高考数学高三模拟试卷试题压轴押题小题大做一
- 格式:doc
- 大小:21.98 MB
- 文档页数:161
高考数学高三模拟试卷试题压轴押题调研考试数学统一考试试卷一、填空题:(本大题共14小题,每小题5分,共70分.把每小题的答案填在答题纸相应的位置上)1.已知,1,121i z i z -=+=且12111z z z-=,则=z ▲.(i ) 2.已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则87109a a a a ++=▲.(223+)3.函数x x x f sin cos 3)(+=)22(ππ<<-x 的值域为▲.(]2,1-4.下图是一个算法的流程图,则输出n 的值是▲.(5)5.观察x x 2)(2=',344)(x x =',x x sin )(cos -=',由归纳推理可得:若定义在R 上的函数)(x f 满足)()(x f x f =-,记()g x 为)(x f 的导函数,则)(x g -与()g x 的关系是▲.()(x g -+()g x =0)6.已知α、β表示两个不同的平面,m 是平面α内的一条直线,则“βα⊥”是“β⊥m ”的▲条件.(填“充分不必要”、“必要不充分”、“既不充分也不必要”、“充要”之一)“必要不充分”7.用数字1,2,3作为函数c bx ax y ++=2的系数,则该函数有零点的概率为▲.(31) 8.已知点),(b a M 在由不等式组⎪⎩⎪⎨⎧≤+≥≥200y x y x 所确定的平面区域内,则),(b a b a N +-所在的平面区域的面积为▲.(4)9.给出下列四个命题:①函数)32sin(3)(π-=x x f 的图象关于点)0,6(π-对称;②若1->≥b a ,则bba a +≥+11;③存在实数x ,使0123=++x x ;④设),(11y x P 为圆9:221=+y x O 上任意一点,圆1)()(:222=-+-b y a x O ,当1)()(2121=-+-b y a x 时,两圆相切.其中正确命题的序号是▲.(把你认为正确的都填上)(②③)10.在ABC ∆中,2,4==AC AB ,M 是ABC ∆内一点,且满足02=++MC MB MA ,则BC AM ⋅=▲.(3)11.在直角坐标系中,过双曲线1922=-y x 的左焦点F 作圆122=+y x 的一条切线(切点为T )交双曲线右支于P ,若M 为线段FP 的中点,则MT OM -=▲.(2)12.在斜三角形ABC 中,角C B A ,,所对的边分别为c b a ,,,若1tan tan tan tan =+BCA C ,则=+222c b a ▲.(3) 13.在等差数列{}n a 中,n S 表示其前n 项,若m n S n =,)(n m nm S m ≠=,则m n S +的取值范围是▲.(4,∞+) 14.设函数||1)(x xx f +-=)(R x ∈,区间[])(,b a b a M <=,集合{}M x x f y y N ∈==),(|,则使N M =成立的实数对),(b a 有▲对.(0)天一中学高三调研考试数学试卷答卷一、填空题:本大题共14小题,每小题5分,共70分. 1. 2. 3. 4. 5. 6.7. 8. 9. 10. 11. 12. 13. 14.二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)A 是单位圆与x 轴正半轴的交点,点P 在单位圆上,,),0(,OP OA OQ AOP +=<<=∠πθθ 四边形OAQP 的面积为S⑴求S +⋅的最大值及此时θ的值0θ;⑵设点,),54,53(α=∠-AOB B 在⑴的条件下求)cos(0θα+.16.(本小题满分14分)如图,在四棱锥A —BCDE 中,底面BCDE 是直角梯形, 90=∠BED ,BE ∥CD ,AB=6,BC=5,31=BE CD ,侧面ABE ⊥底面BCDE ,︒=∠90BAE . ⑴求证:平面ADE ⊥平面ABE ;⑵过点D 作面α∥平面ABC ,分别于BE ,AE 交于点F ,G ,求DFG ∆的面积.17.(本小题满分14分)如图所示,一科学考察船从港口O 出发,沿北偏东α角的射线OZ 方向航行,而在离港口a 13(a 为正常数)海里的北偏东β角的A 处有一个供给科考船物资的小岛,其中31tan =α,132cos =β.现指挥部需要紧急征调沿海岸线港口O 正东m 海里的B 处的补给船,速往小岛A 装运物资供给科考船,该船沿BA 方向全速追赶科考船,并在C 处相遇.经测算当两船运行的航向与海岸线OB 围成的三角形OBC 的面积最小时,这种补给最适宜.⑴ 求S 关于m 的函数关系式)(m S ;⑵ 应征调m 为何值处的船只,补给最适宜.EB CD A 第16题图18.(本小题满分16分)如图,已知椭圆12:22=+y x C 的左、右焦点分别为21,F F ,下顶点为A ,点P 是椭圆上任一点,圆M 是以2PF 为直径的圆.⑴当圆M 的面积为8π,求PA 所在的直线方程; ⑵当圆M 与直线1AF 相切时,求圆M 的方程; ⑶求证:圆M 总与某个定圆相切.19.(本小题满分16分) 在数列{}n a 中,121,411,111-=-==+n n n n a b a a a ,其中*∈N n . ⑴求证:数列{}n b 为等差数列;⑵设n b n c 2=,试问数列{}n c 中是否存在三项,它们可以构成等差数列?若存在,求出这三项;若不存在,说明理由.⑶已知当*∈N n 且6≥n 时,mn n m )21()31(<+-,其中n m ,2,1=,求满足等式n b n n n n b n )3()2(43+=++++ 的所有n 的值.20.(本小题满分16分)已知函数1)(+=x ax ϕ,a 为正常数. ⑴若)(ln )(x x x f ϕ+=,且a 29=,求函数)(x f 的单调增区间;⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a 的取值范围.附加题21.已知⊙1O 与⊙2O 的极坐标方程分别为θρθρsin 4,cos 4-==. (1)写出⊙1O 和⊙2O 的圆心的极坐标;(2)求经过⊙1O 和⊙2O 交点的直线的极坐标方程.22.若2011201122102011)21(x a x a x a a x ++++=- (R x ∈),求20112011221222aa a +++ 的值.23.如图所示,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且垂直于底面ABCD ,底面ABCD 是边长为2的菱形,︒=∠60BAD ,M 为PC 上一点,且PA ∥平面BDM . ⑴求证:M 为PC 中点;⑵求平面ABCD 与平面PBC 所成的锐二面角的大小.24.已知抛物线L 的方程为()022>=p py x ,直线x y =截抛物线L 所得弦24=AB . ⑴求p 的值;⑵抛物线L 上是否存在异于点A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线.若存在,求出点C 的坐标;若不存在,请说明理由.AP BCDM第23题图三校联考数学试卷及评分标准填空题答案 :i ; 223+; (]2,1-; 5; )(x g -+()g x =0; 必要不充分;31; 4; ②③; 3; 2; 3; (4,∞+); 0二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)A 是单位圆与x 轴正半轴的交点,点P 在单位圆上,),0(,OP AOP +=<<=∠πθθ四边形OAQP 的面积为S⑴求S OQ OA +⋅的最大值及此时θ的值0θ;⑵设点,),54,53(α=∠-AOB B 在⑴的条件下求)cos(0θα+. 答案:解:⑴由已知)sin ,(cos ),0,1(θθP A (3)+= ,)sin ,cos 1(θθ+=∴又,sin θ=S 1)4sin(21cos sin ++=++=+⋅∴πθθθS OQ OA )0(πθ<<故S +⋅的最大值是12+,此时40πθ=, (8)⑵,),54,53(α=∠-AOB B 54sin ,53cos =-=∴αα……………………………………10 )cos(0θα+=1027)cos (sin 22)4cos(-=+=+ααπα. (14)16.(本小题满分14分)如图,在四棱锥A —BCDE 中,底面BCDE 是直角梯形, 90=∠BED ,BE ∥CD ,AB=6,BC=5,31=BE CD ,侧面ABE ⊥底面BCDE ,︒=∠90BAE . ⑴求证:平面ADE ⊥平面ABE ;⑵过点D 作面α∥平面ABC ,分别于BE ,AE 交于点F ,G ,求DFG ∆的面积.答案:(1)证明:因为侧面ABE ⊥底面BCDE , 侧面ABE∩底面BCDE=BE ,DE ⊂底面BCDE , DE ⊥BE ,所以DE ⊥平面ABE ,所以AB ⊥DE , 又因为AE AB ⊥,所以AB ⊥平面ADE ,所以平面ADE ⊥平面ABE ; (7)(2)因为平面α∥平面ABC ,所以DF ∥BC ,同理FG ∥AB ………………………………………………9 所以四边形BCDF 为平行四边形. 所以BF CD BC DF ===,5,因为31=BE CD ,所以32=EB EF所以432==AB FG (11)由⑴易证:⊥FG 平面ADE ,所以DG FG ⊥,所以3=DG所以DFG ∆的面积6=S . (14)17.(本小题满分14分)如图所示,一科学考察船从港口O 出发,沿北偏东α角的射线OZ 方向航行,而在离港口EB C D A 第16题图E BC D A GFa 13(a 为正常数)海里的北偏东β角的A 处有一个供给科考船物资的小岛,其中31tan =α,132cos =β.现指挥部需要紧急征调沿海岸线港口O 正东m 海里的B 处的补给船,速往小岛A 装运物资供给科考船,该船沿BA 方向全速追赶科考船,并在C 处相遇.经测算当两船运行的航向与海岸线OB 围成的三角形OBC 的面积最小时,这种补给最适宜.⑴ 求S 关于m 的函数关系式)(m S ;⑵ 应征调m 为何值处的船只,补给最适宜.答案:解 ⑴以O 为原点,OB 所在直线为x 轴,建立平面直角坐标系,则直线OZ 方程为x y 3=. …………………………………………………………………2 设点()00,y x A , 则a a a x 313313sin 130=⋅==β,a a a y 213213cos 130=⋅==β,即()a a A 2,3,又()0,m B ,所以直线AB 的方程为()m x ma ay --=32.上面的方程与x y 3=联立得点)736,732(am ama m am C -- (5))37(733||21)(2a m a m am y OB m S C >-=⋅=∴ (8)⑵328)3149492(314)37(949)37()(222a a a a a a m a a m a m S =+≥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-=…………………12 当且仅当)37(949372a m a a m -=-时,即a m 314=时取等号, (14)18.(本小题满分16分)如图,已知椭圆12:22=+y x C 的左、右焦点分别为21,F F ,下顶点为A ,点P 是椭圆上任一点,圆M 是以2PF 为直径的圆.⑴当圆M 的面积为8π,求PA 所在的直线方程;⑵当圆M 与直线1AF 相切时,求圆M 的方程; ⑶求证:圆M 总与某个定圆相切.答案:解 ⑴易得()0,11-F ,()0,12F ,()1,02-A ,设()11,y x P ,则()()()2121212121222212111-=-+-=+-=x x x y x PF ,∴()22222112≤≤--=x x PF , (2)又圆M 的面积为8π,∴()21288-=x ππ,解得11=x , ∴⎪⎪⎭⎫ ⎝⎛22,1P 或⎪⎪⎭⎫ ⎝⎛-22,1, ∴PA 所在的直线方程为1221-⎪⎪⎭⎫ ⎝⎛+=x y 或1221-⎪⎪⎭⎫ ⎝⎛-=x y ;…………………………4 ⑵∵直线1AF 的方程为01=++y x ,且⎪⎭⎫⎝⎛+2,2111y x M 到直线1AF 的距离为111422221221x y x -=+++, 化简得1211--=x y ,…………………………6 联立方程组⎪⎩⎪⎨⎧=+--=1212212111y x x y ,解得01=x 或981-=x . …………………………8 当01=x 时,可得⎪⎭⎫⎝⎛-21,21M , ∴ 圆M 的方程为21212122=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-y x ;………9 当981-=x 时,可得⎪⎭⎫⎝⎛187,181M , ∴ 圆M 的方程为16216918718122=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x ; (10)⑶圆M 始终与以原点为圆心,半径21=r (长半轴)的圆(记作圆O )相切.证明:∵()()121212121422284141441x x x y x OM +=-++=++=, ……………14 又圆M 的半径1224222x MF r -==,∴21r r OM -=, ∴圆M 总与圆O 内切. (16)19.(本小题满分16分)在数列{}n a 中,121,411,111-=-==+n n n n a b a a a ,其中*∈N n . ⑴求证:数列{}n b 为等差数列;⑵设n b n c 2=,试问数列{}n c 中是否存在三项,它们可以构成等差数列?若存在,求出这三项;若不存在,说明理由.⑶已知当*∈N n 且6≥n 时,mn n m )21()31(<+-,其中n m ,2,1=,求满足等式n b n n n n b n )3()2(43+=++++ 的所有n 的值.答案:⑴证明:11211212112112111=----=---=-++n nn n n n a a a a b b ........................2 ∴数列{}n b 为等差数列 (4)⑵解:假设数列{}n c 中存在三项,它们可以够成等差数列;不妨设为第)(,,q r p q r p <<项,由⑴得n b n =,∴n n c 2=, …………………………………………5 ∴q p r 2222+=⋅, ∴p q p r --++=2121…………………………………………7 又p r -+12为偶数,p q -+21为奇数. …………………………………………9 故不存在这样的三项,满足条件. …………………………………………10 ⑶由⑵得等式n b n n n n b n )3()2(43+=++++ 可化为n n n n n n )3()2(43+=++++即1)32()34()33(=+++++++nn n n n n n ∴1)311()311()31(=+-+++--++-nn n n n n n n (12)∵当6≥n 时,mn n m )21()31(<+-,∴,21)311(<+-n n ,)21()321(2<+-n n …,)21()31(nn n n <+-∴1)21(1)21()21(21)311()311()31(2<-=++<+-+++--++-n n n n n n n n n n∴当6≥n 时,n n n n n n )3()2(43+<++++ …………………………………………14 当5,4,3,2,1=n 时,经验算3,2=n 时等号成立∴满足等式n b n n n n b n )3()2(43+=++++ 的所有3,2=n (16)20.(本小题满分16分) 已知函数1)(+=x ax ϕ,a 为正常数.⑴若)(ln )(x x x f ϕ+=,且a 29=,求函数)(x f 的单调增区间; ⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a 的取值范围. 答案:解:⑴222)1(1)2()1(1)(++-+=+-='x x x a x x a x x f∵a 29=,令0)(>'x f 得2>x 或210<<x∴函数)(x f 的单调增区间为),2(),21,0(+∞ (4)⑵证明:当0=a 时x x f ln )(=∴x x f 1)(='∴210021)(x x x x f +==' 又121212121212lnln ln )()(x x x x x x x x x x x f x f k -=--=--=不妨设12x x > , 要比较k 与)(0x f '的大小,即比较1212lnx x x x -与212x x +的大小,又∵12x x >,∴ 即比较12lnx x 与1)1(2)(212122112+-=+-x x x x x x x x 的大小.令)1(1)1(2ln )(≥+--=x x x x x h (8)则0)1()1()1(41)(222≥+-=+-='x x x x x x h ∴)(x h 在[)+∞,1上位增函数.又112>x x ,∴0)1()(12=>h x x h , ∴1)1(2ln 121212+->x x x x x x ,即)(0x f k '>……………………………………………10 ⑶∵1)()(1212-<--x x x g x g , ∴[]0)()(121122<-+-+x x x x g x x g由题意得x x g x F +=)()(在区间(]2,0上是减函数. (12)︒1 当x x ax x F x +++=≤≤1ln )(,21, ∴1)1(1)(2++-='x a x x F 由313)1()1(0)(222+++=+++≥⇒≤'x x x x x x a x F 在[]2,1∈x 恒成立.设=)(x m 3132+++x x x ,[]2,1∈x ,则0312)(2>+-='xx x m∴)(x m 在[]2,1上为增函数,∴227)2(=≥m a (14)︒2 当x x ax x F x +++-=<<1ln )(,10,∴1)1(1)(2++--='x a x x F 由11)1()1(0)(222--+=+++-≥⇒≤'x x x x x x a x F 在)1,0(∈x 恒成立设=)(x t 112--+xx x ,)1,0(∈x 为增函数∴0)1(=≥t a综上:a 的取值范围为227≥a (16)附加题21.已知⊙1O 与⊙2O 的极坐标方程分别为θρθρsin 4,cos 4-==. (1)写出⊙1O 和⊙2O 的圆心的极坐标;(2)求经过⊙1O 和⊙2O 交点的直线的极坐标方程. 答案:解:(1)⊙1O 和⊙2O 的圆心的极坐标分别为)23,2(),0,2(π(2)以极点为原点,极轴为x 轴正半轴建立直角坐标系,在直角坐标系下⊙1O 与⊙2O 的方程分别为04,042222=++=-+y y x x y x ……………6 则经过⊙1O 和⊙2O 交点的直线的方程为x y -= 其极坐标方程为4πθ-=(R ∈ρ). (10)22.若2011201122102011)21(x a x a x a a x ++++=- (R x ∈),求20112011221222aa a +++ 的值. 答案:解:由题意得:2011,2,1,)2(2011=-=r C a r rr , ………………………………………2 ∴201120112010201132011220111201120112011221222C C C C C a a a -++-+-=+++ ,…………………………6 ∵0201120112010201132011220111201102011=-++-+-C C C C C C …………………………8 ∴122220112011221-=+++a a a (10)23.如图所示,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且垂直于底面ABCD ,底面ABCD 是边长为2的菱形,︒=∠60BAD ,M 为PC 上一点,且PA ∥平面BDM . ⑴求证:M 为PC 中点;⑵求平面ABCD 与平面PBC 所成的锐二面角的大小.证明 ⑴连接AC 与BD 交于G ,则平面PAC∩平面BDM=MG , 由PA ∥平面BDM ,可得PA ∥MG , ∵底面ABCD 是菱形,∴G 为AC 中点, ∴MG 为△PAC 中位线,∴M 为PC 中点. (4)⑵取AD 中点O ,连接PO ,BO , ∵△PAD 是正三角形,∴PO ⊥AD , 又∵平面PAD ⊥平面ABCD ,A PB CD M第23题图∴PO ⊥平面ABCD ,∵底面ABCD 是边长为2的菱形,︒=∠60BAD ,△ABD 是正三角形, ∴AD ⊥OB ,∴OA ,OP ,OB 两两垂直,以O 为原点,,分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,如右图所示,则()0,0,1A ,()0,3,1B ,()0,0,1-D ,()3,0,0P , ∴()3,0,1=,()0,3,1-=,∴()()⎪⎪⎭⎫ ⎝⎛=+=+=23,23,02121()3,3,0--=,()0,0,2==,∴023230=+-=⋅BP DM ,0000=++=⋅∴DM ⊥BP ,DM ⊥CB ,∴DM ⊥平面PBC , ∴22,cos >=<DM OP平面ABCD 与平面PBC 所成的锐二面角的大小为4π (10)24.已知抛物线L 的方程为()022>=p py x ,直线x y =截抛物线L 所得弦24=AB . ⑴求p 的值;⑵抛物线L 上是否存在异于点A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线.若存在,求出点C 的坐标;若不存在,请说明理由. 答案: 解:⑴由⎩⎨⎧==pyx x y 22解得)2,2(),0,0(p p B A∴p p p AB 22442422=+==,∴2=p ………………………………………4 ⑵由⑴得)4,4(),0,0(,42B A y x =假设抛物线L 上存在异于点A 、B 的点C )4,0()4,(2≠≠t t t t ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线令圆的圆心为),(b a N ,则由⎩⎨⎧==NC NA NB NA 得⎪⎩⎪⎨⎧-+-=+-+-=+222222222)4()()4()4(t b t a b a b a b a得⎪⎪⎩⎪⎪⎨⎧++=+-=⇒⎪⎩⎪⎨⎧+=+=+83248481244222t t b t t a t t tb a b a …………………………………………6 ∵抛物线L 在点C 处的切线斜率)0(2|≠='==t ty k t x 又该切线与NC 垂直, ∴0412212432=--+⇒-=⋅--t t bt a t t a t b ∴08204128324)84(223322=--⇒=--++⋅++-⋅t t t t t t t t t t (8)∵4,0≠≠t t ,∴2-=t故存在点C 且坐标为(2,1) (10)高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟考试试卷压轴题猜题押题试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(•江苏)根据如图所示的伪代码,可知输出的结果S为7.考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(•江苏)不等式2<4的解集为(﹣1,2).考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(•江苏)设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),利用“累加求和”可得an=.再利用“裂项求和”即可得出.解答:解:∵数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),∴当n≥2时,an=(an﹣an﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴an=.∴=2.∴数列{}的前n项的和Sn===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.点评:本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(ak•ak+1)的值为.考点:数列的求和.专题:等差数列与等比数列;平面向量及应用.分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.解答:解:=+=+++=++=++,∴(ak•ak+1)=+++++++…++ =+0+0=.故答案为:9.点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.考点:余弦定理的应用;二倍角的正弦.专题:解三角形.分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.解答:解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想评:象能力和推理论证能力的应用问题,是基础题目.17.(14分)(•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f (t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.解答:解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)(•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答:解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)(•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.解答:解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)(•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.考点:等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括2124题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修41:几何证明选讲】21.(10分)(•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修42:矩阵与变换】22.(10分)(•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.考点:特征值与特征向量的计算.专题:矩阵和变换.分析:利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.解答:解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修44:坐标系与参数方程】23.(•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答:解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修45:不等式选讲】24.(•江苏)解不等式x+|2x+3|≥2.考点:绝对值不等式的解法.专题:不等式.分析:思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.解答:解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≥﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g (x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤26.(10分)(•江苏)已知集合X={1,2,3},Yn={1,2,3,…,n)(n∈N*),设Sn={(a,b)|a整除b或整除a,a∈X,B∈Yn},令f(n)表示集合Sn所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.考点:数学归纳法.专题:综合题;点列、递归数列与数学归纳法.分析:(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解答:解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,Sk+1在Sk的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.25.(10分)(•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.解答:解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.高考理科数学试卷普通高等学校招生全国统一考试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A=2,3,{|(1)(2)0,}B x x x x=+-<∈Z,则A B=(A){1}(B){12},(C){0123},,,(D){10123}-,,,,(2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C 3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(A B )32(C D )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m mx y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟试卷试题压轴押题期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)cos(π)=()A.B.﹣1C.D.0考点:诱导公式的作用.专题:计算题;三角函数的求值.分析:由于π=1006×2π+π,直接由诱导公式化简即可得出正确选项解答:解:∵π=1006×2π+π∴cos(π)=cosπ=﹣1故选B点评:题考查利用诱导公式求值,解答的关键是熟练记忆诱导公式2.(5分)已知角a的终边经过点P(4,3),则sina+cosa的值是()A.B.C.D.考点:任意角的三角函数的定义.专题:计算题;三角函数的求值.分析:由三角函数的定义可求得sina与cosa,从而可得sina+cosa的值.解答:解:∵知角a的终边经过点P(4,3),∴sina==,cosa=,∴sina+cosa=.故选C.点评:本题考查任意角的三角函数的定义,属于基础题.3.(5分)(•广东)若函数,则f(x)是()A.最小正周期为的奇函数B.最小正周期为y=x的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数考点:二倍角的余弦;余弦函数的奇偶性.分析:本题主要考查三角函数的最小正周期和奇偶性,也涉及到对简单三角变换能力的考查.见到三角函数平方形式,要用二倍角公式降幂,变为可以研究三角函数性质的形式y=Asin(ωx+φ)的形式.解答:解:∵f(x)=,∴y=f(x)最小周期为π的偶函数,故选D点评:研究三角函数的性质,一般需要先利用“降次”、“化一”等技巧进行三角变换.本题解答过程中,先活用倍角公式进行降次,然后化为一个三角函数进行研究,涉及到对三角函数的周期性、奇偶性的考查.考查知识与能力的综合性较强,需要我们具有扎实的基础知识,具备一定的代数变形能力4.(5分)化简=()A.B.0C.D.考点:向量加减混合运算及其几何意义;零向量.专题:计算题.分析:根据向量加法的三角形法则,我们对几个向量进行运算后,即可得到答案.解答:解:∵.故选B点评:本题考查的知识点是向量加减混合运算及其几何意义,及零向量的定义,其中根据三角形法则对已知向量进行处理,是解答本题的关键.5.(5分)(•重庆)=()A.B.C.D.考点:二倍角的余弦.分析:看清本题的结构特点符合平方差公式,化简以后就可以看出是二倍角公式的逆用,最后结果为cos,用特殊角的三角函数得出结果.解答:解:原式==cos=,故选D点评:要深刻理解二倍角公式和两角和差的正弦和余弦公式,从形式和意义上来认识,对公式做到正用、逆用、变形用,本题就是逆用余弦的二倍角公式.6.(5分)(•辽宁)在等差数列{an}中,已知a4+a8=16,则a2+a10=()A.12B.16C.20D.24考点:等差数列的性质.专题:计算题.分析:利用等差数列的性质可得,a2+a10=a4+a8,可求结果解答:解:由等差数列的性质可得,则a2+a10=a4+a8=16,故选B点评:本题主要考查了等差数列的性质的应用,属于基础试题7.(5分)将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是()A.y=cos2x B.y=2cos2x C.D.y=2sin2x考点:函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:利用函数y=Asin(ωx+φ)的图象变换规律及三角函数间的关系式即可得到答案.解答:解:令y=f(x)=sin2x,则f(x+)=sin2(x+)=cos2x,再将f(x+)的图象向上平移1个单位,所得图象的函数解析式是y=cos2x+1=2cos2x,故选B.点评:本题考查函数y=Asin(ωx+φ)的图象变换,考查升幂公式的应用,属于中档题.8.(5分)在△ABC中,tanA是以﹣4为第三项、4为第七项的等差数列的公差,tanB是以为第三项、9为第六项的等比数列的公比,则这个三角形是()A.钝角三角形B.等腰直角三角形C.锐角三角形D.等腰三角形考点:三角形的形状判断.专题:计算题.分析:利用等差及等比数列的性质求出tanA与tanB的值,再利用两角和与差的正切函数公式求出tanC的值,利用正切函数的性质得出A,B及C的范围,即可确定出三角形的形状.解解:根据题意得:tanA=2,tanB=3,答:∴tanC=﹣tan(A+B)=﹣=﹣=,则A,B及C都为锐角,即△ABC为锐角三角形.故选C点评:此题考查了三角形的形状判断,涉及的知识有:诱导公式,两角和与差的正切函数公式,以及正切函数的图象与性质,熟练掌握公式是解本题的关键.9.(5分)(•海南)函数在区间的简图是()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:作图题.分析:将x=π代入到函数解析式中求出函数值,可排除B,D,然后将x=代入到函数解析式中求出函数值,可排除C,进而可得答案.解答:解:,排除B、D,,排除C.故选A.点评:本题主要考查三角函数的图象.对于正弦、余弦函数的图象和性质要熟练掌握,这是高考的必考点.10.(5分)在△ABC中,点P在BC 上,且,点Q 为中点,若=(4,3),=(1,5),则=()A.( 2,7)B.(6,21)C.(2,﹣7)D.(﹣6,21)考点:平面向量的坐标运算.专题:平面向量及应用.分析:由题意可得=,设=(x,y),则==(,).再由=(),把、的坐标代入可得(1,5)=(4+,3+),求得x、y的值,即可求得的坐标.解答:解:由于在△ABC中,点P在BC 上,且,∴=.设=(x,y),则==(,).再由Q为中点,可得=().再由=(4,3),=(1,5),可得(1,5)=(4+,3+),即+2=1,+=5.解得 x=﹣6,y=21,故=(﹣6,21),故选D.点评:本题主要考查两个向量坐标形式的运算,属于基础题.二、填空题:本大题共4小题,每小题5分,满分20分.11.(5分)已知a,b,c三个正数成等比数列,其中,,则b= 1.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:直接由等比中项的概念列式求解b的值.解答:解:由a,b,c三个正数成等比数列,且,,则.故答案为1.点评:本题考查等比数列的基本量之间的关系,若已知等比数列的两项,则等比数列的所有量都可以求出,只要简单数字运算时不出错,问题可解.12.(5分)若x+2y=1,则2x+4y的最小值是2;考点:基本不等式.专题:计算题.分析:由题意知2x+4y=.由此可知2x+4y的最小值是.解答:解:由题意知2x+4y=.∴2x+4y的最小值是2.点评:本题考查不等式的性质和应用,解题时要认真审题,仔细解答.13.(5分)在边长为的正三角形ABC中,设,则a•b+b•c+c•a=﹣3.考平面向量数量积的运算.点:专题:平面向量及应用.分析:错误:a•b+b•c+c•a,应该是由题意可得与的夹角等于,且||=||=,由此求得=﹣1,同理求得==﹣1,从而得到要求式子的值.解答:解:由题意可得与的夹角等于,且||=||=,故有==﹣1.同理求得==﹣1,故=﹣3,故答案为﹣3.点评:本题主要考查两个向量的数量积的定义,注意两个向量的夹角为,而不是,属于中档题.14.(5分)给出下列命题:①存在实数α,使sinα•cosα=1②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α>β,则sinα>sinβ其中正确命题的序号是②③.考点:命题的真假判断与应用.专题:阅读型.分析:对于①,利用二倍角的正弦公式变形,可得sinα•cosα的最大值为;对于②,利用诱导公式化简为y=﹣cosx,该函数是偶函数;对于③,把代入,看y能否取得最值,若能取得最值,命题正确,否则,命题不正确;对于④举反例加以说明.通过以上分析即可得到正确答案.解答:解:由,∴sinα•cosα的最大值为,∴命题①错误;由,而y=﹣cosx是偶函数,∴命题②正确;∵,∴是函数的一条对称轴方程,∴命题③正确;取,,α、β是第一象限的角,且α>β,但sinα<sinβ,∴命题④错误.所以正确的命题是②③.故答案为②③.点评:本题考查了命题的真假判断与应用,考查了三角函数的被角公式、诱导公式及三角函数的性质,考查了举反例法在判断命题真假中的应用,此题是基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤. 15.(12分)已知向量=(1,0),=(2,1).(1)求|+3|;(2)当k为何实数时,k﹣与+3平行,平行时它们是同向还是反向?考点:平行向量与共线向量;向量的模.专题:平面向量及应用.分析:(1)先求出的坐标,再根据向量的模的定义求得|+3|的值.(2)求得 k﹣的坐标,再根据两个向量共线的性质设k﹣=λ(+3),则有(k﹣2,﹣1)=λ(7,3),即,由此求得k的值.解答:解:(1)由于=(1,0)+3(2,1)=(7,3),…..(2分)∴|+3|==.…..(4分)(2)由于k﹣=k(1,0)﹣(2,1)=(k﹣2,﹣1),…..(6分)设k﹣=λ(+3),则(k﹣2,﹣1)=λ(7,3),….(8分)∴,…(10分)解得.….(11分)故时,k﹣与+3反向或平行.…(12分)点评:本小题主要考查两个向量共线的性质,球向量的模,考查向量的坐标运算的能力等,属于基础题.16.(12分)在假期社会实践活动中,小明参观了某博物馆.该博物馆大厅有一幅壁画,刚进入大厅时,他在点A处看这幅壁画顶端点C的仰角为45°,往正前方走4m后,在点B 处看壁画顶端点C的仰角为75°(如图所示).(1)求BC的长;(2)若小明身高为1.70m,求这幅壁画顶端点C离地面的高度.(精确到0.01m,其中≈1.732).考点:正弦定理;两角和与差的正弦函数.专题:解三角形.分析:(1)在△ABC中,由条件求得∠ACB=75°﹣45°=30°.由正弦定理得,将AB=4代入上式,求得BC的值.(2)在△CBD中,先求得,再利用两角和的正弦公式求得sin75°=,可得 DC=2+2,从而求得CE=CD+DE的值.解答:解:(1)在△ABC中,∵∠CAB=45°,∠DBC=75°,∴∠ACB=75°﹣45°=30°…(2分)由正弦定理,得,…(4分)将AB=4代入上式,得(m…(6分)(2)在△CBD中,∵,∴…(8分)因为 sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°=+=,…(9分)则 DC=2+2.…(10分)所以(m)….(11分)答:BC的长为;壁画顶端点C离地面的高度为7.16m.…(12分)点评:本题主要考查正弦定理和余弦定理的应用,两角和的正弦公式,属于中档题.17.(14分)设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知a1=b1=1,b4=8,S10=55.(1)求数列{an}与{bn}的通项公式;(2)求Sn与Tn.考点:数列的求和;等差数列的通项公式;等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,依题意可求得公差为d 与公比为q,从而可求数列{an}与{bn}的通项公式;(2)利用等差数列的求和公式与等比数列的求和公式即可求得Sn与Tn.解答:解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由S10=55,得 10a1+45d=55,….(2分)又a1=1,所以10+45d=55,d=1…(3分)∴an=a1+(n﹣1)d=1+(n﹣1)=n.…(5分)由b4=8,得b1•q3=8,…(6分)又b1=1,所以q3=8,q=2.…(8分)∴bn=b1•2n﹣1=2n﹣1….(10分)(2)Sn===n2+n.…(12分)Tn===2n﹣1.…(14分)点评:本题分别考查等差数列与等比数列的通项公式,考查等差数列的求和公式与等比数列的求和公式,属于中档题.18.(14分)已知函数.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间;(3)求f(x)在上的最值及取最值时x的值.考点:二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的图像与性质.分析:(1)利用三角函数的恒等变换化简函数f(x)的解析式为,由此求得它的周期.(2)根据函数f(x)的解析式为,由,求得x的范围,可得函数的增区间.(3)根据x的范围,以及正弦函数的定义域和值域求得函数的最值.解答:解:(1)因为=…(1分)==,…(3分)所以f(x)的最小正周期.…..(4分)(2)因为,由,…(6分)得,…..(7分)所以f(x)的单调增区间是.…(8分)(3)因为,所以.…..…(9分)所以.…..…..….(10分)所以.…..…(12分)当,即x=0时,f(x)取得最小值1.…..…(13分)当,即时,f(x)取得最大值4.…..…(14分)点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性和求法,正弦函数的单调性、定义域和值域,属于中档题.19.(14分)在平面直角坐标系中,点P(x,y)满足约束条件:.(1)在给定的坐标系中画出满足约束条件的可行域(用阴影表示,并注明边界的交点);(2)设,求u的取值范围;(3)已知两点M(2,1),O(0,0),求的最大值.考点:简单线性规划;二元一次不等式(组)与平面区域.专题:不等式的解法及应用.分析:(1)先根据直线定出区域的边界,不等式确定区域,由约束条件画出可行域;(2),利用u的几何意义求最值,只需求出何时可行域内的点与点(﹣4,﹣7)连线的斜率的最值,从而得到 u的取值范围.(3)先根据向量的数量积公式得出=2x+y,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y经过点A时,z取到最大值,从而得到答案即可.解答:解:(1)由得,∴A(4,1)…(1分)由得,∴B(﹣1,﹣6)…(2分)由得,∴C(﹣3,2)…(3分)画出可行域N,如右下图所示…(4分)(2).…(5分)当直线DP与直线DB重合时,倾斜角最小且为锐角,此时;…(6分)当直线DP与直线DC重合时,倾斜角最大且为锐角,此时kDC=9;…..(7分)所以的取值范围为.…(8分)(3),…..(10分)设z=2x+y,则y=﹣2x+z,…..…(11分)z表示直线y=﹣2x+z在y轴上的截距,…(12分)当直线y=﹣2x+z经过点A时,z取到最大值,…(13分)这时z的最大值为zmax=2×4+1=9.….(14分)点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.20.(14分)已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn﹣1=2Sn+1(n≥2,n∈N*).(Ⅰ)求证:数列{an}为等差数列,并求{an}的通项公式;(Ⅱ)设,求数列{bn}的前n项和Tn;(Ⅲ)设(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,有cn+1>cn恒成立.考点:数列与不等式的综合;等差数列的通项公式;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)利用数列递推式,变形可得(Sn+1﹣Sn)﹣(Sn﹣Sn﹣1)=1,由此可得结论;(Ⅱ)利用错位相减法,可求数列{bn}的前n项和Tn;(Ⅲ)要使cn+1>cn恒成立,则恒成立,分类讨论,分离参数,可得结论.解答:(Ⅰ)证明:由已知,(Sn+1﹣Sn)﹣(Sn﹣Sn﹣1)=1(n≥2,n∈N*),即an+1﹣an=1(n≥2,n∈N*),且a2﹣a1=1.∴数列{an}是以a1=2为首项,公差为1的等差数列,∴an=n+1.…(4分)(Ⅱ)解:由(Ⅰ)知,设它的前n项和为Tn∴Tn=2×21+3×22+…+n×2n﹣1+(n+1)×2n①∴2Tn=2×23+3×23+…+(n+1)×2n+1②①﹣②可得:﹣Tn=2×21+22+…+2n﹣(n+1)×2n+1=﹣n×2n+1∴Tn=n×2n+1;…(8分)(Ⅲ)解:∵an=n+1,∴,要使cn+1>cn恒成立,则恒成立∴3•4n﹣3λ•(﹣1)n﹣12n+1>0恒成立,∴(﹣1)n﹣1λ<2n﹣1恒成立.(ⅰ)当n为奇数时,即λ<2n﹣1恒成立,当且仅当n=1时,2n﹣1有最小值为1,∴λ<1.(ⅱ)当n为偶数时,即λ>﹣2n﹣1恒成立,当且仅当n=2时,﹣2n﹣1有最大值﹣2,∴λ>﹣2.即﹣2<λ<1,又λ为非零整数,则λ=﹣1.综上所述,存在λ=﹣1,使得对任意n∈N*,都有cn+1>cn.…(14分)点评:本题考查数列递推式,考查数列的通项与求和,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟试卷试题压轴押题全国高中数学联赛模拟试题(一)第一试一、 选择题:(每小题6分,共36分)1、方程6×(5a2+b2)=5c2满足c≤20的正整数解(a,b,c)的个数是(A )1(B )3(C )4(D )52、函数12-=x x y (x ∈R ,x≠1)的递增区间是(A )x≥2 (B )x≤0或x≥2 (C )x≤0(D )x≤21-或x≥23、过定点P(2,1)作直线l 分别交x 轴正向和y 轴正向于A 、B ,使△AOB (O 为原点)的面积最小,则l 的方程为 (A )x +y -3=0 (B )x +3y -5=0 (C )2x +y -5=0 (D )x +2y -4=04、若方程cos2x +3sin2x =a +1在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的实数解x ,则参数a 的取值范围是(A )0≤a <1 (B )-3≤a <1 (C )a <1 (D )0<a <1 5、数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项是(A )42 (B )45 (C )48 (D )516、在1,2,3,4,5的排列a1,a2,a3,a4,a5中,满足条件a1<a2,a2>a3,a3<a4,a4>a5的排列的个数是 (A )8 (B )10 (C )14 (D )16二、 填空题:(每小题9分,共54分)1、[x]表示不大于x 的最大整数,则方程21×[x2+x]=19x +99的实数解x 是. 2、设a1=1,an+1=2an +n2,则通项公式an =. 3、数799被2550除所得的余数是.4、在△ABC 中,∠A =3π,sinB =135,则cosC =.5、设k 、是实数,使得关于x 的方程x2-(2k +1)x +k2-1=0的两个根为sin 和cos ,则的取值范围是. 6、数()n2245+(n ∈N )的个位数字是.三、 (20分)已知x 、y 、z 都是非负实数,且x +y +z =1.求证:x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)≥0,并确定等号成立的条件.四、 (20分)(1) 求出所有的实数a ,使得关于x 的方程x2+(a +)x +a =0的两根皆为整数. (2) 试求出所有的实数a ,使得关于x 的方程x3+(-a2+2a +2)x -2a2-2a =0有三个整数根.五、 (20分)试求正数r 的最大值,使得点集T ={(x,y)|x 、y ∈R ,且x2+(y -7)2≤r2}一定被包含于另一个点集S ={(x,y)|x 、y ∈R ,且对任何∈R ,都有cos2+xcos +y≥0}之中.第二试一、(50分) 设a 、b 、c ∈R ,b≠ac ,a≠-c ,z 是复数,且z2-(a -c)z -b =0.求证:()12=-+-+bac zc a b a 的充分必要条件是(a -c)2+4b≤0.二、(50分)如图,在△ABC 中,∠ABC 和∠ACB 均是锐角,D 是BC 边上的内点,且AD 平分∠BAC ,过点D 分别向两条直线AB 、AC 作垂线DP 、DQ ,其垂足是P 、Q ,两条直线CP 与BQ 相交与点K .求证: (1) AK ⊥BC ;(2) BCS AQ AP AK ABC△2<=<,其中ABC S △表示△ABC 的面积.三、(50分)给定一个正整数n ,设n 个实数a1,a2,…,an 满足下列n 个方程:∑==+=+ni i n j j j i a 1),,3,2,1(124. 确定和式∑=+=ni ii a S 112的值(写成关于n 的最简式子). 参考答案第一试题号 1 2 3 4 5 6 答案 CCDABD二、填空题: ACBD QK PA BCDMNA 1D 1B 1C 1图11、38181-或381587;2、7×2n1-n2-2n -3;3、343;4、261235-;5、{|=2n +或2n -2π,n ∈Z} ;6、1(n 为偶数);7(n 为奇数). 三、证略,等号成立的条件是31===z y x 或⎪⎩⎪⎨⎧===021z y x 或⎪⎩⎪⎨⎧===021y z x 或⎪⎩⎪⎨⎧===021z z y .四、(1)a 的可能取值有0,-1336,-1936,-1960,-2664,-4000,-2040;(2)a的可能取值有-3,11,-1,9. 五、rmax =24.第二试一、证略(提示:直接解出()2i42⋅---±-=b c a c a z ,通过变形即得充分性成立,然后利用反证法证明必要性).二、证略(提示:用同一法,作出BC 边上的高AR ,利用塞瓦定理证明AR 、BQ 、CP 三线共点,从而AK ⊥BC ;记AR 与PQ 交于点T ,则BCS ABC△2=AR >AT >AQ =AP ,对于AK <AP ,可证∠APK <∠AKP ). 三、()11212++-=n S .全国高中数学联赛模拟试题(二)(命题人:江厚利 审题人:李潜)第一试一、选择题(每小题6分,共36分)1、已知集合()⎭⎬⎫⎩⎨⎧+=--=123,a x y y x A ,()()(){}1511,2=-+-=y a x a y x B .若∅=B A ,则a 的所有取值是(A )-1,1 (B )-1,21(C )±1,2(D )±1,-4,25 2、如图1,已知正方体ABCD -A1B1C1D1,点M 、N 分别在AB1、BC1上,且AM =BN .那么, ①AA1⊥MN ;②A1C1∥MN ;③MN ∥平面A1B1C1D1; ④MN 与A1C1异面.以上4个结论中,不正确的结论的个数为 (A )1 (B )2 (C )3(D )43、用Sn 与an 分别表示区间[)1,0内不含数字9的n 位小数的和与个数.则nnn S a ∞→lim的值为 (A )43(B )45 (C )47(D )49 4、首位数字是1,且恰有两个数字相同的四位数共有(A )216个(B )252个(C )324个(D )432个5、对一切实数x ,所有的二次函数()c bx ax x f ++=2(a <b )的值均为非负实数.则c b a ab ++-的最大值是(A )31 (B )21(C )3(D )26、双曲线12222=-by a x 的一个焦点为F1,顶点为A1、A2,P 是双曲线上任意一点.则分别以线段PF1、A1A2为直径的两圆一定(A )相交(B )相切(C )相离(D )以上情况均有可能二、填空题(每小题9分,共54分)1、已知复数i 21+=z ,()1121i 2i2z z z -++=.若△ABC 的3个内角∠A 、∠B 、∠C依次成等差数列,且2icos2cos 2CA u +=,则2z u +的取值范围是. 2、点P(a,b)在第一象限内,过点P 作一直线l ,分别交x 、y 轴的正半轴于A 、B 两点.那么,PA2+PB2取最小值时,直线l 的斜率为.3、若△ABC 是钝角三角形,则arccos(sinA)+arccos(sinB)+arccos(sinC)的取值范围是.4、在正四面体ABCD 中,点M 、P 分别是AD 、CD 的中点,点N 、Q 分别是△BCD 、△ABC 的中心.则直线MN 于PQ 的夹角的余弦值为.5、在()122++n x 的展开式中,x 的幂指数是整数的各项系数之和是.6、集合A 、B 、C (不必两两相异)的并集A ∪B ∪C ={1,2,3,…,n}.则满足条件的三OBCAD N M 图2元有序集合组(A,B,C)的个数是.三、(20分)设p >0,当p 变化时,Cp :y2=2px 为一族抛物线,直线l 过原点且交Cp 于原点和点Ap .又M 为x 轴上异于原点的任意点,直线MAp 交Cp 于点Ap 和Bp .求证:所有的点Bp 在同一条直线上. 四、(20分)对于公差为d(d≠0)的等差数列{an},求证:数列中不同两项之和仍是这一数列中的一项的充要条件是存在整数m≥-1,使a1=md . 五、(20分)求最大的正数,使得对任意实数a 、b ,均有()222b a b a +λ≤()322b ab a ++.第二试一、(50分)如图2,⊙O 切△ABC 的边AB 于点D ,切边AC 于点C ,M 是边BC 上一点,AM 交CD 于点N .求证:M 是BC 中点的充要条件是ON ⊥BC .二、(50分)求出能表示为()abcc b a n 2++=(a 、b 、c ∈Z+)的所有正整数n .三、(50分)在一个()()1212-⨯-nn(n≥2)的方格表的每个方格内填入1或-1,如果任意一格内的数都等于与它有公共边的那些方格内所填数的乘积,则称这种填法是“成功”的.求“成功”填法的总数.参考答案 第一试题号 1 2 3 4 5 6 答案 DBDDAB二、填空题:1、⎪⎪⎭⎫⎢⎣⎡25,22;2、aab -;3、⎪⎭⎫⎝⎛23,2ππ;4、181;5、21312++n ;6、7n .三、证略. 四、证略.五、427max =λ. 第二试一、证略;二、1,2,3,4,5,6,8,9. 三、1种(每空填1).全国高中数学联赛模拟试题(三)(命题人:吴伟朝)第一试一、选择题:(每小题6分,共36分)1、若集合S ={n|n 是整数,且22n +2整除n +},则S 为(A )空集∅ (B )单元集 (C )二元集 (D )无穷集2、若多项式x2-x +1能除尽另一个多项式x3+x2+ax +b (a 、b 皆为常数).则a+b 等于 (A )0 (B )-1 (C )1 (D )23、设a 是整数,关于x 的方程x2+(a -3)x +a2=0的两个实根为x1、x2,且tan(arctan x1+arctan x2)也是整数.则这样的a 的个数是 (A )0 (B )1 (C )2 (D )44、设一个四面体的体积为V1,且它的各条棱的中点构成一个凸多面体,其体积为V2.则12V V 为 (A )21(B )32 (C )常数,但不等于21和32 (D )不确定,其值与四面体的具体形状有关5、在十进制中,若一个至少有两位数字的正整数除了最左边的数字外,其余各个数字都小于其左边的数字时,则称它为递降正整数.所有这样的递降正整数的个数为(A )1001 (B )1010 (C )1011 (D )1013 6、在正方体的8个顶点中,能构成一个直角三角形的3个顶点的直角三点组的个数是(A )36 (B )37 (C )48 (D )49二、填空题:(每小题9分,共54分)1、若直线xcos +ysin =cos2-sin2(0<<)与圆x2+y2=41有公共点,则的取值范围是.2、在平面直角坐标系xOy 中,一个圆经过(0,2)、(3,1),且与x 轴相切.则此圆的半径等于.3、若常数a 使得关于x 的方程lg(x2+20x)-lg(8x -6a -3)=0有惟一解.则a 的取值范围是.4、f(x)=82x +xcosx +cos(2x)(x ∈R)的最小值是.5、若k 是一个正整数,且2k 整除则k 的最大值为.6、设ABCD 为凸四边形,AB =7,BC =4,CD =5,DA =6,其面积S 的取值范围是(a,b] .则a +b =.三、(20分)设椭圆的左右焦点分别为F1、F2,左准线为l ,点P 在椭圆上.作PQ ⊥l ,Q 为垂足.试问:对于什么样的椭圆,才存在这样的点P ,使得PQF1F2为平行四边形?说明理由(答案用关于离心率e 的等式或不等式来表示). 四、(20分)设a0=1,a1=2,an+1=2an1+n ,n =1,2,3,….试求出an 的表达式(答案用有限个关于n 的式子相加的形式表示,且项数与n 无关). 五、(20分)试求出所有的有序整数对(a,b),使得关于x 的方程x4+(2b -a2)x2-2ax +b2-1=0的各个根均是整数.第二试一、(50分)点P 在△ABC 内,且∠BAP =∠CAP ,连结BP 并延长交AC 于点Q .设∠BAC=60°,且PQPC BP 111=+. 求证:P 是△ABC 的内心.二、(50分)设正数a 、b 满足2b a >且使得关于x 的不等式1-x ≥b x a -+1总有实数解.试求f(a,b)=a2-3ab +b2的取值范围. 三、(50分)试求出正整数k 的最小可能值,使得下述命题成立:对于任意的k 个整数a1,a2,…,ak (允许相等),必定存在相应的k 的整数x1,x2,…,xk (也允许相等),且|xi|≤2(i =1,2,…,k),|x1|+|x2|+…+|xk|≠0,使得整除x1a1+x2a2+…+xkak .参考答案 第一试二、填空题:11、⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡65,323,6ππππ ;2、5615±;3、⎪⎭⎫⎝⎛--21,6163;4、-1;5、;6、2102.三、⎪⎭⎫ ⎝⎛∈1,21e .四、a2n =2n+2-2n -3;a2n+1=3×2n+1-2n -4.五、(a,b)=(2l―1,l2―l―1)(∀l ∈Z)第二试 一、证略(提示:将条件变形为PQPCPB PA PA PC =+⋅1,然后应用正弦定理,进行三角变换,得∠BPC =120°,利用同一法即证);二、(-∞,-1). 三、kmin =7.全国高中数学联赛模拟试题(四)(命题人:刘康宁)第一试一、 选择题(每小题6分,共36分):1、函数()aa x x a x f -+-=22是奇函数的充要条件是(A )-1≤a <0或0<a≤1 (B )a≤-1或a≥1 (C )a >0 (D )a <02、已知三点A(-2,1)、B(-3,-2)、C(-1,-3)和动直线l :y =kx .当点A 、B 、C 到直线l 的距离的平方和最小时,下列结论中,正确的是 (A )点A 在直线l 上 (B )点B 在直线l 上 (C )点C 在直线l 上 (C )点A 、B 、C 均不在直线l 上 3、如图,已知正方体ABCDA1B1C1D1,过顶点A1在空间作直线l ,使l 与直线AC 和BC1所成的角都等于60°.这样的直线l 可以做(A )4条 (B )3条(C )2条 (D )1条4、整数的100200C=n 两位质因数的最大值是(A )61(B )67(C )83(D )975、若正整数a 使得函数()ax x x f y 213-+==的最大值也是整数,则这个最大值等于 (A )3 (B )4 (C )7 (D )86、在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,12,14,16,17,….则在这个红色子数列中,由1开始的第个数是 (A )3844 (B )3943 (C )3945 (D )4006二、 填空题(每小题9分,共54分):1、在复平面上,Rt △ABC 的顶点A 、B 、C 分别对应于复数z +1、2z +1、(z +1)2,A 为直角顶点,且|z|=2.设集合M ={m|zm ∈R ,m ∈N+},P ={x|x =m 21,m ∈M}.则集合P 所有元素之和等于.2、函数f(x)=|sinx|+sin42x +|cosx|的最大值与最小值之差等于.3、关于x 的不等式的解集是一些区间的并集,且这些区间的长度的和小于4,则实数a 的取值范围是.4、银行计划将某项资金的40%给项目M 投资一年,其余的60%给项目N .预计项目M 有可能获得19%到24%的年利润,N 有可能获得29%到34%的年利润.年终银行必须回笼资金,同时按一定的回扣率支付给储户.为使银行的年利润不少于给M 、N 总投资的10%而不大于总投资的15%,则给储户的回扣率的最小值是.5、已知点(a,b)在曲线arcsinx =arccosy 上运动,且椭圆ax2+by2=1在圆x2+y2=32的外部(包括二者相切的情形).那么,arcsinb 的取值范围是.6、同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a ,球的半径为R .设两个正三棱锥的侧面与底面所成的角分别为、,则tan(+)的值是.三、 (20分)△ABC 的三边长a 、b 、c (a≤b≤c )同时满足下列三个条件 (i )a 、b 、c 均为整数;(ii )a 、b 、c 依次成等比数列; (iii )a 与c 中至少有一个等于100.求出(a,b,c)的所有可能的解.四、 (20分)在三棱锥DABC 中,AD =a ,BD =b ,AB =CD =c ,且∠DAB +∠BAC +∠DAC =180°,∠DBA +∠ABC +∠DBC =180°.求异面直线AD 与BC 所成的角.五、 (20分)设正系数一元二次方程ax2+bx +c =0有实根.证明:(1) max{a,b,c}≥94(a +b +c);(2) min{a,b,c}≤41(a +b +c).第二试一、(50分)已知△ABC 的外角∠EAC 平分线与△ABC 的外接圆交于D ,以CD 为直径的圆分别交BC 、CA 于点P 、Q .求证:线段PQ 平分△ABC 的周长.二、(50分)已知x0=1,x1=3,xn+1=6xn -xn1(n ∈N+). 求证:数列{xn}中无完全平方数.三、(50分)有名运动员,号码依次为1,2,3,…,.从中选出若干名运动员参加仪仗队,但要使剩下的运动员中没有一个人的号码数等于另外两人的号码数的乘积.那么被选为仪仗队的运动员至少能有多少人?给出你的选取方案,并简述理由.参考答案 第一试二、填空题: 1、71;2、2;3、[1,3];4、10%;5、⎥⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡3,44,6ππππ ;6、aR334-. 三、可能解为(100,100,100),(100,110,121),(100,120,144),(100,130,169),(100,140,196),(100,150,225),(100,160,256),(49,70,100),(64,80,100),(81,90,100),(100,100,100). 四、222arccosac b -.五(1)证略(提示:令a +b +c =t ,分b≥t 94和b <t 94讨论); (2)证略(提示:分a≤t 41和a >t 41讨论); 第二试一、证略;二、证略(提示:易由特征根法得xn =()()⎥⎦⎤⎢⎣⎡-++nn22322321,设yn =()()⎥⎦⎤⎢⎣⎡--+nn223223221,于是1222=-n n y x,原结论等价于方程x4-2y2=1无整数解,由数论只是可证).三、43.全国高中数学联赛模拟试题(五)(命题人:罗增儒)第一试一、 选择题:(每小题6分,共36分)1、空间中n (n≥3)个平面,其中任意三个平面无公垂面.那么,下面四个结论(1) 没有任何两个平面互相平行;(2) 没有任何三个平面相交于一条直线; (3) 平面间的任意两条交线都不平行;(4) 平面间的每一条交线均与n2个平面相交. 其中,正确的个数为(A )1 (B )2 (C )3 (D )42、若函数y=f(x)在[a,b]上的一段图像可以近似地看作直线段,则当c ∈(a,b)时,f(c)的近似值可表示为(A )()()2b f a f +(B )⎪⎭⎫⎝⎛+2b a f (C )()()()()()a b b f a c a f c b --+-(D )()()()[]a f b f ab ac a f ----3、设a >b >c ,a+b+c=1,且a2+b2+c2=1,则(A )a+b >1 (B )a+b=1 (C )a+b <1 (D )不能确定,与a 、b 的具体取值有关4、设椭圆12222=+b y a x 的离心率23=e ,已知点⎪⎭⎫⎝⎛23,0P 到椭圆上的点的最远距离是47,则短半轴之长b= (A )161 (B )81(C )41(D )21 5、S={1,2,…,},A 是S 的三元子集,满足:A 中的所有元素可以组成等差数列.那么,这样的三元子集A 的个数是(A )32003C(B )2100221001C C + (C )2100221001A A +(D )32003A6、长方体ABCDA1B1C1D1,AC1为体对角线.现以A 为球心,AB 、AD 、AA1、AC1为半径作四个同心球,其体积依次为V1、V2、V3、V4,则有(A )V4<V1+V2+V3 (B )V4=V1+V2+V3(C )V4>V1+V2+V3 (D )不能确定,与长方体的棱长有关二、 填空题:(每小题9分,共54分)1、已知k ==βαβαcos cos sin sin 33,则k 的取值范围为. 2、等差数列{an}的首项a1=8,且存在惟一的k 使得点(k,ak)在圆x2+y2=102上,则这样的等差数列共有个.3、在四面体PABC 中,PA=PB=a ,PC=AB=BC=CA=b ,且a <b ,则ba的取值范围为.4、动点A 对应的复数为z=4(cos +isin ),定点B 对应的复数为2,点C 为线段AB 的中点,过点C 作AB 的垂线交OA 与D ,则D 所在的轨迹方程为.5、∑=200313k k被8所除得的余数为.6、圆周上有100个等分点,以这些点为顶点组成的钝角三角形的个数为.三、 (20分)已知抛物线y2=2px(p >0)的一条长为l 的弦AB .求AB 中点M 到y 轴的最短距离,并求出此时点M 的坐标.四、 (20分)单位正方体ABCDA1B1C1D1中,正方形ABCD 的中心为点M ,正方形A1B1C1D1的中心为点N ,连AN 、B1M . (1)求证:AN 、B1M 为异面直线; (2)求出AN 与B1M 的夹角.五、 (20分)对正实数a 、b 、c .求证:cabc b ac b a bc a 888222+++++≥9. 第二试一、 (50分)设ABCD 是面积为2的长方形,P 为边CD 上的一点,Q 为△PAB 的内切圆与边AB 的切点.乘积PA·PB 的值随着长方形ABCD 及点P 的变化而变化,当PA·PB 取最小值时, (1)证明:AB≥2BC ; (2)求AQ·BQ 的值.二、 (50分)给定由正整数组成的数列⎩⎨⎧+===++nn n a a a a a 12212,1(n≥1). (1)求证:数列相邻项组成的无穷个整点(a1,a2),(a3,a4),…,(a2k1,a2k),…均在曲线x2+xyy2+1=0上.(2)若设f(x)=xn+xn1anxan1,g(x)=x2x1,证明:g(x)整除f(x).三、 (50分)我们称A1,A2,…,An 为集合A 的一个n 分划,如果 (1)A A A A n = 21; (2)∅≠j i A A ,1≤i <j≤n .求最小正整数m ,使得对A ={1,2,…,m}的任意一个13分划A1,A2,…,A13,一定存在某个集合Ai(1≤i≤13),在Ai 中有两个元素a 、b 满足b <a≤89b . 参考答案 第一试二、填空题:1、⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--1,2121,1;2、17;3、⎪⎭⎫ ⎝⎛-1,32;4、()134122=+-y x ;5、4;6、117600.三、⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--≥-⎪⎪⎭⎫⎝⎛<<2222,2,2,20,8,20,8p pl p l M p l p l p l M p l pl .四、(1)证略;(2)32arccos .五、证略.第二试一、(1)证略(提示:用面积法,得PA·PB 最小值为2,此时∠APB =90°);(2)AQ·BQ=1.二、证略(提示:用数学归纳法).三、m=117.全国高中数学联赛模拟试题(六) (命题人:秦永 苟春鹏)第一试一、 选择题:(每小题6分,共36分)1、在复平面上,非零复数z1、z2在以i 对应的点为圆心,1为半径的圆上,21z z ⋅的实部为零,argz1=6π,则z2= (A )i 2323+-(B )i 2323- (C )i 2323+-(D )i 2323- 2、已知函数()⎪⎭⎫ ⎝⎛+-=21log 2x ax x f a 在[1,2]上恒正,则实数a 的取值范围是(A )⎪⎭⎫⎝⎛85,21(B )⎪⎭⎫⎝⎛+∞,23 (C )⎪⎭⎫ ⎝⎛+∞⎪⎭⎫⎝⎛,2385,21(D )⎪⎭⎫⎝⎛+∞,21 3、已知双曲线过点M(2,4),N(4,4),它的一个焦点为F1(1,0),则另一个焦点F2的轨迹方程是(A )()()116425122=-+-y x (y≠0)或x=1(y≠0)(B )()()125416122=-+-y x (x≠0)或x=1(y≠0)(C )()()116125422=-+-y x (y≠0)或y=1(x≠0)(D )()()125116422=-+-y x (x≠0)或y=1(x≠0)4、已知正实数a 、b 满足a+b=1,则b a M 2112+++=的整数部分是(A )1 (B )2 (C )3 (D )45、一条笔直的大街宽是40米,一条人行道穿过这条大街,并与大街成某一角度,人行道的宽度是15米,长度是50米,则人行道间的距离是 (A )9米 (B )10米 (C )12米 (D )15米 6、一条铁路原有m 个车站,为适应客运需要新增加n 个车站(n >1),则客运车票增加了58种(注:从甲站到乙站需要两种不同的车票),那么原有车站的个数是 (A )12 (B )13 (C )14 (D )15二、 填空题:(每小题6分,共36分)1、长方形ABCD 的长AB 是宽BC 的32倍,把它折成无底的正三棱柱,使AD 与BC 重合折痕线EF 、GH 分别交原对角线AC 于M 、N ,则折后截面AMN 与底面AFH 所成的角是.2、在△ABC 中,a 、b 、c 是角A 、B 、C 的对边,且满足a2+b2=2c2,则角C 的最大值是.3、从盛满a 升(a >1)纯酒精的容器里倒出1升,然后填满水,再倒出1升混合溶液后又用水填满,如此继续下去.则第n 次操作后溶液的浓度是.4、已知函数f(x)与g(x)的定义域均为非负实数集,对任意x≥0,规定f(x)*g(x)=min{f(x),g(x)}.若f(x)=3x ,g(x)=52+x ,则f(x)*g(x)的最大值为.5、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有不同的取法.6、若实数a >0,则满足a5a3+a=2的a 值属于区间:①()63,0;②()663,2;③()+∞,36;④()32,0.其中正确的是.三、 (20分)求证:经过正方体中心的任一截面的面积不小于正方体的一个侧面的面积四、 (20分)直线Ax+Bx+C=0(A·B·C≠0)与椭圆b2x2+a2y2=a2b2相交于P 、Q 两点,O为坐标原点,且OP ⊥OQ .求证:2222222BA b a C b a ++=. 五、 (20分)某新建商场建有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品的总金额)为60万元,根据经验,各部商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润如表2.商场将计划日营业额分配给三个经营部,同时适当安排各部的营业员人数,若商场预计每日的总利润为c (万元)且满足19≤c≤19.7,又已知商场分配给经营部的日营业额均为正整数万元,问这个商场怎样分配日营业额给三个部?各部分别安排多少名售货员?表1 各部每1万元营业额所需人数表部门 人数 百货部 5 服装部 4家电部2部门 利润 百货部 0.3万元 服装部 0.5万元 家电部0.2万元第二试一、 (50分)矩形ABCD 的边AD=·AB ,以AB 为直径在矩形之外作半圆,在半圆上任取不同于A 、B 的一点P ,连PC 、PD 交AB 于E 、F ,若AE2+BF2=AB2,试求正实数的值.二、 (50分)若ai ∈R+(i=1,2,…,n ),∑==ni iaS 1,且2≤n ∈N .求证:∑=-nk kk a S a 13≥∑=-n k k a n 1211. 三、 (50分)无穷数列{cn}可由如下法则定义:cn+1=|1|12cn||,而0≤c1≤1.(1)证明:仅当c1是有理数时,数列自某一项开始成为周期数列.(2)存在多少个不同的c1值,使得数列自某项之后以T 为周期(对于每个T=2,3,…)?参考答案 第一试题号 1 2 3 4 5 6 答案 ACABCC二、填空题:1、6π; 2、3π;3、na ⎪⎭⎫ ⎝⎛-11;4、132-;5、2500;6、③④. 三、证略. 四、证略.五、8,23,29或10,20,30(万元),对应40,92,58或50,80,60(人).第二试一、22=λ; 二、证略.三、 (1)证略. (2)无穷个.全国高中数学联赛模拟试题(七)(选题人:李潜)第一试一、选择题:(每小题6分,共36分)7、 a 、b 是异面直线,直线c 与a 所成的角等于c 与b 所成的角,则这样的直线c 有(A )1条 (B )2条 (C )3条 (D )无数条8、 已知f(x)是R 上的奇函数,g(x)是R 上的偶函数,若f(x)g(x)=x2+2x+3,则f(x)+g(x)=(A )x2+2x3 (B )x2+2x3 (C )x22x+3 (D )x22x+39、已知△ABC ,O 为△ABC 内一点,∠AOB=∠BOC=∠COA=32π,则使AB+BC+CA≥m(AO+BO+CO)成立的m 的最大值是 (A )2(B )35(C )3(D )23 10、 设x=0.820.5,y=sin1,z=log37则x 、y 、z 的大小关系是(A )x <y <z (B )y <z <x (C )z <x <y (D )z <y <x11、整数⎥⎦⎤⎢⎣⎡+31010951995的末尾两位数字是(A )10 (B )01 (C )00 (D )20 12、 设(a,b)表示两自然数a 、b 的最大公约数.设(a,b)=1,则(a2+b2,a3+b3)为(A )1 (B )2 (C )1或2 (D )可能大于2二、填空题:(每小题9分,共54分)1、若f(x)=x10+2x92x82x7+x6+3x2+6x+1,则f(21)=.2、设F1、F2是双曲线x2y2=4的两个焦点,P 是双曲线上任意一点,从F1引∠F1PF2平分线的垂线,垂足为M ,则点M 的轨迹方程是. 3、给定数列{xn},x1=1,且nn n x x x -+=+3131,则x1999x601=.4、正方体ABCDA1B1C1D1的棱长为1,E 是CD 中点,F 是BB1中点,则四面体AD1EF 的体积是.5、在坐标平面上,由条件⎪⎩⎪⎨⎧+-≤--≥321x y x y 所限定的平面区域的面积是.6、12个朋友每周聚餐一次,每周他们分成三组,每组4人,不同组坐不同的桌子.若要求这些朋友中任意两个人至少有一次同坐一张桌子,则至少需要周.三、(20分)已知椭圆12222=+by a x 过定点A(1,0),且焦点在x 轴上,椭圆与曲线|y|=x 的交点为B 、C .现有以A 为焦点,过B 、C 且开口向左的抛物线,抛物线的顶点坐标M(m,0).当椭圆的离心率e 满足1322<<e ,求实数m 的取值范围. 四、(20分)a 、b 、c 均为实数,a≠b ,b≠c ,c≠a .证明:23≤ac c b b a b a c a c b c b a -+-+--++-++-+222<2. 五、(20分) 已知f(x)=ax4+bx3+cx2+dx ,满足 (i )a 、b 、c 、d 均大于0;(ii )对于任一个x ∈{2,1,0,1,2},f(x)为整数; (iii )f(1)=1,f(5)=70.试说明,对于每个整数x ,f(x)是否为整数.第二试一、(50分)设K 为△ABC 的内心,点C1、B1分别为边AB 、AC 的中点,直线AC 与C1K 交于点B2,直线AB 于B1K 交于点C2.若△AB2C2于△ABC 的面积相等,试求∠CAB .二、(50分)设5sini 5cosππ+=w ,f(x)=(xw)(xw3)(xw7)(xw9).求证:f(x)为一整系数多项式,且f(x)不能分解为两个至少为一次的整系数多项式之积.三、(50分)在圆上有21个点.求在以这些点为端点组成的所有的弧中,不超过120°的弧的条数的最小值.参考答案 第一试二、填空题:1、4;2、x2+y2=4;3、0;4、245;5、16;6、5.三、⎪⎪⎭⎫⎝⎛+423,1. 四、证略.五、是.第二试一、60°; 二、证略. 三、100.全国高中数学联赛模拟试题(八)(选题人:李潜)第一试一、选择题:(每小题6分,共36分)1、设logab 是一个整数,且2log log 1log a b bb a a>>,给出下列四个结论 ①21a b b>>;②logab+logba=0; ③0<a <b <1;④ab1=0. 其中正确结论的个数是 (A )1 (B )2(C )3(D )42、若△ABC 的三边长a 、b 、c 满足⎩⎨⎧=+-+=---03220222c b a c b a a ,则它的最大内角度数是(A )150°(B )120°(C )90°(D )60°3、定长为l (a b l 22>)的线段AB 的两端点都在双曲线12222=-by a x (a >0,b >0),则AB 中点M 的横坐标的最小值为 (A )222ba al + (B )222ba l a ++(C )()2222ba a l a +- (D )()2222ba a l a ++4、在复平面上,曲线z4+z=1与圆|z|=1的交点个数为(A )0 (B )1 (C )2(D )35、设E={(x,y)|0≤x≤2,0≤y≤2}、F={(x,y)|x≤10,y≥2,y≤x4}是直角坐标平面上的两个点集,则集合G=()()⎭⎬⎫⎩⎨⎧∈∈⎪⎭⎫⎝⎛++F y x E y x y y x x 22112121,,,2,2所组成的图形面积是(A )6 (B )2 (C )6.5 (D )76、正方形纸片ABCD ,沿对角线AC 对折,使D 在面ABC 外,这时DB 与面ABC所成的角一定不等于 (A )30° (B )45° (C )60° (D )90°二、填空题:(每小题9分,共54分)1、已知24πα=,则αααααααααααcos sin cos 2cos sin 2cos 3cos sin 3cos 4cos sin +++的值等于.2、2004321132112111+++++++++++=. 3、在Rt △ABC 中,AB =AC ,以C 为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB 内,且椭圆过A 、B 点,则这个椭圆的离心率等于.4、从{1,2,3,…,20}中选出三个数,使得没有两个数相邻,有种不同的选法.5、设a 、b 均为正数,且存在复数z 满足⎪⎩⎪⎨⎧≤+=⋅+1iz b a z z z ,则ab 的最大值等于.6、使不等式137158<+<k n n 对惟一的一个整数k 成立的最大正整数n 为.三、(20分)已知实数x 、y 满足x2+y2≤5.求f(x,y)=3|x+y|+|4y+9|+|7y3x18|的最大值与最小值.四、(20分)经过点M(2,1)作抛物线y2=x 的四条弦PiQi(i=1,2,3,4),且P1、P2、P3、P4四点的纵坐标依次成等差数列.求证:44332211MQ M P MQ M P MQ MP MQ M P ->-. 五、(20分)n 为正整数,r >0为实数.证明:方程xn+1+rxnrn+1=0没有模为r 的复数根.第二试一、(50分)设C(I)是以△ABC 的内心I 为圆心的一个圆,点D 、E 、F 分别是从I 出发垂直于边BC 、CA 和AB 的直线C(I)的交点.求证:AD 、BE 和CF 三线共点.二、(50分) 非负实数x 、y 、z 满足x2+y2+z2=1.求证:1≤xyzzx y yz x +++++111≤2.三、(50分)对由n 个A ,n 个B 和n 个C 排成的行,在其下面重新定义一行(比上面一行少一个字母),若其头上的两个字母不同,则在该位置写上第三个字母;若相同,则写上该字母.对新得到的行重复上面的操作,直到变为一个字母为止.下面给出了n=2的一个例子. A C B C B A B A A A C C A A B B A C C B A求所有的正整数n ,使得对任意的初始排列,经上述操作后,所得的大三角形的三个顶点上的字母要么全相同,要么两两不同.参考答案 第一试二、填空题:1、33; 2、20054008; 3、36-; 4、816;5、81;6、112.三、最大值5627+,最小值10327-. 四、证略. 五、证略.第二试一、证略; 二、证略. 三、 n=1.全国高中数学联赛模拟试题(九)(命题人:葛军)第一试一、选择题:(每小题6分,共36分)1、已知n 、s 是整数.若不论n 是什么整数,方程x28nx+7s=0没有整数解,则所有这样的数s 的集合是 (A )奇数集 (B )所有形如6k+1的数集 (C )偶数集 (D )所有形如4k+3的数集2、某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是(A )16966 (B )16975 (C )16984(D )170093、非常数数列{ai}满足02121=+-++i i i i a a a a ,且11-+≠i i a a ,i=0,1,2,…,n .对于给定的自然数n ,a1=an+1=1,则∑-=1n i ia等于(A )2(B )1(C )1(D )04、已知、是方程ax2+bx+c=0(a 、b 、c 为实数)的两根,且是虚数,βα2是实数,则∑=⎪⎪⎭⎫⎝⎛59851k kβα的值是(A )1 (B )2 (C )0(D )3i5、已知a+b+c=abc ,()()()()()()abb a ac c a bc c b A 222222111111--+--+--=,则A的值是 (A )3(B )3(C )4(D )46、对xi ∈{1,2,…,n},i=1,2,…,n ,有()211+=∑=n n x ni i ,x1x2…xn=n !,使x1,x2,…,xn ,一定是1,2,…,n 的一个排列的最大数n 是 (A )4 (B )6 (C )8 (D )9二、填空题:(每小题9分,共54分)1、设点P 是凸多边形A1A2…An 内一点,点P 到直线A1A2的距离为h1,到直线A2A3的距离为h2,…,到直线An1An 的距离为hn1,到直线AnA1的距离为hn .若存在点P 使nn h a h a h a +++ 2211(ai=AiAi+1,i=1,2,…,n1,an=AnA1)取得最小值,则此凸多边形一定符合条件.2、已知a 为自然数,存在一个以a 为首项系数的二次整数系数的多项式,它有两个小于1的不同正根.那么,a 的最小值是.3、已知()2cos 22sin 2,22++++=θθθa a a a a F ,a 、∈R ,a≠0.那么,对于任意的a 、,F(a,)的最大值和最小值分别是.4、已知t >0,关于x 的方程为22=-+x t x ,则这个方程有相异实根的个数情况是.5、已知集合{1,2,3,…,3n1,3n},可以分为n 个互不相交的三元组{x,y,z},其中x+y=3z ,则满足上述要求的两个最小的正整数n 是.6、任给一个自然数k ,一定存在整数n ,使得xn+x+1被xk+x+1整除,则这样的有序实数对(n,k)是(对于给定的k ).三、(20分)过正方体的某条对角线的截面面积为S ,试求最小最大S S 之值.四、(20分)数列{an}定义如下:a1=3,an=13-n a (n≥2).试求an (n≥2)的末位数.五、(20分) 已知a 、b 、c ∈R+,且a+b+c=1.证明:2713≤a2+b2+c2+4abc <1. 第二试一、(50分)已知△ABC 中,内心为I ,外接圆为⊙O ,点B 关于⊙O 的对径点为K ,在AB 的延长线上取点N ,CB 的延长线上取M ,使得MC=NA=s ,s 为△ABC 的半周长.证明:IK ⊥MN .二、(50分)M 是平面上所有点(x,y)的集合,其中x 、y 均是整数,且1≤x≤12,1≤y≤13.证明:不少于49个点的M 的每一个子集,必包含一个矩形的4个顶点,且此矩形的边平行于坐标轴.三、(50分)实系数多项式f(x)=x3+ax2+bx+c 满足b <0,ab=9c .试判别此多项式是否有三个不同的实根,说明理由.参考答案 第一试二、填空题: 1、该凸多边形存在内切圆; 2、5;3、32+,32-;4、9;5、5,8;6、(k,k)或(3m+2,2)(m ∈N+). 三、332. 四、7. 五、证略.第二试一、证略;二、证略. 三、 有.全国高中数学联赛模拟试题(十)(命题人:杨建忠 审题人:李潜)第一试一、选择题:(每小题6分,共36分)1、设集合M={2,0,1},N={1,2,3,4,5},映射f :M→N 使对任意的x ∈M ,都有x+f(x)+xf(x)是奇数,则这样的映射f 的个数是 (A )45 (B )27 (C )15 (D )112、已知sin2=a ,cos2=b ,0<<4π,给出⎪⎭⎫ ⎝⎛+4tan πθ值的五个答案:①a b-1; ②b a-1;③ab+1; ④ba+1; ⑤11-++-b a b a . 其中正确的是:(A )①②⑤ (B )②③④ (C )①④⑤ (D )③④⑤3、若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是 (A )64 (B )66 (C )68 (D )704、递增数列1,3,4,9,10,12,13,…,由一些正整数组成,它们或者是3的幂,或者是若干个3的幂之和,则此数列的第100项为 (A )729 (B )972 (C )243 (D )9815、14951C C C C +++++m n n n n (其中⎥⎦⎤⎢⎣⎡-=41n m ,[x]表示不超过x 的最大整数)的值为 (A )4cos2πn n(B )4sin2πn n(C )⎪⎭⎫ ⎝⎛+-4cos 22211πn nn (D )⎪⎭⎫ ⎝⎛+-4sin 22211πn nn 6、一个五位的自然数abcde 称为“凸”数,当且仅当它满足a <b <c ,c >d >e (如12430,13531等),则在所有的五位数中“凸”数的个数是(A )8568 (B )2142 (C )2139(D )1134二、填空题:(每小题9分,共54分)1、过椭圆12322=+y x 上任意一点P ,作椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ=PH (≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是.2、已知异面直线a 、b 所成的角为60°,过空间一点P 作与a 、b 都成角(0<<90°)的直线l ,则这样的直线l 的条数是f()=.3、不等式()92211422+<+-x xx 的解集为.4、设复数z 满足条件|zi|=1,且z≠0,z≠2i ,又复数使得i2i 2-⋅-z zωω为实数,则复数2的辐角主值的取值范围是.5、设a1,a2,…,a 均为正实数,且21212121200221=++++++a a a ,则a1a2…a 的最小值是.6、在一个由十进制数字组成的数码中,如果它含有偶数个数字8,则称它为“优选”数码(如12883,787480889等),否则称它为“非优选”数码(如2348756,958288等),则长度不超过n (n 为自然数)的所有“优选”数码的个数之和为.三、(20分)已知数列{an}是首项为2,公比为21的等比数列,且前n 项和为Sn .(1) 用Sn 表示Sn+1; (2) 是否存在自然数c 和k ,使得cS cS k k --+1>2成立. 四、(20分)设异面直线a 、b 成60°角,它们的公垂线段为EF ,且|EF|=2,线段AB 的长为4,两端点A 、B 分别在a 、b 上移动.求线段AB 中点P 的轨迹方程.五、(20分)已知定义在R+上的函数f(x)满足(i )对于任意a 、b ∈R+,有f(ab)=f(a)+f(b); (ii )当x >1时,f(x)<0; (iii )f(3)=1.现有两个集合A 、B ,其中集合A={(p,q)|f(p2+1)f(5q)2>0,p 、q ∈R+},集合B={(p,q)|f(q p )+21=0,p 、q ∈R+}.试问是否存在p 、q ,使∅≠B A ,说明理由.第二试一、(50分)如图,AM 、AN 是⊙O 的切线,M 、N 是切点,L 是劣弧MN 上异于M 、N 的点,过点A 平行于MN 的直线分别交ML 、NL 于点Q 、P .若POQ O S S △⊙32π=,求证:∠POQ=60°.二、(50分)已知数列a1=20,a2=30,an+2=3an+1an (n≥1).求所有的正整数n ,使得1+5anan+1是完全平方数.三、(50分)设M 为坐标平面上坐标为(p·,7p·)的点,其中p 为素数.求满足下列条件的直角三角形的个数:(1) 三角形的三个顶点都是整点,而且M 是直角顶点; (2) 三角形的内心是坐标原点.参考答案 第一试二、填空题:1、⎪⎪⎭⎫⎢⎣⎡1,33; 2、()⎪⎪⎪⎩⎪⎪⎪⎨⎧︒<<︒︒=︒<<︒︒=︒<<︒=900,460,36030,230,1300,0ααααααf ;3、⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡-845,00,21 ;4、⎪⎭⎫⎢⎣⎡-ππ,34arctan;5、4002;6、⎪⎪⎭⎫⎝⎛-+++63142789102111n n . 三、(1)2211+=+n n S S ;(2)不存在.四、1922=+y x . 五、不存在.第二试PQ。
高考数学高三模拟试卷试题压轴押题一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B ⋂=( )A .{1,0}-B .{0,1}C .{2,1,0,1}--D .{1,0,1,2}-【答案】D【考点定位】集合的基本运算.【名师点睛】本题考查集合的概念和运算,本题属于基础题,注意观察的仔细.2.在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
在这个问题中,5000名居民的阅读时间的全体是( )A.总体B.个体C.样本的容量D.从总体中抽取的一个样本【答案】A【考点定位】统计基本概念.【名师点睛】总体是所考察对象的某一数值指标的全体,而不是所考察对象的全体;个体为构成总体的元素,因此构成总体的每一个数值指标都为个体;样本是总体的一部分,因此样本中所含个体的数量不能超过总体的数量,样本中个体的来源为总体的个体.3.为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度【答案】A【考点定位】三角函数图象的变换. 【名师点睛】本题考查三角函数图象的变换,解答本题的关键,是明确平移的方向和单位数,这取决于x 加或减的数据.本题属于基础题,是教科书例题的简单改造,易错点在于平移的方向记混.4.某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)A 、3B 、2C 3、1【答案】D【考点定位】三角函数图象的变换.【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.5.若0a b >>,0c d <<,则一定有( )A .a b d c >B .a b d c <C .a b c d >D . a b c d< 【答案】B【考点定位】不等式的基本性质.【名师点睛】不等式的基本性质:同向同正可乘性00a b ac bd c d >>⎧⇒>⎨>>⎩,可推:00a b a b c d d c>>⎧⇒>⎨>>⎩. 6.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为( )A .0B .1C .2D .3【答案】C【考点定位】程序框图与线性规划. 【名师点睛】7.已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( )A 、d ac =B 、a cd =C 、c ad =D 、d a c =+【答案】B【考点定位】指数运算与对数运算. 【名师点睛】解题的关键是求得已知001x y x y ≥⎧⎪≥⎨⎪+≤⎩,求2S x y =+的最大值,接下来就线性规划问题了,利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的范围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.8.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60m ,则河流的宽度BC 等于( )A .31)mB .21)mC .31)mD .30(31)m【答案】 C.【考点定位】解三角形.【名师点睛】在三角形中,已知两角一边时可以使用正弦定理解三角形.9.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A 、[5,25]B、[10,25]C 、[10,45]D 、[25,45]【答案】B【考点定位】1、直线与圆;2、三角代换.【名师点睛】||||PA PB +在几何意义上表示P 点到A 与B 的距离之和,解题的关键是找P 点的轨迹和轨迹方程;也可以使用代数方法,首先表示出||||PA PB +,这样就转化为函数求最值问题了.10.已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A .2B .3C .1728D .10 【答案】B 112938y y =+≥. 【考点定位】1、抛物线;2、三角形的面积;3、重要不等式.【名师点睛】在圆锥曲线的问题中,我们通常使用设而不求的办法,此题中,我们设出1122(,),(,)A x y B x y 两点坐标,由2OA OB ⋅=,得122y y =-,接下来表示出ABO ∆与AFO ∆面积之和,利用基本不等式即可求得最小值,利用基本不等式时,要注意“一正,二定,三相等”.第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所示的答题区域内作答。
高考数学高三模拟试卷试题压轴押题高三年级第一次调研考试(总分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上. 1.已知集合{}{}4,2,0,2,4,|13=--=-<<P Q x x ,则PQ = ▲ .2.若复数1234,12(z i z i i =+=+是虚数单位),则12-z z = ▲ . 3.命题:,sin 2x R x ∀∈<的否定是 ▲ .4.某单位有职工100人,其中不到35岁的有45人,35岁到49岁的有25人,50岁及以上的有30人.现在用分层抽样的方法抽取20人进行问卷调查,则35岁到49岁的应抽取 ▲ 人.5.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 ▲. 6.运行如图所示的程序框图,则输出的结果S= ▲ . 7.函数23cos(2)22sin 4π=--y x x 的最小正周期为 ▲ . 8.观察下列几个三角恒等式:①tan10tan 20tan 20tan 60tan 60tan101++=; ②tan 5tan100tan100tan(15)+-tan(15)tan 51+-=; ③tan13tan35tan35tan 42tan 42tan131++=.一般地,若tan ,tan ,tan αβγ都有意义,你从这三个恒等式中猜想得到的一个结论为 ▲ .9.已知点(,)P a b 关于直线l 的对称点为(1,1)'+-P b a ,则圆22:+C x y 620--=x y 关于直线l 对称的圆'C 的方程为 ▲ .10.设,x y 满足约束条件1210,0≤+⎧⎪≥-⎨⎪≥≥⎩y x y x x y ,若目标函数()0,0z abx y a b =+>>的最大值为35,则a b +的最小值为 ▲ .11.已知平面,,αβγ,直线,l m 满足:,,,αγγαγβ⊥==⊥m l l m ,那么①m β⊥;②l α⊥;③βγ⊥;④αβ⊥.可由上述条件可推出的结论有 ▲ (请将你认为正确的结论的序号都填上).12.在ABC ∆中,60ACB ∠=,sin :sin 8:5A B =,则以,A B 为焦点且过点C 的椭圆的离开始 开始 S ←1,k ←1 开始 k ←k+1 开始 S ←S+2k 输出S 结束是 否第6题k>4?心率为 ▲ .13.已知{n a }是公差不为0的等差数列,{n b } 是等比数列,其中1122432,1,,2a b a b a b ====,且存在常数α、β,使得n a =log n b αβ+对每一个正整数n都成立,则βα= ▲ . 14.已知函数2342011()12342011=+-+-+⋅⋅⋅+x x x x f x x ,2342011()12342011=-+-+-⋅⋅⋅-x x x x g x x ,设()(3)(3)=+⋅-F x f x g x ,且函数()F x 的零点均在区间[,](,,)<∈a b a b a b Z 内,则-b a 的最小值为 ▲ .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.(本小题满分14分)如图,O 为坐标原点,点,,A B C 均在O 上,点A 34(,)55,点B 在第二象限,点C (1,0).(Ⅰ)设COA θ∠=,求sin 2θ的值;(Ⅱ)若AOB ∆为等边三角形,求点B 的坐标. 16.(本小题满分14分)在直三棱柱111C B A ABC -中,,900=∠ABC E 、F 分别为11A C 、11B C 的中点,D 为棱1CC 上任一点. (Ⅰ)求证:直线EF ∥平面ABD ; (Ⅱ)求证:平面ABD ⊥平面11BCC B .17.(本小题满分16分)已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线n 交l于点A ,交M 于另一点B ,且2AO OB ==. (Ⅰ)求M 和抛物线C 的方程;(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅的最小值;(Ⅲ)过l 上的动点Q 向M 作切线,切点为,S T ,求证:直线ST 恒 过一个定点,并求该定点的坐标.18.(本小题满分14分)因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放(14≤≤a a ,且)∈a R 个单位的药剂,它在水中释放的浓度y (克/升)随着时间x (天)变化的函数关系式近似为()y a f x =⋅,其中161(04)8()15(410)2⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩x xf x x x .若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经O x yCAB第15题C ABCDEF A 1 B 1第16题O l xy AB F ·M第17题验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用. (Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a 个单位的药剂,要使接下来的4天中能够持续有效治污,试求a 的最小值(精确到0.1,参考数据:2取1.4).19.(本小题满分16分)已知数列{}n a 满足12,a =前n 项和为n S ,11()2()n n npa n n a a n n ++-⎧=⎨--⎩为奇数为偶数.(Ⅰ)若数列{}n b 满足221(1)n n n b a a n +=+≥,试求数列{}n b 前n 项和n T ;(Ⅱ)若数列{}n c 满足2n n c a =,试判断{}n c 是否为等比数列,并说明理由; (Ⅲ)当12p =时,问是否存在*n N ∈,使得212(10)1n n S c +-=,若存在,求出所有的n 的值;若不存在,请说明理由.20.(本小题满分16分)已知函数2()|ln 1|f x x a x =+-,()||22ln 2,0g x x x a a =-+->. (Ⅰ)当1a =时,求函数()f x 在区间[1,]e 上的最大值;(Ⅱ)若3(),[1,)2f x a x ≥∈+∞恒成立,求a 的取值范围; (Ⅲ)对任意1[1,)x ∈+∞,总存在惟一的2[2,)x ∈+∞,使得12()()f xg x =成立,求a 的取值范围.数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题] 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.A.(选修4—1:几何证明选讲)如图,AB 是⊙O 的直径,,C F 是⊙O 上的两点,⊥OC AB ,过点F 作⊙O 的切线FD 交AB 的延长线于点D .连结CF 交AB 于点E .求证:2DE DB DA =⋅.B .(选修4—2:矩阵与变换)求矩阵2112⎡⎤⎢⎥⎣⎦的特征值及对应的特征向量. C .(选修4—4:坐标系与参数方程)已知曲线C 的极坐标方程是2sin ρθ=,直线l 的参数方程是32,545x t y t ⎧=-+⎪⎨⎪=⎩(t 为参数). (Ⅰ)将曲线C 的极坐标方程化为直角坐标方程;(Ⅱ)设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值. D.(选修4—5:不等式选讲)已知0m a b >∈R ,,,求证:()22211a mba mb mm++≤++.[必做题] 第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内. 22.(本小题满分10分)O AEBDF C第21A 题设,m n N ∈,()(12)(1)m nf x x x =+++. (Ⅰ)当m n==时,记220110122011()f x a a x a x a x =+++⋅⋅⋅+,求0122011a a a a -+-⋅⋅⋅-;(Ⅱ)若()f x 展开式中x 的系数是20,则当m 、n 变化时,试求2x 系数的最小值. 23.(本小题满分10分)有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第(1,2,3)n n =关时,需要抛掷n 次骰子,当n 次骰子面朝下的点数之和大于2n 时,则算闯此关成功,并且继续闯关,否则停止闯关. 每次抛掷骰子相互独立. (Ⅰ)求仅闯过第一关的概率;(Ⅱ)记成功闯过的关数为ξ,求ξ的分布列和期望.盐城市/度高三年级第一次调研考试数学参考答案 一、填空题:本大题共14小题,每小题5分,计70分.1.{}0,22.22+i3.,sin 2∃∈≥x R x4.55.346.617.π8.90,tan tan tan tan tan tan 1αβγαββγγα++=++=当时 9.22(2)(2)10-+-=x y 10.811.②④ 12.71313.4 14.9二、解答题:本大题共6小题,计90分. 15.解:(Ⅰ)因为34cos ,sin 55θθ==,所以24sin 22sin cos 25θθθ==………………………………6分 (Ⅱ)因为AOB ∆为等边三角形,所以60AOC ∠=,所以cos cos(60)∠=∠+BOC AOC343-=………………………………………………………………………………………………10分同理,433sin 10BOC +∠=,故点A的坐标为343433(,)-+………………………………14分 16.(Ⅰ)证明:因为E 、F 分别为11A C 、11B C 的中点,所以11////EF A B AB ………………………4分 而,EF ABD AB ABD⊄⊂面面,所以直线EF∥平面ABD ………………………………………7分(Ⅱ)因为三棱柱111C B A ABC -为直三棱柱,所以1AB BB ⊥,又AB BC ⊥,而1BB ⊂面11BCC B ,BC ⊂面11BCC B ,且1BB BC B =,所以AB ⊥面11BCC B ………… 11分又AB ABD ⊂面,所以平面ABD⊥平面11BCC B …………………………………………………14分17.解:(Ⅰ)因为1cos602122p OA =⋅=⨯=,即2p =,所以抛物线C 的方程为24y x =……… 2分设M 的半径为r ,则122cos 60OB r =⋅=,所以M 的方程为22(2)4x y -+=……………… 5分(Ⅱ)设(,)(0)P x y x ≥,则(2,)(1,)PM PF x y x y ⋅=----=222322x x y x x -++=++……8分所以当0x =时,PM PF ⋅有最小值为2 ……………………………………………………………10分(Ⅲ)以点Q 这圆心,QS 为半径作Q ,则线段ST 即为Q 与M 的公共弦………………… 11分设点(1,)Q t -,则22245QS QM t =-=+,所以Q 的方程为222(1)()5x y t t ++-=+ (1)3分从而直线QS 的方程为320x ty --=(*)………………………………………………………………14分因为230x y ⎧=⎪⎨⎪=⎩一定是方程(*)的解,所以直线QS 恒过一个定点,且该定点坐标为2(,0)3……………16分 18.解:(Ⅰ)因为4a =,所以644(04)8202(410)x y xx x ⎧-≤≤⎪=-⎨⎪-<≤⎩…………………………………………………1分 则当04x ≤≤时,由64448x-≥-,解得0x ≥,所以此时04x ≤≤……………………………………3分当410x <≤时,由2024x -≥,解得8x ≤,所以此时48x <≤………………………………………5分综合,得08x ≤≤,若一次投放4个单位的制剂,则有效治污时间可达8天………………………… 6分 (Ⅱ)当610x ≤≤时,1162(5)(1)28(6)y x a x =⨯-+---……………………………………………9分 =161014a x a x -+--=16(14)414ax a x-+---,因为14[4,8]x -∈,而14a ≤≤,所以[4,8],故当且仅当14x -=时,y 有最小值为4a - (12)分令44a -≥,解得244a -≤≤,所以a的最小值为24 1.6-≈………………14分19.解:(Ⅰ)据题意得2214n n n b a a n +=+=-,所以{}n b 成等差数列,故222n T n n =--……………4分(Ⅱ)当12p =时,数列{}n c 成等比数列;当12p ≠时,数列{}n c 不为等比数列……………………5分理由如下:因为122212n n n c a pa n +++==+2(4)2n p a n n =--+42n pc pn n =--+, 所以12(12)n n n c n p p c c +-=-+,故当12p =时,数列{}n c 是首项为1,公比为12-等比数列; 当12p ≠时,数列{}n c 不成等比数列…………………………………………………………………9分 (Ⅲ)当12p =时,121()2n n n a c -==-,121214()2n n n n a b a n -+=-=---………………………………10分因为21112...n n S a b b b +=++++=2222n n --+(1n ≥) (1)2分212(10)1n n S c +-=,244164n n n ∴++=,设2()44416x f x x x =---(2)x ≥, 则()()4ln 484x g x f x x '==--,2()(ln 4)480x g x '∴=->(2)x ≥,且(2)(2)0g f '=>,()f x ∴在[2,)+∞递增,且(30f =),(1)0f ≠,∴仅存在惟一的3n =使得212(10)1n n S c +-=成立……………………………………………………16分20.解:(Ⅰ)当1a =,[1,]x e ∈时2()ln 1f x x x =-+,1()2(1)1f x x f x''=-≥=, 所以()f x 在[1,]e 递增,所以2max ()()f x f e e ==………………………………………………………4分(Ⅱ)①当e x ≥时,a x a x x f -+=ln )(2,x a x x f +='2)(,0>a ,0)(>∴x f 恒成立,)(x f ∴在),[+∞e 上增函数,故当ex =时,2min )(e e f y ==…………………………………………5分②当e x <≤1时,2()ln =-+f x x a x a ,)2)(2(22)(a x a x x x a x x f -+=-=', (i )当,12≤a即20≤<a 时,)(x f '在),1(e x ∈时为正数,所以)(x f 在区间),1[e 上为增函数,故当1=x 时,a y +=1min ,且此时)()1(e f f <2=e ………………………………………………………7分(ii)当e a <<21,即222e a <<时,)(x f '在)2,1(a x ∈时为负数,在间),2(e a x ∈ 时为正数,所以)(x f 在区间)2,1[a 上为减函数,在],2(e a上为增函数,故当2ax =时,2ln 223min a a a y -=,且此时)()2(e f af <2=e ……………………………………………………………………………………8分 (iii)当e a≥2,即 22e a ≥时,)(x f '在),1(e x ∈时为负数,所以)(x f 在区间[1,e]上为减函数,故当e x =时,2min)(e e f y ==………………………………………………………………………………9分 综上所述,函数)(x f y =的最小值为⎪⎩⎪⎨⎧>≤<-≤<+=222min 2,22,2ln 22320,1e a e e a aa a a a y ……………………………10分所以当312a a +≥时,得02a <≤; 当33ln 2222a a a a -≥(222a e <<)时,无解;当232e a ≥(22a e ≥)时,得23a e ≤不成立. 综上,所求a 的取值范围是02a <≤…………………………………………11分(Ⅲ)①当02a <≤时,()g x 在[2,)+∞单调递增,由(2622ln 21g a a =--≤+),得52ln 2233a -≤≤………………………………………………………………………………………12分 ②当122a <≤时,()g x 在[2,)+∞先减后增,由3(2222ln 2ln 222=--<-)a a a g a , 得ln 22ln 20222a a a+--<, 设()ln 22ln 2()2ah t t t t t =+--=,()2ln 0(12)h t t t '=+><<,所以()h t 单调递增且(2)0h =,所以()0h t <恒成立得24a <<……………………………………14分③当222a e <<时,()f x 在[2,]2a 递增,在[,]2a a 递减,在[,)a +∞递增,所以由()2a g 3ln 222a a a<-, 得23ln 22ln 204222a a a a -++-<,设2()3ln 22ln 2m t t t t t =-++-, 则2()22ln 0((2,)m t t t t e '=-+>∈,所以()m t 递增,且(2)0m =, 所以()0m t >恒成立,无解.④当22a e >时,()f x 在[2,]2a 递增,在[,]2a a 递减,在[,)a +∞递增,y a 2a x所以由()2ag e <得2222ln 204a e -+-<无解. 综上,所求a 的取值范围是52[ln 2,4)33a ∈-………………………16分数学附加题部分21.A.证明:连结OF,因为DF 切⊙O 于F ,所以∠OFD=90°,所以∠OFC+∠CFD=90°.因为OC=OF ,所以∠OCF=∠OFC,又因为CO ⊥AB 于O , 所以∠OCF+∠CEO=90°………………………………………………………………………………5分所以∠CFD=∠CEO=∠DEF ,所以DF=DE,因为DF 是⊙O 的切线,所以DF2=DB·DA . 所以DE2=DB·DA……………………………………………………………………………………10分B.解:特征多项式2221()(2)14312f λλλλλλ--==--=-+--………………………………3分由()0f λ=,解得121,3λλ==……6分将11λ=代入特征方程组,得0,0--=⎧⎨--=⎩x y x y0⇒+=x y ,可取11⎡⎤⎢⎥-⎣⎦为属于特征值λ1=1的一个特征向量………………………………………8分同理,当23λ=时,由0,00x y x y x y -=⎧⇒-=⎨-+=⎩,所以可取11⎡⎤⎢⎥⎣⎦为属于特征值23λ=的一个特征向量.综上所述,矩阵2112⎡⎤⎢⎥⎣⎦有两个特征值1213λλ==,;属于11λ=的一个特征向量为11⎡⎤⎢⎥-⎣⎦, 属于23λ=的一个特征向量为11⎡⎤⎢⎥⎣⎦……………………………………………………………………10分 C.解:(Ⅰ)曲线C 的极坐标方程可化为22sin ρρθ=……………………………………………2分又222,cos ,sin x y x y ρρθρθ+===,所以曲线C 的直角坐标方程为2220x y y +-=…………4分(Ⅱ)将直线l 的参数方程化为直角坐标方程,得4(2)3y x =--………………………………………6分令0y =,得2x =,即M 点的坐标为(2,0). 又曲线C 为圆,圆C 的圆心坐标为(1,0),半径1r =,则5MC = (8)分 所以1MN MC r +=≤……………………………………………………………………………10分D. 因为0m >,所以10m +>,所以要证()22211a mb a mb mm++≤++,即证222()(1)()a mb m a mb +≤++,即证22(2)0m a ab b -+≥,即证2()0a b -≥,而2()0a b -≥显然成立,故()22211a mb a mb m m ++≤++…10分 22.解:(Ⅰ)令1x =-,得0122011a a a a -+-⋅⋅⋅-=20112011(12)(11)1-+-=-………………………4分(Ⅱ)因为112220m n C C m n +=+=,所以202n m =-,则2x 的系数为2222m n C C +2(1)(1)1422(202)(192)222m m n n m m m m --=⨯+=-+--=2441190m m -+……………7分所以当5,10m n ==时,()f x 展开式中2x 的系数最小,最小值为85…………………………10分23.解:(Ⅰ)记“仅闯过第一关的概率”这一事件为A,则339()41664P A =⋅=……………………4分(Ⅱ)由题意得,ξ的取值有0,1,2,3,且1(0)4p ξ==,9(1)64p ξ==,(2)p ξ==3135641664⋅⋅ 273512=,(3)p ξ==3138⋅⋅39=,即随机变量ξ的概率分布列为:…………8分 所以,19273397350123464512512512E ξ=⨯+⨯+⨯+⨯= (10)高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷参考答案与试题解析一、填空题:本大题共14小题.每小题5分.共计70分.请把答案填写在答题卡相应位置上.1.(5分)(•江苏)已知集合A={1.2.4}.B={2.4.6}.则 A∪B={1.2.4.6}.考点:并集及其运算.专题:集合.分析:由题意.A.B两个集合的元素已经给出.故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1.2.4}.B={2.4.6}.∴A∪B={1.2.4.6}故答案为{1.2.4.6}点评:本题考查并集运算.属于集合中的简单计算题.解题的关键是理解并的运算定义2.(5分)(•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4.现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.则应从高二年级抽取15名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比.做出高二所占的比例.用要抽取得样本容量乘以高二所占的比例.得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4.∴高二在总体中所占的比例是=.∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.∴要从高二抽取.故答案为:15点评:本题考查分层抽样方法.本题解题的关键是看出三个年级中各个年级所占的比例.这就是在抽样过程中被抽到的概率.本题是一个基础题.3.(5分)(•江苏)设a.b∈R.a+bi=(i为虚数单位).则a+b的值为8.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意.可对复数代数式分子与分母都乘以1+2i.再由进行计算即可得到a+bi=5+3i.再由复数相等的充分条件即可得到a.b的值.从而得到所求的答案解答:解:由题.a.b∈R.a+bi=所以a=5.b=3.故a+b=8故答案为8点本题考查复数代数形式的乘除运算.解题的关键是分子分母都乘以分母的共轭.复数的评:四则运算是复数考查的重要内容.要熟练掌握.复数相等的充分条件是将复数运算转化为实数运算的桥梁.解题时要注意运用它进行转化.4.(5分)(•江苏)图是一个算法流程图.则输出的k的值是5.考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值.判断是否循环.达到满足题目的条件.结束循环.得到结果即可.解答:解:1﹣5+4=0>0.不满足判断框.则k=2.22﹣10+4=﹣2>0.不满足判断框的条件.则k=3.32﹣15+4=﹣2>0.不成立.则k=4.42﹣20+4=0>0.不成立.则k=5.52﹣25+4=4>0.成立.所以结束循环.输出k=5.故答案为:5.点评:本题考查循环框图的作用.考查计算能力.注意循环条件的判断.5.(5分)(•江苏)函数f(x)=的定义域为(0.].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0.真数要大于0.得到不等式组.根据对数的单调性解出不等式的解集.得到结果.解答:解:函数f(x)=要满足1﹣2≥0.且x>0∴.x>0∴.x>0.∴.x>0.∴0.故答案为:(0.]点评:本题考查对数的定义域和一般函数的定义域问题.在解题时一般遇到.开偶次方时.被开方数要不小于0.;真数要大于0;分母不等于0;0次方的底数不等于0.这种题目的运算量不大.是基础题.6.(5分)(•江苏)现有10个数.它们能构成一个以1为首项.﹣3为公比的等比数列.若从这10个数中随机抽取一个数.则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为.然后找出小于8的项的个数.代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1.﹣3.(﹣3)2.(﹣3)3…(﹣3)9其中小于8的项有:1.﹣3.(﹣3)3.(﹣3)5.(﹣3)7.(﹣3)9共6个数这10个数中随机抽取一个数.则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用.属于基础试题7.(5分)(•江苏)如图.在长方体ABCD﹣A1B1C1D1中.AB=AD=3cm.AA1=2cm.则四棱锥A﹣BB1D1D的体积为6cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O.求出AO.然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O.AO是棱锥的高.所以AO==.所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法.考查空间想象能力与计算能力.8.(5分)(•江苏)在平面直角坐标系xOy中.若双曲线的离心率为.则m的值为2.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0.所以双曲线的焦点必在x轴上.因此a2=m>0.可得c2=m2+m+4.最后根据双曲线的离心率为.可得c2=5a2.建立关于m的方程:m2+m+4=5m.解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0.b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为.∴.可得c2=5a2.所以m2+m+4=5m.解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程.在已知离心率的情况下求参数的值.着重考查了双曲线的概念与性质.属于基础题.9.(5分)(•江苏)如图.在矩形ABCD中.AB=.BC=2.点E为BC的中点.点F在边CD 上.若=.则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形.把已知向量用矩形的边所在的向量来表示.做出要用的向量的模长.表示出要求得向量的数量积.注意应用垂直的向量数量积等于0.得到结果.解答:解:∵.====||=.∴||=1.||=﹣1.∴=()()==﹣=﹣2++2=.故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式.本题是一个中档题目.10.(5分)(•江苏)设f(x)是定义在R上且周期为2的函数.在区间[﹣1.1]上.f(x)=其中a.b∈R.若=.则a+3b的值为﹣10.考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数.由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0.解关于a.b的方程组可得到a.b的值.从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数.f(x)=.∴f()=f(﹣)=1﹣ a.f()=;又=.∴1﹣a=①又f(﹣1)=f(1).∴2a+b=0.②由①②解得a=2.b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性.考查分段函数的解析式的求法.着重考查方程组思想.得到a.b 的方程组并求得a.b的值是关键.属于中档题.11.(5分)(•江苏)设α为锐角.若cos(α+)=.则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+.根据cosβ求出sinβ.进而求出sin2β和cos2β.最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+.∴sinβ=.sin2β=2sinβcosβ=.cos2β=2cos2β﹣1=.∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下.求2α+的正弦值.着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式.考查了三角函数中的恒等变换应用.属于中档题.12.(5分)(•江苏)在平面直角坐标系xOy中.圆C的方程为x2+y2﹣8x+15=0.若直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1.由题意可知.只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0.整理得:(x﹣4)2+y2=1.即圆C是以(4.0)为圆心.1为半径的圆;又直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4.0)到直线y=kx﹣2的距离为d.则d=≤2.即3k2﹣4k≤0.∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系.将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键.考查学生灵活解决问题的能力.属于中档题.13.(5分)(•江苏)已知函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).若关于x的不等式f(x)<c的解集为(m.m+6).则实数c的值为9.考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系.然后根据不等式的解集可得f(x)=c的两个根为m.m+6.最后利用根与系数的关系建立等式.解之即可.解解:∵函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).答:∴f(x)=x2+ax+b=0只有一个根.即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m.m+6).即为x2+ax+<c解集为(m.m+6).则x2+ax+﹣c=0的两个根为m.m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用.以及根与系数的关系.同时考查了分析求解的能力和计算能力.属于中档题.14.(5分)(•江苏)已知正数a.b.c满足:5c﹣3a≤b≤4c﹣a.clnb≥a+clnc.则的取值范围是[e.7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2.而5×﹣3≤≤4×﹣1.于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln.从而≥.设函数f(x)=(x>1).利用其导数可求得f(x)的极小值.也就是的最小值.于是问题解决.解答:解:∵4c﹣a≥b>0∴>.∵5c﹣3a≤4c﹣a.∴≤2.从而≤2×4﹣1=7.特别当=7时.第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc.∴0<a≤cln.从而≥.设函数f(x)=(x>1).∵f′(x)=.当0<x<e时.f′(x)<0.当x>e时.f′(x)>0.当x=e时.f′(x)=0.∴当x=e时.f(x)取到极小值.也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e.=e成立.代入第一个不等式知:2≤=e≤3.不等式成立.从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e.7]双闭区间.点评:本题考查不等式的综合应用.得到≥.通过构造函数求的最小值是关键.也是难点.考查分析与转化、构造函数解决问题的能力.属于难题.二、解答题:本大题共6小题.共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)(•江苏)在△ABC中.已知.(1)求证:tanB=3tanA;(2)若cosC=.求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边.然后两边同时除以c 化简后.再利用正弦定理变形.根据cosAcosB≠0.利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角.及cosC的值.利用同角三角函数间的基本关系求出sinC 的值.进而再利用同角三角函数间的基本关系弦化切求出tanC的值.由tanC的值.及三角形的内角和定理.利用诱导公式求出tan(A+B)的值.利用两角和与差的正切函数公式化简后.将tanB=3tanA代入.得到关于tanA的方程.求出方程的解得到tanA的值.再由A为三角形的内角.利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•.∴cbcosA=3cacosB.即bcosA=3acosB.由正弦定理=得:sinBcosA=3sinAcosB.又0<A+B<π.∴cosA>0.cosB>0.在等式两边同时除以cosAcosB.可得tanB=3tanA;(2)∵cosC=.0<C<π.sinC==.∴tanC=2.则tan[π﹣(A+B)]=2.即tan(A+B)=﹣2.∴=﹣2.将tanB=3tanA代入得:=﹣2.整理得:3tan2A﹣2tanA﹣1=0.即(tanA﹣1)(3tanA+1)=0.解得:tanA=1或tanA=﹣.又cosA>0.∴tanA=1.又A为三角形的内角.则A=.点评:此题属于解三角形的题型.涉及的知识有:平面向量的数量积运算法则.正弦定理.同角三角函数间的基本关系.诱导公式.两角和与差的正切函数公式.以及特殊角的三角函数值.熟练掌握定理及公式是解本题的关键.16.(14分)(•江苏)如图.在直三棱柱ABC﹣A1B1C1中.A1B1=A1C1.D.E分别是棱1上的点(点D 不同于点C).且AD⊥DE.F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱.得到CC1⊥平面ABC.从而AD⊥CC1.结合已知条件AD⊥DE.DE、CC1是平面BCC1B1内的相交直线.得到AD⊥平面BCC1B1.从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中.A1F⊥B1C1.再用类似(1)的方法.证出A1F⊥平面BCC1B1.结合AD⊥平面BCC1B1.得到A1F∥AD.最后根据线面平行的判定定理.得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱.∴CC1⊥平面ABC.∵AD⊂平面ABC.∴AD⊥CC1又∵AD⊥DE.DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1.∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中.A1B1=A1C1.F为B1C1的中点∴A1F⊥B1C1.∵CC1⊥平面A1B1C1.A1F⊂平面A1B1C1.∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1.∴A1F∥AD∵A1F⊄平面ADE.AD⊂平面ADE.∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体.考查了直线与平面平行的判定和平面与平面垂直的判定等知识点.属于中档题.17.(14分)(•江苏)如图.建立平面直角坐标系xOy.x轴在地平面上.y轴垂直于地平面.单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上.其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小).其飞行高度为3.2千米.试问它的横坐标a 不超过多少时.炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求 y=kx﹣(1+k2)x2(k>0)与x轴的横坐标.求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值.由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中.令y=0.得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0.k>0.∴.当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0.∴炮弹可以击中目标等价于存在 k>0.使ka﹣(1+k2)a2=3.2成立.即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0.两根之积大于0.故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时.k=>0.∴当a不超过6千米时.炮弹可以击中目标.点评:本题考查函数模型的运用.考查基本不等式的运用.考查学生分析解决问题的能力.属于中档题.18.(16分)(•江苏)若函数y=f(x)在x=x0处取得极大值或极小值.则称x0为函数y=f(x)的极值点.已知a.b是实数.1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2.求g(x)的极值点;(3)设h(x)=f(f(x))﹣c.其中c∈[﹣2.2].求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数.根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x.求出g′(x).令g′(x)=0.求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx.得 f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点.∴f′(1)=3﹣2a+b=0.f′(﹣1)=3+2a+b=0.解得a=0.b=﹣3.(2)由(1)得.f(x)=x3﹣3x.∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0.解得x1=x2=1.x3=﹣2.∵当x<﹣2时.g′(x)<0;当﹣2<x<1时.g′(x)>0.∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时.g′(x)>0.∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t.则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况.d∈[﹣2.2]当|d|=2时.由(2 )可知.f(x)=﹣2的两个不同的根为1和一2.注意到f(x)是奇函数.∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时.∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0.f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0.∴一2.﹣1.1.2 都不是f(x)=d 的根.由(1)知.f′(x)=3(x+1)(x﹣1).①当x∈(2.+∞)时.f′(x)>0.于是f(x)是单调增函数.从而f(x)>f(2)=2.此时f(x)=d在(2.+∞)无实根.②当x∈(1.2)时.f′(x)>0.于是f(x)是单调增函数.又∵f(1)﹣d<0.f(2)﹣d>0.y=f(x)﹣d的图象不间断.∴f(x)=d在(1.2 )内有唯一实根.同理.在(一2.一1)内有唯一实根.③当x∈(﹣1.1)时.f′(x)<0.于是f(x)是单调减函数.又∵f(﹣1)﹣d>0.f(1)﹣d<0.y=f(x)﹣d的图象不间断.∴f(x)=d在(一1.1 )内有唯一实根.因此.当|d|=2 时.f(x)=d 有两个不同的根 x1.x2.满足|x1|=1.|x2|=2;当|d|<2时.f(x)=d 有三个不同的根x3.x4.x5.满足|xi|<2.i=3.4.5.现考虑函数y=h(x)的零点:( i )当|c|=2时.f(t)=c有两个根t1.t2.满足|t1|=1.|t2|=2.而f(x)=t1有三个不同的根.f(x)=t2有两个不同的根.故y=h(x)有5 个零点.( i i )当|c|<2时.f(t)=c有三个不同的根t3.t4.t5.满足|ti|<2.i=3.4.5.而f(x)=ti有三个不同的根.故y=h(x)有9个零点.综上所述.当|c|=2时.函数y=h(x)有5个零点;当|c|<2时.函数y=h(x)有9 个零点.点评:本题考查导数知识的运用.考查函数的极值.考查函数的单调性.考查函数的零点.考查分类讨论的数学思想.综合性强.难度大.19.(16分)(•江苏)如图.在平面直角坐标系xOy中.椭圆(a>b>0)的左、右焦点分别为F1(﹣c.0).F2(c.0).已知(1.e)和(e.)都在椭圆上.其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A.B是椭圆上位于x轴上方的两点.且直线AF1与直线BF2平行.AF2与BF1交于点P.(i)若AF1﹣BF2=.求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考点:直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的性质和已知(1.e)和(e.).都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my.x﹣1=my.与椭圆方程联立.求出|AF1|、|BF2|.根据已知条件AF1﹣BF2=.用待定系数法求解;(ii)利用直线AF1与直线BF2平行.点B在椭圆上知.可得..由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2.e=.由点(1.e)在椭圆上.得.∴b=1.c2=a2﹣1.由点(e.)在椭圆上.得∴.∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1.0).F2(1.0).又∵直线AF1与直线BF2平行.∴设AF1与BF2的方程分别为x+1=my.x﹣1=my.设A(x1.y1).B(x2.y2).y1>0.y2>0.∴由.可得(m2+2)﹣2my1﹣1=0.∴.(舍).∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=.∴.解得m2=2.∵注意到m>0.∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行.∴.即.由点B在椭圆上知..∴.同理.∴PF1+PF2==由①②得...∴PF1+PF2=.∴PF1+PF2是定值.点本题考查椭圆的标准方程.考查直线与椭圆的位置关系.考查学生的计算能力.属于中档题.评:20.(16分)(•江苏)已知各项均为正数的两个数列{an}和{bn}满足:an+1=.n∈N*.(1)设bn+1=1+.n∈N*.求证:数列是等差数列;(2)设bn+1=•.n∈N*.且{an}是等比数列.求a1和b1的值.考数列递推式;等差关系的确定;等比数列的性质.点:等差数列与等比数列.专题:分析:(1)由题意可得.an+1===.从而可得.可证(2)由基本不等式可得..由{an}是等比数列利用反证法可证明q==1.进而可求a1.b1解答:解:(1)由题意可知.an+1===∴从而数列{}是以1为公差的等差数列(2)∵an>0.bn>0∴从而(*)设等比数列{an}的公比为q.由an>0可知q>0下证q=1若q>1.则.故当时.与(*)矛盾0<q<1.则.故当时.与(*)矛盾综上可得q=1.an=a1.所以.∵∴数列{bn}是公比的等比数列若.则.于是b1<b2<b3又由可得∴b1.b2.b3至少有两项相同.矛盾∴.从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用.解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答.22、23必做题)(共3小题.满分40分)21.(20分)(•江苏)A.[选修4﹣1:几何证明选讲]如图.AB是圆O的直径.D.E为圆上位于AB异侧的两点.连接BD并延长至点C.使BD=DC.连接AC.AE.DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵.求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中.已知圆C经过点P(.).圆心为直线ρsin(θ﹣)=﹣与极轴的交点.求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x.y满足:|x+y|<.|2x﹣y|<.求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分A.要证∠E=∠C.就得找一个中间量代换.一方面考虑到∠B.∠E是同弧所对圆周角.析:相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵.根据定义可求出矩阵A.从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(.).求出圆的半径.从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径.∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC.∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D.E 为圆上位于AB异侧的两点.∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵.∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1.λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点.∴在ρsin(θ﹣)=﹣中令θ=0.得ρ=1.∴圆C的圆心坐标为(1.0).∵圆C 经过点P(.).∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|.|x+y|<.|2x﹣y|<.∴3|y|<.∴点评:本题是选作题.综合考查选修知识.考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明.综合性强23.(10分)(•江苏)设集合Pn={1.2.….n}.n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆Pn;②若x∈A.则2x∉A;③若x∈ A.则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P4={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}.故可求f(4)(2)任取偶数x∈pn.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.可知.若m∈A.则x∈A.⇔k为偶数;若m∉A.则x∈A⇔k为奇数.可求解答:解(1)当n=4时.P4={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}故f(4)=4(2)任取偶数x∈pn.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.于是x=m•2k.其中m为奇数.k∈N*由条件可知.若m∈A.则x∈A.⇔k为偶数若m∉A.则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定.设Qn是Pn中所有的奇数的集合因此f(n)等于Qn的子集个数.当n为偶数时(或奇数时).Pn中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用.解题的关键是准确应用题目中的定义22.(10分)(•江苏)设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条.当两条棱相交时.ξ=0;当两条棱平行时.ξ的值为两条棱之间的距离;当两条棱异面时.ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列.并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数.即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对.即可求出相应的概率.从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交.则交点必为正方体8个顶点中的一个.过任意1个顶点恰有3条棱.∴共有8对相交棱.∴P(ξ=0)=.(2)若两条棱平行.则它们的距离为1或.其中距离为的共有6对.∴P(ξ=)=.P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.本题考查概率的计算.考查离散型随机变量的分布列与期望.求概率是关键.点评:高考模拟题复习试卷习题资料高考数学试卷(附详细答案)一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.2.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;。
高考数学高三模拟试卷试题压轴押题高三第一次模拟考试一、填空题:本大题共14题,每小题5,共70 请直接在答题卡上相应位置填写答案. 1,抛物线24y x =的焦点坐标是。
2.“存在2,20x R x ∈+>”的否定是。
3.已知椭圆的短轴大于焦距,则它的离心率的取值范围是。
4.在等差数列{}n a 中,1383,115a a a ==,则10a =。
5.在ABC ∆中,7,5,3a b c ===,则A =。
6.若关于x 的不等式:2220x x a +++>的解集为R ,则实数a 的取值范围为。
7.等比数列{}n a 的前n 项和为n S ,2580a a +=,则63S S =。
8.若双曲线的焦点坐标为()5,0-和()5,0,渐近线的方程为430x y ±=,则双曲线的标准方程为。
9.实数,x y 满足,0,1,21x y x y x y -≥+≤+≥,则63z x y =+的最小值为。
10. 在ABC ∆中,已知1,2,30a b A ===︒,则B =。
11.已知函数()f x 的导函数为'()f x ,若'()()sin3cos39f x f x x π=+,则'()9f π=。
12.若正实数,,a b c 满足:320a b c -+=13.在等差数列{}n a 中,若任意两个不等的正整数,k p ,都有21k a p =+,21p a k =+,设数列{}n a 的前n 项和为n S ,若k p m +=,则m S =(结果用m 表示)。
14.若函数32()4f x x x ax =+--在区间()1,1-恰有一个极值点,则实数a 的取值范围为。
二、解答题:本大题共6个小题.共90解答应写出文字说明,证明过程或演算步骤. 15.已知222:6160,:440(0)p x x q x x m m -++≥-+-≤>。
(1)若p 为真命题,求实数x 的取值范围。
高考数学高三模拟试卷试题压轴押题高三联考数学试题数学 试 题I一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上. 1.若复数z 满足(2)z z i =-(i 是虚数单位),则z =. 【解析】设z=a+bi ,由()a+bi=2-a-bi i 得a=b=1z=1i ∴+.2.已知全集{12345}U =,,,,,集合2{|320}A x x x =-+=,{|2}B x x a a A ==∈,,则集合()UA B =.【解析】{}{}{}{}1,22,41,2,4 ()3,5U A B A B A B =∴=∴=∴=3.在圆22x +y =4所围成的区域内随机取一个点P(x,y),则 x +y 2≤的概率为.【解析】 x +y 2≤表示的图形是正方形及其内部,用正方形的面积除以圆22x +y =4的面积易得概率为2π4.已知4cos 5α=-且(,)2παπ∈,则tan()4πα+=.【解析】4cos 5α=-且(,)2παπ∈,tan +tan3414sin =tan =-tan()53471-tan .tan 4παπαααπα∴∴∴+== 5.已知定义域为R 的函数121()2xx f x a+-+=+是奇函数,则a =.【解析】由()()11f f -=-,易得2a =6.已知B 为双曲线22221(0,0)x y a b a b-=>>的左准线与x 轴的交点, 点(0,)A b ,若满足2AP AB =的点P 在双曲线上,则该双曲线 的离心率为.【解析】设点P (),x y ,由2AP AB =得()22,,2a x y b b c ⎛⎫-=-- ⎪⎝⎭,22,2a P b c ⎛⎫∴-- ⎪⎝⎭把P 点坐标带入到22221x y a b-=中,整理得22e e =∴7.右图是一个算法的流程图,则输出S 的值是. 【解析】3915+297=7500s =+++……8.若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是.【解析】当k>0时,()lg 2lg 1kx x =+()lg 2lg 10kx x ∴-+=即()21kx x =+在()0,+∞仅有一个解()2210x k x ∴--+=在()0,+∞仅有一个解,令()()221f x x k x =∴--+,()00f >00k ∴=∴=或4,0k =时无意义,舍去4k ∴= 当0k <时,函数定义域是()1,0-函数y kx =是一个递减过()1,k --与()0,0的线段,函数()21y x =+在()1,0-递增且过两点()1,0-与()0,1,此时两曲线段恒有一个交点,故0k <符合题意故答案为:4k =或0k <.9.在ABC ∆中,已知4AB AC ⋅=,12AB BC ⋅=-,则AB =.7第题图【解析】4AB AC ⋅=, 222222cos 482b c a bc A b c a +-∴==∴+-=同理22224a c b +-=216c ∴=,4c ∴=10.在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02前五个与后五个长方形的 面积分别成等差数列且公差是互为相反数,若样本容量 为1600, 则(即第五组)的频数为.【解析】设前五个长方形面积的公差为d ,由9个长方形的面积为1,可得0.8216d = 中间一组的频数为()16000.024360d ⨯+=.11.已知变量,a R θ∈,则22(2cos )(522sin )a a θθ-+--的最小值为.【解析】22(2cos )(522sin )a a θθ-+--的几何意义为(),a a 到()2cos ,522sin θθ+距离的平方。
高考数学高三模拟试卷试题压轴押题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合AB = ( )A .{|34}x x x ≤>或B .{|13}x x -<≤C .{|34}x x ≤<D .{|21}x x -≤<- 【答案】D 考点:交集运算。
2.若向量(2,4)AB =,(1,3)AC =,则BC = ( )A .(1,1)B .(1,1)--C .(3,7)D .(3,7)-- 【答案】B 【解析】试题分析:因为向量(2,4)AB =,(1,3)AC =,所以)1,1()4,2()3,1(A B C --=-=-=AB C .故选B 。
考点:向量减法的坐标的运算。
3.已知等差数列}{n a 的前13项之和为39,则876a a a ++等于 ( )A .6B .9C . 12w.w.w.k.s.5 u.c.o.mD .18【答案】B 【解析】试题分析:由等差数列的性质得,3,39137713=∴==a a s .再由等差中项得,876a a a ++937==a故选B 。
考点:等差数列的性质。
4.把函数sin()3y x π=+图象上所有点向右平移3π个单位,再将所得图象的横坐标变为原来的12倍(纵坐标不变),得图象的解析式是sin()(0,)y x ωϕωϕπ=+><,则()【答案】C 【解析】试题分析:函数sin()3y x π=+图象上所有点向右平移3π个单位得到函数x x y sin )3)3sin((=-+=ππ的图像,再将所得图象的横坐标变为原来的12倍(纵坐标不变),得图象的解析式是x y 2sin =.故0.2==ϕω,选C 。
考点:图像变换,左右平移和伸缩变换。
高考数学高三模拟试卷试题压轴押题小题大做(一)一、选择题1.设复数z=,则z=().A.iB.+iC.13iD.1+3i【解析】z====i.【答案】A2.设集合M={x|>0},集合N={x|x22x3<0},则M∪N=().A.{x|1<x<3}B.{x|1<x<1}C.{x|1<x<2}D.{x|2<x<3}【解析】M={x|>0}=,N={x|x22x3<0}=,故M∪N=,故选A.【答案】A3.下列说法正确的是().A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.命题“∀x≥0,x2+x1<0”的否定是“∃x0<0,+x01<0”C.命题“若x=y,则sinx=siny”的逆否命题为假命题D.若“p∨q”为真命题,则p,q中至少有一个为真命题【解析】命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错;命题“∀x≥0,x2+x1<0”的否定是“∃x0≥0,使+x01≥0”,故B错;命题“若x=y,则sinx=siny”的逆否命题为“若sinx≠siny,则x≠y”,是真命题,故C错;当“p∨q”为真命题时,p,q中至少有一个为真命题,故选D.【答案】D4.设等差数列{an}的前n项和为Sn,若Sm1=1,Sm=0,Sm+1=2,则m=().A.1B.2C.3D.4【解析】因为am=SmSm1=1,am+1=Sm+1Sm=2,所以d=am+1am=1.因为am=a1+(m1)d=a1+m1=1,所以a1=2m,所以Sm=ma1+d=m(2m)+=0,解得m=3(m=0舍去).【答案】C5.若某几何体的正(主)视图和侧(左)视图均为下图,则该几何体的俯视图不可能是().【解析】当几何体上、下两部分都是圆柱时,俯视图为A;当上部分为正四棱柱,下部分为圆柱时,俯视图为B;当几何体的上部分为直三棱柱且该直三棱柱的底面为等腰直角三角形,下部分为正四棱柱时,俯视图为C;无论何种情形,俯视图都不可能为D.【答案】D6.曲线+=1与曲线+=1(12<k<16)的().A.长轴长与实轴长相等B.短轴长与虚轴长相等C.焦距相等D.离心率相等【解析】由椭圆+=1,得c=2.由双曲线=1,得=(16k)+(k12)=4,即c1=2.故选C.【答案】C7.在矩形ABCD中,AB=2,AD=3,如果向该矩形内随机投一点P,那么使得△ABP与△ADP的面积都不小于1的概率为().A.B.C.D.【解析】如图,在矩形内取一点Q,由点Q分别向AD,AB作垂线,垂足分别为E,F.由S△ABQ=S△ADQ=1知,QF=1,QE=.设直线EQ,FQ分别交BC,CD于M,N,则当点P落在矩形QMCN内时,满足要求,故所求概率P===.【答案】A8.执行如图所示的程序框图,则输出S的结果是().A.B.C.D.【解析】第一次循环:S=0+=,n=2+2=4<10成立;第二次循环:S=+,n=4+2=6<10成立;第三次循环:S=++,n=6+2=8<10成立;第四次循环:S=+++,n=8+2=10<10不成立,结束循环,输出S的值.故S=+++=.【答案】B9.如图,偶函数f(x)的图象形如字母“M”,奇函数g(x)的图象形如字母“N”,若方程f(g(x))=0,g(f(x))=0的实根个数分别为m,n,则m+n=().A.18B.16C.14D.12【解析】由图象知,f(x)=0有3个根,为0,±;g(x)=0有3个根,其中一个为0,设与x轴的另外两个交点的横坐标为±x0(0<x0<1).由f(g(x))=0,得g(x)=0或±,由图象可知g(x)=0,g(x)=,g(x)=,每个方程都有3个根,故m=9.由g(f(x))=0,得f(x)=0或±x0,由图象可知f(x)=0有3个根,f(x)=x0有4个根,f(x)=x0只有2个根,即共有9个根,故n=9.因此m+n=9+9=18,故选A.【答案】A10.在下面四个图中,有一个是函数f(x)=x3+ax2+(a21)x+1(a∈R,a≠0)的导函数f'(x)的图象,则f(1)等于().A.B.C.D.或【解析】f'(x)=x2+2ax+a21,其图象开口向上,排除(2)(3).因为a≠0,所以f'(x)的图象为(4).由图可知f'(0)=0,故a=1或a=1.由图象知a≠1,所以a=1,所以f(x)=x3x2+1,所以f(1)=,故选B.【答案】B11.已知函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移个单位后得到g(x)=cos(2x+),则φ的值为().A. B.C.D.【解析】因为函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移个单位后可得sin[2(x+)+φ]=sin(2x++φ)=cos(2x+φ)=cos(2x+)=g(x),所以+φ=2kπ+(k∈Z).因为|φ|<π,所以φ=. 【答案】C12.已知由不等式组确定的平面区域Ω的面积为7,定点M的坐标为(1,2),若N∈Ω,O为坐标原点,则·的最小值是().A.8B.7C.6D.4【解析】依题意,画出不等式组所表示的平面区域,如图所示.当k=0时,y≤2,此时平面区域Ω的面积为6,因为6<7,所以k<0.由可得D(,).依题意应有×2×||=1,又k<0,所以k=1,故点D(1,3).设N(x,y),令z=·,则有z=x2y,即y=x z,因为<1,所以当直线y=x z过点D时,截距z最大,即z取得最小值7,故选B.【答案】B二、填空题13.若α为锐角,且sin(α)=,则sinα的值为.【解析】因为0<α<,所以<α<.又sin(α)=>0,所以0<α<,所以cos(α)===.所以sinα=sin[(α)+]=sin(α)+cos(α)=×+×=.【答案】14.若非零向量a,b满足=2=2,且(ab)⊥(a+3b),则a与b的夹角的正弦值为.【解析】因为(ab)⊥(a+3b),所以(ab)·(a+3b)=a2+2a·b3b2=0.又因为=2=2,所以a·b=,所以cosθ==,sinθ==.【答案】15.对大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”:23=3+5,33=7+9+11,43=13+15+17+19,…,以此类推,若m3的“分裂”数中有一个是73,则m的值为. 【解析】由题意可得m3的“分裂”数为m个连续奇数,设m3的“分裂”数中第一个数为am, 则由题意可得a3a2=73=4=2×2,a4a3=137=6=2×3,…,amam1=2(m1),以上m2个式子相加,可得ama2==(m+1)(m2),所以am=a2+(m+1)(m2)=m2m+1,所以当m=9时,am=73,即73是93的“分裂”数中的第一个.【答案】916.给出下列命题:①对于命题p:∃x0∈R,使得+x0+1<0,则 p:∀x∈R,均有x2+x+1>0;②m=3是直线(m+3)x+my2=0与直线mx6y+5=0互相垂直的充要条件;③已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为=1.23x+0.08;④若函数f(x)是定义在R上的奇函数,且f(x+4)=f(x),则f()=0.其中真命题的序号是.(把所有真命题的序号都填上)【解析】“<”的否定应为“≥”,故①错误;当两直线互相垂直时,m(m+3)6m=0,得m=0或m=3,所以m=3是这两条直线互相垂直的充分不必要条件,故②错误;由回归直线过样本点的中心知③为真命题;因为f(x+4)=f(x),所以f(x)是周期为4的周期函数.又f(x)为奇函数,所以f(0)=0,所以f()=f(4×504)=f(0)=0,故④为真命题.【答案】③④小题大做(二)一、选择题1.已知集合A={y|y=,1≤x≤1},B={y|y=2,0<x≤1},则集合A∪B=().A.(∞,1]B.[1,1]C.⌀D.{1}【解析】因为A={y|y=,1≤x≤1}=[1,1],B={y|y=2,0<x≤1}=(∞,1],所以A∪B=(∞,1].【答案】A2.已知复数z1=a+2i,z2=34i,且为纯虚数,则实数a的值为().A.B.C.D.【解析】因为===为纯虚数,所以3a8=0且6+4a≠0,解得a=.【答案】C3.三个数60.7,0.76,log0.76的大小顺序是().A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.7【解析】由题意得log0.76<0,0<0.76<1,60.7>1.【答案】D4.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题,其中正确命题的序号是().①若m⊥α,n∥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若m∥α,n∥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.A.①②B.②③C.③④D.①④【解析】根据立体几何的相关知识容易判断出①②正确,③④错误.【答案】A5.已知命题p:函数y=是减函数,命题q:数列a,a2,a3,…是等比数列.由命题p与q构成的复合命题的真假性,下列判断正确的是().A.p∨q为真,p∧q为假, p为真B.p∨q为假,p∧q为假, p为真C.p∨q为真,p∧q为假, p为假D.p∨q为假,p∧q为真, p为真【解析】因为函数y=在(∞,0),(0,+∞)内分别为减函数,所以p是假命题.又当a=0时,数列a,a2,a3,…不是等比数列,所以q是假命题.所以p∨q为假,p∧q为假, p为真.【答案】B6.8名运动员参加男子100米的决赛.已知运动场有从内到外编号分别为1,2,3,4,5,6,7,8的八条跑道,若指定的3名运动员所在的跑道编号必须是三个连续数字(如:4,5,6),则参加比赛的这8名运动员安排跑道的方式有().A.360种B.4320种C.720种D.2160种【解析】可分步完成,先从8个编号中取出3个连续的编号,有6种方式,再将指定的3名运动员安排在这3个编号的跑道上,最后将剩下的5名运动员安排在其他5个编号的跑道上,共有6=4320种方式.【答案】B7.一个棱锥的三视图如右图所示,则该棱锥的表面积为().A.(48+12)cm2B.(48+24)cm2C.(36+12)cm2D.(36+24)cm2【解析】由三视图可得底面为等腰直角三角形,腰长为6cm,面积为18cm2.垂直于底面的面为等腰三角形,面积为×6×4=12cm2.其余两个面为全等的三角形,且每个三角形的面积都为×6×5=15cm2,所以该棱锥的表面积为(48+12)cm2.【答案】A8.设各项均为正数的等比数列{an}的公比为q,若数列{log2a1an}为递减数列,则().A.0<q<1B.q>1C.0<a1q<1D.a1q>1【解析】因为log2a1anlog2a1an1<0,整理得log2<0,即log2q<0,所以0<q<1.【答案】A9.函数f(x)=sinx cosx(x∈[π,0])的单调递增区间是().A.[π,]B.[,]C.[,0]D.[,0]【解析】f(x)=sinx cosx=2sin(x),因为π≤x≤0,所以≤x≤.当≤x≤,即≤x≤0时,f(x)单调递增.【答案】D10.已知双曲线=1(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是().A.(1,2]B.(1,2)C.[2,+∞)D.(2,+∞)【解析】(法一)设直线方程为y=(xc),将直线与双曲线方程联立消去y,得(b23a2)x2+6a2cx3a2c2a2b2=0.当b23a2=0时,符合题意,e====2;当b23a2≠0时,x1x2=<0,即3a2b2<0,b2>3a2,所以e==>=2.综上e∈[2,+∞).(法二)由题意知双曲线的一条渐近线的方程为y=x,若过右焦点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则≤,即b2≥3a2,所以e==≥=2.【答案】C11.若方程x33ax+2=0(a>0)有三个不同的实根,则实数a的取值范围为().A.a>0B.0<a<1C.1<a<3D.a>1【解析】设f(x)=x33ax+2,定义域为R,则f'(x)=3x23a.令f'(x)=0,则x=±.当x∈(∞,)时,f(x)递增;当x∈(,)时,f(x)递减;当x∈(,+∞)时,f(x)递增.所以f(x)的极大值为f()=2+2>0,极小值为f()=22.当极小值f()=22<0时,方程x33ax+2=0有三个不同的实根,解得a>1.【答案】D12.已知y=f(x)是定义在R上的单调函数,任意实数x1,x2满足x1<x2,λ≠1,α=,β=,若|f(x1)f(x2)|<|f(α)f(β)|恒成立,则有().A.0<λ<1B.λ=0C.λ<0且λ≠1D.λ≥1【解析】由|f(x1)f(x2)|<|f(α)f(β)|及y=f(x)是定义在R上的单调函数可知,(x1,x2)⫋(α,β),即|x1x2|<|αβ|,则|x1x2|<||,即|1+λ|<|1λ|,所以λ<0且λ≠1.【答案】C二、填空题13.某程序框图如图所示,该程序运行后输出的k的值为.【解析】运行程序,可得k=4.【答案】414.某同学到公共汽车站等车上学,可乘坐8路,23路.8路车10分钟一班,23路车15分钟一班,则这位同学等车不超过8分钟的概率是.【解析】如图,记“8分钟内乘坐8路车或23路车”为事件A,则A所占区域的面积为8×10+7×8=136,整个区域的面积为10×15=150,由几何概型的概率公式,得P(A)==.【答案】15.若抛物线C:y=ax21(a≠0)的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为. 【解析】把抛物线C的方程改写为C:x2=(y+1)(a≠0)得顶点(0,1),又原点为焦点,所以=4,所以抛物线C:x2=4(y+1)与x轴的两个交点分别为(2,0),(2,0),故所求面积为×4×1=2.【答案】216.已知函数f(x)=|x22ax+b|(x∈R).给出下面四个命题:①f(x)必为偶函数;②若f(0)=f(2),则f(x)的图象必关于直线x=1对称;③若a2b≤0,则f(x)在[a,+∞)上是增函数;④f(x)有最小值|a2b|.其中正确命题的序号是.【解析】令a=b=1,则f(x)=|(x1)2|=(x1)2,不是偶函数,故①错误;令a=0,b=2,则f(x)=|x22|,这时f(0)=f(2),但其图象不关于直线x=1对称,故②错误;若a2b≤0,则x22ax+b=(xa)2+ba2≥0恒成立,f(x)=(xa)2+ba2,其图象开口向上,以直线x=a为对称轴,在[a,+∞)上是增函数,故③正确;令a=0,b=1,则f(x)=|x21|,这时f(x)的最小值是f(1)=f(1)=0,而|a2b|=1,即f(x)的最小值不是|a2b|,故④错误.【答案】③小题大做(三)一、选择题1.设集合S={x|x>3},T={x|6≤x≤1},则S∪T=().A.[6,+∞)B.(3,+∞)C.[6,1]D.(3,1]【解析】因为集合S={x|x>3},T={x|6≤x≤1},所以S∪T=[6,+∞).故选A.【答案】A2.在复平面内,复数(i是虚数单位)所对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限【解析】因为===1i,所以在复平面内,复数(i是虚数单位)所对应的点为(1,1),即位于第四象限.故选D.【答案】D3.已知向量a=(1,2),b=(x,4),若a∥b,则x=().A.4B.4C.2D.2【解析】因为a∥b,所以42x=0,解得x=2.故选D.【答案】D4.已知m∈R,“函数y=2x+m1有零点”是“函数y=logmx在(0,+∞)上为减函数”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】若函数y=f(x)=2x+m1有零点,则m<1,当m≤0时,函数y=logmx在(0,+∞)上为减函数不成立.若y=logmx在(0,+∞)上为减函数,则0<m<1,此时函数y=2x+m1有零点成立.故“函数y=2x+m1有零点”是“函数y=logmx在(0,+∞)上为减函数”的必要不充分条件,故选B. 【答案】B5.设α为锐角,若cos(α+)=,则sin(2α+)的值为().A. B. C. D.【解析】因为α为锐角,cos(α+)=,所以α+∈(0,),所以sin(α+)==,则sin(2α+)=2sin(α+)cos(α+)=2××=.【答案】B6.执行如图所示的程序框图,若输入n的值为3,则输出s的值是().A.1B.2C.4D.7【解析】当i=1时,s=1+11=1;当i=2时,s=1+21=2;当i=3时,s=2+31=4;当i=4时,退出循环,输出s=4.故选C.【答案】C7.设函数f(x)=则f[f(3)]=().A.B.C.D.1【解析】因为f(3)=2+log3(32)=2,所以f[f(3)]=f(2)=212=.故选C.【答案】C8.设等差数列{an}的前n项和为Sn.若a1=11,a4+a6=6,则当Sn取最小值时,n等于().A.6B.7C.8D.9【解析】(方法一)∵a4+a6=2a1+8d=22+8d=6,∴d=2,Sn=11n+×2.∴Sn=n212n=(n6)236.显然当n=6时,Sn取得最小值.(方法二)由a4+a6=2a5得,a5=3,∴d==2,∴an=a1+(n1)d=2n13,∵a6<0,a7>0,∴当n=6时,Sn取是最小值.【答案】A9.在如图所示的空间直角坐标系Oxyz中,若一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号分别为①②③④的四个图,则该四面体的正(主)视图和俯视图分别为().A.①和②B.③和①C.④和③D.④和②【解析】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正(主)视图和俯视图分别为④和②,故选D.【答案】D10.若实数a,b满足a2+b2≤1,则关于x的方程x22x+a+b=0有实数根的概率为().A.+B.+C.+D.+【解析】因为实数a,b满足a2+b2≤1,所以点(a,b)在单位圆内,圆的面积S=π.因为关于x的方程x22x+a+b=0有实数根,所以Δ=(2)24(a+b)≥0,即a+b≤1.表示的区域如图中阴影部分所示,其面积S'=π(×1×1)=+.故所求概率为=+.故选A.【答案】A11.对于定义在正整数集且在正整数集上取值的函数f(x)满足f(1)≠1,且对∀n∈N*,有f(n)+f(n+1)+f[f(n)]=3n+1,则f()=().A.B.C.D.【解析】由于f(1)≠1,则f(1)=2或f(1)≥3,若f(1)≥3,则令n=1,即有f(1)+f(2)+f[f(1)]=4,即为f(2)+f[f(1)]≤1,这与f(x)≥1矛盾.故有f(1)=2,由f(1)+f(2)+f[f(1)]=4,即2+f(2)+f(2)=4,解得f(2)=1;由f(2)+f(3)+f[f(2)]=7,解得f(3)=4;由f(3)+f(4)+f[f(3)]=10,解得f(4)=3;由f(4)+f(5)+f[f(4)]=13,解得f(5)=6;由f(5)+f(6)+f[f(5)]=16,解得f(6)=5;……归纳可得,当n为奇数时,f(n)=n+1,当n为偶数时,f(n)=n1.经检验,当n为奇数时,f(n)+f(n+1)+f[f(n)]=n+1+n+f(n+1)=2n+1+n=3n+1成立;同理,检验当n为偶数时,仍然成立.所以f()=.故选C.【答案】C12.如果双曲线的离心率e=,则称此双曲线为黄金双曲线.有以下几个命题:①双曲线=1是黄金双曲线;②双曲线y2=1是黄金双曲线;③在双曲线=1中,F1为左焦点,A2为右顶点,B1(0,b),若∠F1B1A2=90°,则该双曲线是黄金双曲线;④在双曲线=1中,过焦点F2作实轴的垂线交双曲线于M,N两点,O为坐标原点,若∠MON=120°,则该双曲线是黄金双曲线.其中正确命题的序号为().A.①②B.②③C.③④D.①④【解析】在双曲线=1中,a=,c=,离心率是,故该双曲线不是黄金双曲线,①错误.由双曲线y2=1,可得离心率e==,故该双曲线是黄金双曲线,②正确.因为∠F1B1A2=90°,所以|B1F1|2+|B1A2|2=|F1A2|2,所以b2+c2+b2+a2=(a+c)2,即c2aca2=0,解得e=或e=(舍去).故该双曲线是黄金双曲线,③正确.因为MN经过焦点F2且MN⊥OF2,∠MON=120°,所以|NF2|=|OF2|,即=c,所以b2=ac,即c2a2=ac,解得e=.故该双曲线不是黄金双曲线,④错误.【答案】B二、填空题13.在二项式(x2)n的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为.【解析】因为所有二项式系数的和是32,所以2n=32,解得n=5.在(x2)5中,令x=1,可得展开式中各项系数的和为(1)5=1.【答案】114.若函数f(x)=(a+2)x2+2ax+1有零点,但不能用二分法求其零点,则a的值为.【解析】函数f(x)=(a+2)x2+2ax+1有零点且不能用二分法求其零点,说明函数是二次函数且函数的图象与x轴只有一个交点,即(a+2)x2+2ax+1=0仅有一个实数解,故Δ=4a24(a+2)=0,解得a=2或1.【答案】2或115.设△ABC的内角A,B,C的对边分别为a,b,c,若a=,cosB=,C=,则△ABC的面积为.【解析】因为cosB=,所以B=.又C=,所以A=πBC=,由正弦定理可得b=·sinB=1,故S△ABC=absinC=××1×sin=.【答案】16.有以下命题:①若f(x)=x3+(a1)x2+3x+1没有极值点,则2<a<4;②f(x)=在区间(3,+∞)上单调,则m≥;③若函数f(x)=m有两个零点,则m<;④已知f(x)=logax(0<a<1),k,m,n都为正实数且不全等,则f()+f()+f()<f(k)+f(m)+f(n).其中错误的是.(填序号)【解析】若f(x)=x3+(a1)x2+3x+1没有极值点,则f'(x)=3x2+2(a1)x+3≥0恒成立,所以Δ=4(a1)236≤0,解得2≤a≤4,故①不正确.f(x)=在区间(3,+∞)上单调,f'(x)=≥0或f'(x)≤0恒成立,且m≠,因此m∈R且m≠,故②不正确.f'(x)=,当x∈(0,e)时,f'(x)>0,此时函数f(x)单调递增;当x∈(e,+∞)时,f'(x)<0,此时函数f(x)单调递减.所以当x=e时,函数f(x)取得最大值,f(e)=m,并且x→0,f(x)→∞,x→+∞,f(x)→m.若函数f(x)=m有两个零点,则解得0<m<,故③不正确.因为f(x)=logax(0<a<1)为减函数,又k,m,n都为正实数且不全相等,所以··>··=kmn.所以f()+f()+f()=loga(··)<loga(kmn)=f(k)+f(m)+f(n),即④正确.【答案】①②③小题大做(四)一、选择题1.若z=+i,且(xz)4=a0x4+a1x3+a2x2+a3x+a4,则复数a2等于().A.+iB.3+3iC.6+3iD.33i【解析】由题意可知a2表示(xz)4的展开式中x2项的系数,即(z)2=6×(+i)2=3+3i.【答案】B2.tan20°+tan40°+tan20°tan40°的值为().A.1B.C.D.【解析】因为tan60°=,所以tan20°+tan40°=tan20°tan40°,故tan20°+tan40°+tan20°tan40°=.【答案】D3.已知命题p:∃m∈R,m+1≤0,命题q:∀x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则实数m的取值范围为().A.m≥2B.m≤2C.m≤2或m≥2D.2≤m≤2【解析】因为p∧q为假命题,所以p,q中至少有一个为假命题.又命题p:∃m∈R,m+1≤0为真命题,所以命题q:∀x∈R,x2+mx+1>0恒成立必定为假命题,所以Δ=m24≥0,解得m≤2或m≥2.又m≤1,所以m≤2.【答案】B4.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{an},第n次摸取红球时,an=1,第n次摸取白球时,an=1,如果Sn为数列{an}的前n项和,那么S7=3的概率为().A.()2·()5B.()2·()5C.()2·()5D.()3·()4【解析】由S7=3可知在7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为,摸取白球的概率为,则S7=3的概率为()2·()5.【答案】B5.已知F1,F2是椭圆的两个焦点,满足·=0的点M总在椭圆内部,则椭圆离心率的取值范围是().A.(0,1)B.(0,]C.(0,)D.[,1)【解析】设椭圆的长半轴长、短半轴长、半焦距分别为a、b、c,因为·=0,所以点M的轨迹是以原点O 为圆心,半焦距c为半径的圆.又点M总在椭圆内部,所以该圆内含于椭圆,即c<b,c2<b2=a2c2,所以e2=<,所以0<e<.【答案】C6.已知母线长为1的圆锥的侧面展开图的圆心角等于π,则该圆锥的体积为().A.πB.πC.πD.π【解析】设圆锥的底面半径为r,则=π,所以r=.所以圆锥的高h==,所以圆锥的体积V=πr2h=π.【答案】C7.在平行四边形ABCD中,E,F分别是CD和BC的中点.若=λ+μ,其中λ,μ∈R,则λ+μ的值为().A.B.1C.D.【解析】由题意知,=λ+μ=λ(+)+μ(+)=(+μ)+(λ+).又=+,则解得λ=μ=,故λ+μ=.【答案】A8.若函数f(x)=2sinωx(ω>0)在[,]上单调递增,则ω的最大值为().A.B.C.D.【解析】因为f(x)=2sinωx在[,]上单调递增,所以[,]⊆[,],即≥,所以ωmax=.【答案】C9.执行如图所示的程序框图,输出n为().A.B.65C.D.63【解析】由程序框图知,要求>的最小正整数,即n(n+1)>4030,n=63.【答案】D10.(|x|+2)3的展开式中的常数项为().A.20B.19C.18D.21【解析】因为(|x|+2)3=[(|x|)2]3=(|x|)6,所以Tr+1=(|x|)6r()r=(1)r|x|62r,由62r=0,得r=3.所以展开式中的常数项为20.【答案】A11.已知异面直线a,b,若a⊥b,c与a夹角为30°,则c与b所成角的取值范围为().A.[60°,90°]B.[30°,90°]C.[60°,120°]D.[30°,120°]【解析】如图,当直线c在位置c1时,它与直线b所成的角最小,为60°;当直线c在位置c2时,它与直线b所成的角最大,为90°.【答案】A12.已知函数f(x)=x3+ax2+2bx+c的两个极值分别为f(x1),f(x2),若x1,x2分别在区间(0,1)与(1,2)内,则的取值范围为().A.(1,)B.(∞,]∪(1,+∞)C.(,1)D.(,2)【解析】由题意,得f'(x)=x2+ax+2b,且f'(x)=0的根分别是x1∈(0,1)与x2∈(1,2),则有即画出可行域如图.式子的几何意义是由A,B,C三点围成的不包括边界的三角形区域中的点(a,b)与点D(1,2)连线的斜率,结合图形可知,当直线过D,C时斜率取最大值1,过D,A时斜率取最小值.【答案】C二、填空题13.=.【解析】=23×=8×=8×=8×22=8×=2.【答案】214.设中心在原点的双曲线与椭圆+y2=1有公共的焦点,且它们的离心率互为倒数,则双曲线的方程是.【解析】因为椭圆的焦点为(±1,0),离心率为e=,所以双曲线离心率为e'=,所以1=2a2.又c2a2=b2,所以a2=b2=.故所求双曲线方程为2x22y2=1.【答案】2x22y2=115.已知数列{an}的各项是1或2,首项为1,且在第k个1和第k+1个1之间有2k1个2,即1,2,1,2,2,2,1,2,2,2,2,2,1,…,则a=.【解析】在数列{an}中数到第n个1时,共有的项数为n+1+3+5+…+[2(n1)1]=n+(n1)2.当n=45时,n+(n1)2=1981,即当数到第45个1时,共有1981项.接下来第45个1的后面有2×451个2,即有89项2,其下一项是1,也就是第1981项和第2071项是1,而a1981与a2071这两项之间都是2,因此a=2.【答案】216.甲船在A处观察乙船,乙船在它的北偏东60°的方向,两船相距a海里,乙船正向北行驶.若甲船速度是乙船速度的倍,则甲船应往的方向行驶才能追上乙船,追上时甲船行驶了海里.【解析】如图所示,设到点C时甲船追上乙船,乙船到点C用的时间为t,乙船的速度为v,则BC=vt,AC=vt,B=120°.由正弦定理,得=,所以=,所以sin∠CAB=,即∠CAB=30°,所以∠ACB=30°.所以BC=AB=a,所以AC2=AB2+BC22AB·BCcos120°=a2+a22a2·()=3a2,所以AC= a.【答案】北偏东30° a小题大做(五)一、选择题1.已知i是虚数单位,则()3=().A.1B.1C.iD.i【解析】因为===i,所以()3=(i)3=i.【答案】D2.下列函数中,既是奇函数又在其定义域上是增函数的是().A.y=B.y=x3C.y=log2xD.y=tanx【解析】对于A,y=是奇函数,在其定义域上不是增函数;对于B,y=x3是奇函数,在其定义域上是增函数,满足条件;对于C,y=log2x是非奇非偶函数,在其定义域上是增函数;对于D,y=tanx是奇函数,在其定义域上不是增函数. 【答案】B3.若a>0,b>0,且a≠1,则“logab>0”是“(a1)(b1)>0”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解析】因为a>0,b>0,a≠1,若logab>0成立,当a>1时,有b>1;当0<a<1,有0<b<1,则(a1)(b1)>0成立.若(a1)(b1)>0,有或则logab>0,故“logab>0”是“(a1)(b1)>0”的充要条件.【答案】C4.执行如图所示的程序框图,若要使输入的x值与输出的y值相等,则这样的x值的个数是().A.1B.2C.3D.4【解析】程序框图表示的是求分段函数y=的函数值.依题意得或或解得x=0或x=1或x=4,则这样的x值的个数是3.【答案】C5.要得到函数y=sin2x的图象,只需要将函数y=sin(2x)的图象().A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【解析】因为y=sin(2x)=sin2(x),所以将函数y=sin(2x)的图象向左平移个单位即可得到函数y=sin2x的图象,故选D.【答案】D6.一个几何体的三视图如图所示,则该几何体的体积为().A.15B.16C.17D.18【解析】由三视图可知ABCA'B'C'为所要求的几何体.作C'M⊥BB'于M,由已知,得MB'=1,C'M=3,A'M=3,BM=3.故V=V 三棱柱ABCA'MC'+V三棱锥C'A'MB'=S△A'MC'×BM+S△MA'B'×C'M=×3×3×3+××1×3×3=15.【答案】A7.已知点P是△ABC所在平面上一点,AB边的中点为D,若2=3+,则△ABC与△ABP的面积的比值为().A.3B.2C.1D.【解析】因为2=3+,所以2(+)=3+,所以2=+.因为AB边的中点为D,所以=+,所以=,所以A是PC的中点,所以△ABC与△ABP的面积的比值为1.【答案】C8.函数f(x)=+ln|x|的图象大致为().【解析】当x<0时,函数f(x)=+ln(x),由函数y=、y=ln(x)递减,知函数f(x)=+ln(x)递减,排除选项C、D;当x>0时,函数f(x)=+lnx,此时,f(1)=+ln1=1,而选项A的最小值为2,故可排除A;故选B.【答案】B9.已知实数x,y满足若不等式axy≤3恒成立,则实数a的取值范围为().A.(∞,]B.(∞,4]C.[,2]D.[2,4]【解析】作出不等式组对应的平面区域如图所示.若axy≤3恒成立,即y≥ax3恒成立,平面区域ABC在直线y=ax3的上方即可.又直线y=ax3恒过定点D(0,3),所以kCD≥a,即≥a.【答案】A10.设数列{an}是以3为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,则+++=().A.15B.60C.63D.72【解析】由题意,得an=3+(n1)×1=n+2,bn=2n1,则+++=b3+b4+b5+b6=22+23+24+25=60. 【答案】B11.已知二项式(x2+)n的展开式的二项式系数之和为32,则展开式中含x项的系数是().A.10B.8C.6D.4【解析】由题意,得2n=32,即n=5.展开式的通项公式为Tr+1=·x102r·xr=·x103r.令103r=1,得r=3,故展开式中含x项的系数是=10.【答案】A12.已知F为双曲线=1(a>0,b>0)的右焦点,点A(0,b),过点F,A的直线与双曲线的一条渐近线在y轴右侧的交点为B,若=(+1),则此双曲线的离心率是().A. B. C.2 D.【解析】设F(c,0),A(0,b),渐近线方程为y=x,则直线AF的方程为+=1.联立解得所以点B 的坐标为(,).因为=(+1),所以(c,b)=(+1)(,b),所以c=(+1),即e==.【答案】A二、填空题13.已知全集U={1,1,2,3,4},集合A={1,2,3},B={2,4},则(UA)∪B=.【解析】UA={1,4},(UA)∪B={1,2,4}.【答案】{1,2,4}14.若在区间(0,4)内任取一个实数x,则使不等式x22x3<0成立的概率为.【解析】由x22x3<0解得1<x<3,所以由几何概型的概率公式,得所求事件的概率为=.【答案】15.设a,b为正实数,则+的最小值为.【解析】+==1=1.因为a,b为正实数,所以+≥2=2,当且仅当a=b时取等号,所以+≥1=1(32)=22,故+的最小值为2 2.【答案】2 216.已知函数f(x)=asin+cos(a≠0),且f(x)≤f()恒成立.给出下列结论:①函数y=f(x)在[0,]上单调递增;②将函数y=f(x)的图象向左平移个单位,所得图象对应的函数为偶函数;③若k≥2,则函数g(x)=kxf(2x)有且只有一个零点.其中正确的是.(写出所有正确结论的序号)【解析】f(x)=asin+cos=sin(+φ)(tanφ=).f()=asin+cos=a+,因为f(x)≤f()恒成立,所以≤a+,解得a=.所以f(x)=sin+cos=2sin(+).由x∈[0,]可得+∈[,],所以函数y=f(x)在[0,]上单调递增,故①正确;将函数y=f(x)的图象向左平移个单位,得y=2sin(+),所得图象对应的函数不是偶函数,故②不正确;因为g(x)=kxf(2x)=kx2sinx,即函数g(x)是奇函数,所以g(0)=0.若k≥2,则当x>0时,函数g(x)=kx2sinx≥2x2sinx=2(xsinx)>0,无零点;同理,当x<0时,无零点.综上所述,函数g(x)有且只有一个零点,故③正确.【答案】①③小题大做(六)一、选择题1.复数i3(1+i)2=().A.2B.2C.2iD.2i【解析】i3(1+i)2=i3·2i=2i4=2.【答案】A2.已知M⊆{1,2,3,4,5},若a∈M,则6a∈M的非空集合M有().A.16个B.15个C.7个D.6个【解析】若a∈M,6a∈M,则3,1和5,2和4必同时属于M,将5个数分为3部分,即(3),(1,5),(2,4),故非空集合M 有3+3+1=7个.【答案】C3.已知Ω={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≤4,y≥0,y≤},若向区域Ω上随机投一点P,则点P落在区域A的概率为().A.B. C.D.【解析】Ω与A所表示的区域如图所示,因为SΩ=×6×6=18,SA=dx==×=,所以点P落入区域A的概率为==.【答案】B4.若函数y=Asin(ωx+φ)(x∈R)的部分图象如图所示,则f(x)=().A.y=2sin(2x+)B.y=2sin(x+)C.y=2sin(2x+)D.y=2sin(x+)【解析】根据五点法作图的对应关系,可知(,0)对应第一个点,(,0)对应第五个点,于是有解得故y=Asin(2x+).又函数图象过点(0,),所以Asin=,解得A=2.故y=2sin(2x+).【答案】A5.若(x+)(2x)5的展开式中各项系数的和为2,则a=().A.2B.2C.1D.1【解析】令x=1,则1+a=2,得a=1.【答案】D6.一个正方体的展开图如图所示,B,C,D为原正方体的顶点,A为原正方体一条棱的中点.在原来的正方体中,CD与AB所成角的余弦值为().A. B.C. D.【解析】还原正方体如图所示,设AD=1,则AB=,AF=1,BE=EF=2,AE=3.因为CD与AB所成角等于BE与AB所成角,所以其余弦值为cos∠ABE==.【答案】D7.若实数a,b满足a≥0,b≥0且ab=0,则称a与b互补.记φ(a,b)=ab,那么φ(a,b)=0是a与b互补的().A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分又不必要条件【解析】若φ(a,b)=0,则=a+b,两边平方得ab=0,又a+b≥0,所以a≥0,b≥0,故a与b互补.若a≥0,b≥0且ab=0,则φ(a,b)=ab===0.综上知选C.【答案】C8.若向量a=(cosα,sinα),b=(cosβ,sinβ),则a与b一定满足().A.a与b的夹角θ等于αβB.(a+b)⊥(ab)C.a∥bD.a⊥b【解析】对于A,cosθ=,因为|a|=|b|=1,所以cosθ=a·b=cos(αβ),但θ不一定等于αβ;对于B,因为(a+b)·(ab)=0,所以(a+b)⊥(ab);对于C,若a∥b,则cosαsinβsinαcosβ=0,sin(βα)=0,不一定成立;对于D,若a⊥b,则a·b=0,cosαcosβ+sinαsinβ=0,cos(αβ)=0,不一定成立.【答案】B9.执行如图所示的程序框图,若输入l=2,m=3,n=5,则输出的y的值为().A.11B.25C.68D.72【解析】当输入l=2,m=3,n=5时,不满足l2+m2+n2=0,因此执行y=70l+21m+15n=278.由于278>105,故执行y=y105,得y=173,再执行一次y=y105,得y=68,此时68>105不成立,故输出的y的值为68.【答案】C10.若函数f(x)、g(x)分别是R上的奇函数、偶函数,且满足f(x)g(x)=ex,则有().A.f(2)<f(3)<g(0)B.g(0)<f(3)<f(2)C.f(2)<g(0)<f(3)D.g(0)<f(2)<f(3)【解析】用x代换x,得f(x)g(x)=ex,即f(x)+g(x)=ex,联立解得当x>0时,函数f(x)单调递增且大于0,又g(0)=1,故g(0)<f(2)<f(3).【答案】D11.P是椭圆+y2=1上的一点,F为椭圆的一个焦点,且△POF为等腰三角形(O为原点),则点P的个数是().A.2B.4C.6D.8【解析】使△POF为等腰三角形,包括|PF|=|PO|,|FP|=|FO|,|OF|=|OP|三种情形.第一种情形,作线段OF的中垂线,与椭圆交于两点;第二种情形,以F为圆心,为半径画弧,与椭圆交于两点;第三种情形,以O为圆心,为半径画弧,与椭圆交于四点.所以满足题意的点P共有8个.【答案】D12.墙上挂着1张高为2m的油画,它的下沿线距地平面2m,观画者的眼睛距地平面1.7m,若使观画者对此画所张的视角达到最大,则他应距墙()m.A. B. C. D.【解析】如图,设油画上沿为B,下沿为A,观画者的眼睛在O点,他与墙的距离为CD=x(x>0),由已知,得AB=2,EA=0.3,DE=1.7.在Rt△OEB中,tan(α+β)=,在Rt△OEA中,tanα=,则tanβ=tan[(α+β)α]==.因为tanβ在(0,)上单调递增,所以要使β达到最大,即要使tanβ达到最大值.而(tanβ)'=()'==0,解得x=.当x∈(0,)时,f(x)=递增;当x∈(,+∞)时,f(x)=递减.所以当x=m时,观画者对此画所张的视角达到最大.【答案】C二、填空题13.an=则S20=.【解析】当n为奇数时,该数列的奇数项构成公差为4的等差数列,前10个奇数项分别为1,5,9,…,37;当n为偶数时,该数列的偶数项构成公比是2的等比数列,前10个偶数项分别为2,4,8,…,210,故S20=+=2236.【答案】223614.设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为. 【解析】当圆C的半径最大时,设其圆心坐标为(a,0),则半径为3a,其中0<a<3.圆C的方程为(xa)2+y2=(3a)2,联立消去y,得(xa)2+2x=(3a)2,整理得x2+(22a)x+6a9=0.当圆C的半径取到的最大值时,圆C 与抛物线相切,所以Δ=(22a)24(6a9)=0,解得a=4±.又因为0<a<3,所以a=4,故圆C的半径最大为3a= 1.【答案】 115.已知函数f(x)=x3+f'()x2x,则函数f(x)的图象在点(,f())处的切线方程是.【解析】由已知可得f'(x)=3x2+2f'()x1,所以f'()=3×()2+2f'()×1,解得f'()=1,即f(x)=x3x2x,则f()=,得函数f(x)的图象在点(,f())处的切线方程是27x+27y+4=0.【答案】27x+27y+4=016.已知函数fn(x)=[x[x]],x∈(n,n+1)(n=1,2,3,…),其中[x]表示不超过x的最大整数,如:[2.1]=3,[3]=3,[2.5]=2.函数fn(x)的值域中元素个数记为an,数列{an}的前n项和为Sn,则满足anSn<500的最大正整数n=.【解析】当x∈(n,n+1)时,[x]=n,则x[x]=nx∈(n2,n2+n),所以[x[x]]可取到的值分别为n2,n2+1,n2+2,…,n2+n1,共有n个数,即an=n,所以Sn=,即anSn=.当n=9时,a9S9==405<500,当n=10时,a10S10==550>500,所以nmax=9.【答案】9小题大做(七)一、选择题1.“ab>0且a+b<0”是“a与b均为负数”的().A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【解析】因为“ab>0且a+b<0”⇔“a与b均为负数”,所以“ab>0且a+b<0”是“a与b均为负数”的充要条件.。