证明一个不等式成立可用作差法或作商法,本题属于基础题.4.B解析:B【分析】结合已知不等式可转化为即22a x x >-+,结合二次函数的性质求22x x -+ 在[2,)+∞ 上的最大值,即可求解.【详解】解: [2,)x ∈+∞,22()0x x a f x x-+=> [2,)x ∴∈+∞,220x x a -+> 即22a x x >-+在[2,)x ∈+∞上恒成立.结合二次函数的性质可知当2x =时,22x x -+取得最大值为0.即0a >.故选:B .【点睛】本题考查了由不等式恒成立问题求参数的范围.对于关于()f x 的不等式在x 的某段区间上恒成立问题,一般情况下进行参变分离,若()a h x > 在区间上恒成立,只需求出()h x 的最大值,令max ()a h x > 即可; 若()a h x < 在区间上恒成立,只需求出()h x 的最小值,令min ()a h x < 即可.5.B解析:B【分析】解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.求函数()||||||f t t t t a =++-的最小值,从而不等式2||a a ≥可得11a -≤≤.解法二:(特殊值法)代入2a =, 1a =-,排除错误选项即可.【详解】解:解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.令()||||||f t t t t a =++-,则min [()](0)||f t f a ==,从而解不等式2||a a ≥可得11a -≤≤.故选B .解法二:(特殊值法)当2a =时,因为2|sin ||sin 2|2sin 2|sin |2|sin |2x x x x x +-=-+≥+≥,当且仅当sin 0x =时,等号成立.此时2|sin ||sin 2|4x x +-≥不恒成立,所以2a =不合题意,可以排除C 、D .当1a =-时,因为2|sin ||sin 1|1sin 2|sin |1|sin |1x x x x x ++=++≥+≥,当且仅当sin 0x =时,等号成立.此时2|sin ||sin 1|1x x ++≥恒成立,所以1a =-符合题意,可以排除A.故选:B【点睛】本题考查绝对值不等式的参数问题,属于中档题,利用函数求最值的方法或者特殊值排除法都可以解题.6.D解析:D【分析】首先根据对数的运算得到()log a m xy =,再由不等式的性质及对数函数的性质即可得解.【详解】解:由题意得()log a m xy =,01x y a <<<<,201xy a ∴<<<,2log 2a m a ∴>=.故选:D【点睛】本题考查对数的运算及对数函数的性质,不等式的性质,属于中档题.7.C解析:C【分析】先化简得{|12}P x x =-<<.求出{||21|3}{|12}Q x x x x =-<=-<<,由此得到P Q =.【详解】|||1|3x x +-<,∴当0x 时,|||1|1213x x x x x +-=-+-=-+<,解得1x >-.10x ∴-<;当01x <时,|||1|113x x x x +-=+-=<,成立;当1x >时,|||1|1213x x x x x +-=+-=-<,解得2x <.12x ∴<<.{|12}P x x ∴=-<<.{||21|3}{|12}Q x x x x =-<=-<<,P Q ∴=.故选:C .【点睛】本题考查两个集合的关系的判断,考查集合与集合的包含关系等基础知识,考查运算求解能力,是基础题.8.B解析:B【分析】根据不等式的性质,利用作差比较和幂函数的单调性,逐项判定,即可求解.【详解】由题意知,0a b <<,则0,0,0a b b a ab -<->>对于A 中,因为110b a a b ab --=>,所以11a b>,所以A 是正确的; 对于B 中,因为110()b a b a a a b -=<--,所以11a b a>-,所以B 不正确; 对于C 中,因为幂函数()23f x x =在(,0)-∞单调递减函数,所以2233a b >,所以C 正确; 对于D中,因为22()()0a b a b a b -=-+>,所以22a b >,所以D 正确;故选B.【点睛】本题主要考查了不等式的基本性质,以及幂函数的单调性的应用,其中解答中熟练应用作差比较法,以及幂函数的单调性,进行比较是解答的关键,着重考查了推理与运算能力,属于基础题.9.A解析:A【分析】结合选项逐个分析,可选出答案.【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析:对于选项A ,0x y ->,110y x x y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B 不正确;对于选项C ,110y x x y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确.故选A.【点睛】本题考查了不等式的性质,属于基础题.10.D解析:D【分析】由绝对值三角不等式的性质得出sin 0x x <,由02x π<<,得出sin 0x <,借助正弦函数图象可得出答案.【详解】 因为sin sin x x x x +<+成立,所以sin 0x x <,又(0,2)x π∈,所以sin 0x <,(,2)x ππ∈,故选D .【点睛】本题考查绝对值三角不等式的应用,再利用绝对值不等式时,需要注意等号成立的条件,属于基础题.11.A解析:A【分析】先求|x-3|+|x-4|的最小值是1,即得解.【详解】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x -3-x+4|=1,所以|x-3|+|x-4|的最小值为1,所以1<a,即a >1.故选A【点睛】本题主要考查绝对值三角不等式求最值,考查不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.A解析:A【解析】分析:根据不等式性质判断命题真假.可举反例说明命题不成立.详解:因为同向不等式可相加,所以若,,a b c d >>则a c b d +>+,因为c=0时,22ac bc =,所以B 错; 因为121,12>->-,所以C 错; 因为10,01,100(1)>>-⨯=⨯-,所以D 错;选A.点睛:本题考查不等式性质,考查基本论证能力.二、填空题13.【分析】先去绝对值转化为再转化为求的最大值与最小值得到答案【详解】由得又由则则的最大值为的最小值为则故答案为:【点睛】本题考查了绝对值不等式的解法对数函数的值域的求法还考查了将恒成立问题转化为求最值 解析:()1,7-【分析】先去绝对值,转化为22log 5log 5x a x -<<+,再转化为求2log ,[4,16]y x x =∈的最大值与最小值,得到答案.【详解】 由2log 5x a -<,得22log 5log 5x a x -<<+,又由2log ,[4,16]y x x =∈, 则[2,4]y ∈,则25log x -的最大值为1-,2log 5x +的最小值为7,则17a -<<. 故答案为:()1,7-【点睛】本题考查了绝对值不等式的解法,对数函数的值域的求法,还考查了将恒成立问题转化为求最值问题,转化与化归思想,属于中档题.14.【解析】因为所以与1的大小关系是故答案为解析:1S >【解析】因为,,a b c R +∈,所以1a b c a b c S b c a c a b a b c a b c a b c =++>++=+++++++++,S 与1的大小关系是1S > ,故答案为1S >.15.2【分析】利用表示数轴上的到的距离减去它到1的距离求得它的最大值等于2即可【详解】∵表示数轴上的到的距离减去它到1的距离最大值等于2故答案为2【点睛】本题主要考查绝对值不等式绝对值的意义函数的值域属 解析:2【分析】利用表示数轴上的x 到1-的距离减去它到1的距离,求得它的最大值等于2即可.【详解】 ∵11x x +--表示数轴上的x 到1-的距离减去它到1的距离,最大值等于2,故答案为2.【点睛】本题主要考查绝对值不等式,绝对值的意义,函数的值域,属于中档题.16.【分析】先将不等式对任意恒成立转化为不等式对任意恒成立再令转化为对任意恒成立求解即可【详解】因为不等式对任意恒成立所以不等式对任意恒成立令所以对任意恒成立令所以所以故答案为:【点睛】本题主要考查不等 解析:[6,)-+∞【分析】先将不等式222xy ax y +,对任意[1,2],[4,5]x y ∈∈恒成立,转化为不等式22y y a x x ⎛⎫≥- ⎪⎝⎭,对任意[1,2],[4,5]x y ∈∈恒成立,再令[]2,5=∈y t x ,转化为 22a t t ≥-,对任意[2,5]t ∈恒成立求解即可.【详解】因为不等式222xy ax y +,对任意[1,2],[4,5]x y ∈∈恒成立, 所以不等式22y y a x x ⎛⎫≥- ⎪⎝⎭,对任意[1,2],[4,5]x y ∈∈恒成立, 令[]2,5=∈y t x, 所以 22a t t ≥-,对任意[2,5]t ∈恒成立, 令211248⎛⎫=--+ ⎪⎝⎭y t , 所以 max 6y =-,所以 6a ≥-故答案为:[6,)-+∞【点睛】本题主要考查不等式恒成立问题以及不等式的性质,二次函数的性质,还考查了运算求解的能力,属于中档题.17.(-24)【分析】根据条件得到的范围然后与的范围相加得到的取值范围【详解】因为所以而所以故答案为【点睛】本题考查不等式的基本性质属于简单题 解析:(-2,4)【分析】根据条件,得到b -的范围,然后与a 的范围相加,得到-a b 的取值范围.【详解】因为21b -<<,所以12b -<-<而1a 2-<<所以24a b -<-<故答案为()2,4-.【点睛】本题考查不等式的基本性质,属于简单题.18.【分析】先根据绝对值三角不等式求得最小值即得最小值再根据不等式恒成立得结果【详解】当且仅当时取等号由恒成立得故答案为:【点睛】本题考查不等式恒成立问题利用绝对值三角不等式求最值考查综合分析转化求解能 解析:1a <【分析】 先根据绝对值三角不等式求得37x x ++-最小值,即得()lg 37x x ++-最小值,再根据不等式恒成立得结果.【详解】 373(7)10x x x x ++-≥+--=,当且仅当(3)(7)0x x +-≤时取等号, ()lg 37lg101x x ∴++-≥= 由()lg 37a x x <++-恒成立得()min [lg 37]11a x x a <++-=∴<故答案为:1a <【点睛】本题考查不等式恒成立问题、利用绝对值三角不等式求最值,考查综合分析转化求解能力,属中档题. 19.【分析】由题意可得在的最大值为中之一可得四个不等式相加再由绝对值不等式的性质即可得到所求最小值【详解】去掉绝对值可得在的最大值为中之一由题意可得上面四个式子相加可得即有可得的最小值为故答案为【点睛】解析:258【分析】由题意可得()f x 在[2,2]-的最大值为()2f -,()2f ,12f ⎛⎫- ⎪⎝⎭,12f ⎛⎫ ⎪⎝⎭中之一,可得四个不等式,相加,再由绝对值不等式的性质,即可得到所求最小值. 【详解】去掉绝对值,可得()f x 在[2,2]-的最大值为()2f -,()2f ,12f ⎛⎫- ⎪⎝⎭,12f ⎛⎫⎪⎝⎭中之一,由题意可得()(),242M a b f a b ≥-=++-+,(),242M a b f a b ≥=+++(),()1,211||42M a b f a b ⎛⎫≥=+++ ⎪⎝⎭,()11,21||42M a b f a b ⎛⎫≥-=++-+ ⎪⎝⎭,上面四个式子相加可得()114,2421|22|||42M a b a a b b b b ⎛⎫⎛⎫≥++++-+++++- ⎪ ⎪⎝⎭⎝⎭112524221||42||22≥-++++=,即有()25,8M a b ≥, 可得(,)M a b 的最小值为258. 故答案为258. 【点睛】本题考查函数的最值求法,注意运用函数取最值的情况,以及绝对值不等式的性质,考查运算能力和推理能力,属于中档题.20.【解析】【分析】先由得再由的定义可知对于任意的时不等式均成立进而得解【详解】由对于任意的恒成立可知即解得下证即为所求当时…故答案为:【点睛】本题主要考查了解绝对值不等式及函数的表达式的应用属于中档题 解析:[0,2]【解析】 【分析】先由()()1002f x f x =≤,得002x ≤≤,再由()()()1n nf x f f x +=的定义可知对于任意的*n N ∈,[]00,2x ∈时不等式均成立,进而得解. 【详解】由对于任意的*n N ∈,()02n f x ≤恒成立,可知()()1002f x f x =≤,即0212x -≤,解得002x ≤≤.下证02x ≤≤即为所求.当[]00,2x ∈时,()[]100,2f x ∈,()()()()[]211210,2f x f f x f x ==-∈,()()()()[]302020 210,2f x f f x f x ==-∈,…,()()()()[]01010 210,2n n n f x f f x f x --==-∈.故答案为:[]0,2. 【点睛】本题主要考查了解绝对值不等式及函数的表达式的应用,属于中档题.三、解答题21.(1)2,(2,)3⎛⎫-∞⋃+∞ ⎪⎝⎭(2)1(,3),2⎡⎫-∞-⋃+∞⎪⎢⎣⎭【分析】(1)直接分类去绝对值,即可求出()2f x >的解集;(2)去绝对值,得出()43,1,,12,34,2,x x f x x x x x -<⎧⎪=≤≤⎨⎪->⎩,画出图象,由于直线(1)y a x =+过定点(1,0)-,结合图象即可得出不等式()(1)f x a x +的解集非空时,a 的取值范围..【详解】解:(1)原不等式等价于1,432x x <⎧⎨->⎩或12,2x x ≤≤⎧⎨>⎩或2,342,x x >⎧⎨->⎩解得不等式()2f x >的解集为2,(2,)3⎛⎫-∞⋃+∞ ⎪⎝⎭.(2)()43,1,,12,34,2,x x f x x x x x -<⎧⎪=≤≤⎨⎪->⎩画出图象,如图所示,其中(1,1)A ,(2,2)B ,直线(1)y a x =+过定点(1,0)-,且绕点(1,0)-旋转时, 由图可得若不等式1()2f x a x ⎛⎫+⎪⎝⎭的解集非空,则3a <-或AC a k ≥, 故实数a 的取值范围为1(,3),2⎡⎫-∞-⋃+∞⎪⎢⎣⎭. 【点睛】本题考查带有绝对值的函数,绝对值不等式的解法,考查数形结合思想和计算能力. 22.(1)7,4⎛⎫+∞ ⎪⎝⎭;(2)()(),01,P =-∞+∞;(3)存在,0a =或1a =或2a =.【分析】(1)分2x >,12x ≤≤,1x <三种情况求解即可;(2)根据三角不等式得,121221x x a x a x a -+-=-+-≥-,由此可得211a ->,从而可求出a 的取值范围;(3)先解不等式.220x x +-<与|212x x -<+,可得()2,3A -∈,当0a =时,符合题意,当0a ≠时,构造函数()2220f x ax x a =+--,则有()()2030f f ⎧-≤⎪⎨≤⎪⎩,从而可求出a 的值【详解】(1)若2x >时,112>,符合题意; 若12x ≤≤时,1122x x -+->,解得74x >,故724x <≤; 若1x <时,112->,无解; 综上,1122x x --->的解是7,4⎛⎫+∞ ⎪⎝⎭; (2)根据三角不等式得,121221x x a x a x a -+-=-+-≥-,所以211a ->,解得1a >或0a <,∴集合()(),01,P =-∞+∞;(3)由220x x +-<可得21x -<<,由212x x -<+可得133x -<<,故()2,3A -∈,若0a =,220x <,解得1010x -<<,符合题意;若0a ≠,设()2220f x ax x a =+--,由于0a >,所以只要()()2030f f ⎧-≤⎪⎨≤⎪⎩即可即422200923200a a a a ⎧++-≤⎪⎨+--≤⎪⎩ 因为a N ∈,可得1a =或2a =; 综上,0a =或1a =或2a =. 【点睛】关键点点睛:此题考查绝对值不等式的解法和不等式恒成立问题,第(3)问解题的关键是构造函数()2220f x ax x a =+--,可得()()2030f f ⎧-≤⎪⎨≤⎪⎩,从而可求出a 的值,考查分类思想和计算能力,属于中档题23.222()px qy px qy +≤+【分析】用作差的方法,因式分解,利用1p q +=,化简可得2)0(pq x y --≤,进而得出结果. 【详解】22222()(1)(1)2()px qy px qy p p x q q y pqxy +-+=-+-+因为1p q +=,所以1,1p q q p -=--=-因此222222()()(2)()+-+=-+-=--px qy px qy pq x y xy py x y 因为,p q 为正数,所以2)0(pq x y --≤因此222()()+≤+px qy px qy ,当且仅当x y =时等号成立 【点睛】本题考查了用作差的方法比较大小,考查了运算求解能力,属于中档题目. 24.(1)17,3⎡⎤-⎢⎥⎣⎦;(2)52a <.【分析】(1)分类讨论,得出使得绝对值不等式成立的不等式组,然后求解x 的范围即可; (2)()2|33|f x a x >--可化为|23||22|2x x a ++->,然后根据绝对值三角不等式可出|23||22|5x x ++-≥,进而可得25a <,最后求出a 的取值范围即可. 【详解】(1)|23||1|3x x +--≤,12313x x x ≥⎧∴⎨+-+≤⎩或3122313x x x ⎧-<<⎪⎨⎪++-≤⎩或322313x x x ⎧≤-⎪⎨⎪--+-≤⎩ 11x x ≥⎧∴⎨≤-⎩或31213x x ⎧-<<⎪⎪⎨⎪≤⎪⎩或327x x ⎧≤-⎪⎨⎪≥-⎩173x ∴-≤≤,即不等式()3f x ≤的解集为17,3⎡⎤-⎢⎥⎣⎦;(2)()2|33|f x a x >--,即|23||1|2|33|x x a x +-->--, 可化简为:|23||22|2x x a ++->,|23||22||23(22)|5x x x x ++-≥+--=,25a ∴<,52a ∴<. 【点睛】本题考查绝对值不等式的解法,考查绝对值三角不等式的应用,考查逻辑思维能力和运算求解能力,属于常考题.25.(1)证明见解析.(2)证明见解析 【分析】(1)根据条件利用基本不等式可得221344a b ab ab+=+,然后解关于ab 的不等式即可; (2)要证3311113()a b a b --,即证221113a ab b ++,然后根据条件得到221113a ab b++成立. 【详解】(1)证明:由2210,344>+=≥+ab a b ab ab(当且仅当224a b =,即2a b ==得“=”).所以2134()ab ab +≥,即24()310ab ab --≤,所以1ab ≤(当且仅当a b ==取得“=”) (2)332222111111111111111133=3a b a b a b a ab b a b a b a ab b ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---=-++---++- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(※),因为0b a >>,所以110->a b. 又221113a ab b ab ++≥,当且仅当a b =时取得“=”,又0b a >>,故221113a ab b ab++>, 又由(1)知1ab ≤,又0b a >>,故11ab >,故2211133a ab b ab++>>,即2211130a ab b ++->, 故(※)式成立,即原不等式成立. 【点睛】本题考查了基本不等式,利用综合法证明不等式和利用分析法证明不等式,考查了转化思想,属于中档题. 26.(1)32c a b =--;证明见解析(2)证明见解析 【分析】(1)求导后,利用(1)2af '=-可得32c a b =--,将其代入到322a c b >>,利用不等式的性质可得334b a -<<-; (2)构造函数213()2(n 2l 1)2g x x x x x =+-+≥,求导得单调性,利用单调性可证不等式. 【详解】(1)由题得2()f x ax bx c '=++ ∵(1)2a f '=-,∴2aa b c ++=-∴32c a b =--, ∵322a c b >>∴3322a a b b >--> ∴334b a -<<- (2)∵12a =-,2b =,32c ∴213()222f x x x '=-+- 令213()2(n 2l 1)2g x x x x x =+-+≥求导可得21(1)()2x g x x x x-'=+-=∴()0g x '≥∴()g x 在区间[)1,+∞上单调递增 ∴()()10g x g ≥=∴()ln x f x '≥成立 【点睛】本题考查了不等式的性质,考查了利用导数证明不等式,属于中档题.。
课题:不等式与不等关系
考纲要求:
①了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
②了解不等式的常见性质.
教学重点:不等式的性质的灵活应用与两实数大小比较的方法.
教材复习
不等式的性质:①对称性:;②传递性:.
③可加性:;④加法性质:
⑤移项法则:⑥可乘性:;
⑦乘法性质:⑧乘方性质:
⑨开方性质:
⑩倒数法则:
主要方法:比较两数大小的一般方法是:作差比较法与作商比较法.
典例分析:
考点一:不等式的性质
问题1.若,,则下列命题:;;
;中能成立的个数是
问题2.已知,,求及的取值范围.
问题3.已知,,用不等式性质证明:.
考点二:比较数(式)的大小
问题4.若,试比较与的大小;
设,,且,试比较与的大小.
考点三:利用不等式表示不等关系
问题5.已知枝郁金香和枝丁香的价格最多元,而枝郁金香和枝丁香的价格不小于元.设郁金香、丁香的单价分别为元、元,则满足上述不等关系的不等式组为
课后作业:
已知,,那么的大小的关系是
已知满足且,则下列不等式中恒成立的是(填序号)①②③④
设,则“”是“”成立的
充分非必要条件必要非充分条件充要条件既不充分也不必要条件(济南练习)若,则下列不等式成立的是
(浙江六校联考)若,则“”是“”的
充分非必要条件必要非充分条件充要条件既不充分也不必要条件(泰安模拟)已知,若,则
走向高考:
(四川文)已知,,,为实数,且>.则“>”是“->-”的充分非必要条件必要非充分条件充要条件既不充分也不必要条件
(安徽文)“”是“且”的
必要不充分条件充分不必要条件充要条件既不充分也不必要条件
(北京)已知满足,且,那么下列选项中不一定成立的是
(上海春)若,则下列不等式成立的是
(江西)若,,则不等式等价于
或或或
(广东文)“”是“”成立的
充分非必要条件必要非充分条件既非充分也非必要条件充要条件
(湖南文)设,,给出下列三个结论:
①>②<③.
其中所有的正确结论的序号是①①②②③①②③(上海春)如果,那么下列不等式成立的是
(北京文)设,且,则。