国内外地面燃气轮机涡轮叶片材料及涂层技术
- 格式:ppt
- 大小:24.02 MB
- 文档页数:54
燃机电厂燃气轮机叶片修复技术研究与实践燃机电厂燃气轮机叶片修复技术研究与实践随着能源需求的不断增长,燃机电厂在电力生产中扮演着重要的角色。
而燃气轮机作为关键设备之一,其叶片的正常运行对于电厂的高效稳定运行至关重要。
然而,由于长期高温高压工作环境,叶片发生磨损、腐蚀、疲劳等问题是不可避免的。
因此,燃气轮机叶片修复技术的研究与实践具有重要的现实意义和发展前景。
一、燃气轮机叶片的磨损问题及其修复方案燃气轮机叶片由于长期高温高压工作环境的影响,容易出现磨损现象。
常见的磨损形式有表面磨损、边缘磨损和背面磨损等。
为了解决这些问题,研究人员提出了多种修复方案。
1. 表面喷涂修复技术表面喷涂修复技术是一种常见的叶片磨损修复方法,其主要通过在叶片表面喷涂陶瓷材料或高温合金材料来提高叶片的耐磨性和耐腐蚀性。
这种修复方法不仅能够修复叶片表面的磨损,还可以提高叶片的使用寿命和性能。
2. 激光熔覆修复技术激光熔覆修复技术采用激光束对叶片表面进行高温熔化,然后将金属粉末喷射到受损区域,通过熔覆和复合作用形成新的覆层。
这种修复方法不仅能够修复磨损叶片的表面,还可以提高其抗腐蚀和抗疲劳性能。
3. 离子注入修复技术离子注入修复技术是利用离子束撞击叶片表面,将离子注入叶片内部,从而改变叶片材料的化学成分和物理性能。
这种修复方法可以提高叶片的硬度、耐腐蚀性和耐磨性,有效延长叶片的使用寿命。
二、燃气轮机叶片腐蚀问题及其修复方案除了磨损问题,燃气轮机叶片还容易受到各种化学气体的腐蚀影响。
常见的腐蚀形式有氧化腐蚀、硫化腐蚀和氯化腐蚀等。
为了解决这些问题,研究人员也提出了多种腐蚀修复方案。
1. 阻隔涂层修复技术阻隔涂层修复技术是一种常见的叶片腐蚀修复方法,其主要通过在叶片表面涂覆耐腐蚀性强的涂层,阻隔进一步的腐蚀发生。
这种修复方法不仅能够修复叶片的腐蚀损伤,还可以提高叶片的腐蚀抵抗能力。
2. 化学溶液修复技术化学溶液修复技术利用特定的化学溶液对叶片表面进行腐蚀清理,去除叶片表面的腐蚀产物和氧化层,恢复叶片的原始材料表面。
航空发动机涡轮叶片热障涂层研究现状【1】航空发动机涡轮叶片热障涂层研究现状【2】概述航空发动机是现代航空运输的核心组件,而涡轮叶片则是发动机中最重要的零部件之一。
涡轮叶片承受着高温高压的工作环境,需要具备优异的耐热性和耐腐蚀性能。
为了提高涡轮叶片的寿命和性能,热障涂层技术应运而生。
本文将对航空发动机涡轮叶片热障涂层的研究现状进行探讨。
【3】热障涂层的作用热障涂层技术是通过在涡轮叶片表面涂覆一层耐高温材料,形成热障层,以减少叶片表面的工作温度,提高叶片的耐热性能和抗氧化能力。
热障涂层能够有效减少涡轮叶片的热应力和热疲劳损伤,延长叶片的使用寿命,并提高发动机的工作效率和可靠性。
【4】热障涂层研究的发展历程热障涂层技术在航空领域的发展可以追溯到上世纪50年代,最初采用的是金属涂层。
然而,金属涂层存在着氧化、粘结力差等问题,限制了其应用。
随着陶瓷涂层材料的研究和发展,陶瓷涂层逐渐取代金属涂层成为主流。
目前,热障涂层的研究重点主要集中在材料性能的优化、工艺改进以及涂层与基底材料之间的耦合问题等方面。
【5】热障涂层材料的选择航空发动机涡轮叶片的热障涂层材料需要具备优异的耐高温性能、热膨胀系数匹配性和抗氧化能力。
目前常用的涂层材料主要有氧化铝、氧化锆和复合材料等。
不同的涂层材料具有各自的特点和优势,在应用中需要根据具体的工作环境和性能要求来选择合适的材料。
【6】研究热障涂层的关键技术热障涂层的研究涉及到材料制备、涂层工艺、热处理和性能评价等多个方面。
其中,材料制备的关键技术包括热喷涂和物理气相沉积等方法,涂层工艺的关键技术包括预处理、喷涂参数控制和后处理等。
涂层与基底材料之间的耦合问题也是热障涂层研究中的一个重要方向。
【7】热障涂层的性能评价热障涂层的性能评价主要包括热稳定性、热膨胀性、抗氧化性和机械性能等指标。
常用的测试方法有热循环试验、热膨胀系数测试、高温氧化试验和机械性能测试等。
通过对涂层性能的评价,可以为进一步改进和优化涂层设计提供参考和依据。
航-空-发-动-机-叶-片-涂-层能,广泛用于制造航空发动机和各类燃气轮机的涡轮叶片(blade and vane)。
就材质来看:各国的高温合金型号虽各不相同,但就相近成分的高温合金来说,其性能相近(生产工艺方法不同有也造成性能有大的差异)。
好的高温合金的使用温度也只有1073K左右,为达到前面所说的要求温度,采用的方法有二:一是制成空心的叶片。
空心叶片自20世纪60年代中期出现以来,经历了对流冷却、冲击冷却、气膜冷却以及综合冷却的发展历程,使进气口温度高出叶片材料约300—500℃,内腔的走向复杂化和细致化。
这一步的改进仍难满足需要,且英国发展计划将取消冷却。
二是涂层,常进行多材质多层次涂层。
PVT公司研究表明:军用直升机上的发动机叶片采用涂层,在沙漠上飞行,寿命可提高3倍左右,不仅大大降低了制造发动机叶片的成本,同时也使飞机的维护时间延长了两倍。
二.涡轮叶片的涂层高温合金的生产方法或晶形结构对产品的性能是有很大影响的,如图1所示,GE公司20年前开始采用单晶高温合金制作战机用发Fig.1 Comparative preperties of polycrystal,columnar and single-crystal superallys动机叶片。
从图1看出:使用单晶后,蠕变和热疲劳提高9倍,但抗腐蚀性只提高4倍,增加涂层仍十分必要。
涡轮叶片的涂层的方法很多,常用的有热渗、磁控溅射、热喷涂三种,热渗法方法简单方便,成本低,也是最适合叶片内腔涂层的方法。
热渗法属于化学热处理,利用高温的方法将化学原子扩散注入到基体金属中,并在其表面沉积均匀的保护膜。
根据使用原料的状态的不同,又可分为固体粉末包埋法、气相法、液相法和浆料法,其中固体粉末包埋法、气相法用得最广。
热渗涂层原理简单,但工艺控制方法是关键,我国已有相关部门在进行这方面的研究,但从公布的图片看,仍有差距;国外对军工涂层技术也是封锁的。
下面谈GE和Siemens两家世界最大的燃气轮机生厂家的有关情况。
涂层技术在航空发动机中的应用(一)涂层技术在航空发动机中的应用1. 提高发动机效率•热障涂层(TBC)热障涂层是一种高温耐受能力极强的陶瓷涂层,在航空发动机中有广泛应用。
它可以有效降低高温燃烧室和涡轮内部的表面温度,减少热量传递到其他部件,提高燃烧效率和涡轮的使用寿命。
热障涂层采用涂敷的方式施加在发动机部件表面,形成一层隔热层,同时具备优异的耐热性、耐腐蚀性和耐磨性。
•摩擦涂层摩擦涂层是一种能够减少摩擦阻力、降低能耗和延长机械部件寿命的涂层技术。
在航空发动机中,喷涂摩擦涂层可以应用于涡轮叶片表面以减少摩擦热造成的能量损耗,提高发动机效率。
该涂层通常由涂料和固化剂组成,喷涂后会形成一层耐磨、耐热的涂层,提供涡轮叶片所需的低摩擦系数。
2. 保护发动机结构•防腐蚀涂层发动机作为飞机的核心部件,其表面容易受到腐蚀的影响。
防腐蚀涂层能够降低发动机金属部件受到酸性气体、高温、湿度等因素的腐蚀程度,提高其耐久性。
航空发动机中使用的防腐蚀涂层通常采用环氧树脂和特殊添加剂,能够有效隔离金属与外界环境,降低腐蚀速度,同时具备耐温性能。
•降噪涂层航空发动机产生的噪音是对航空乘客和地面居民造成的主要干扰。
降噪涂层是一种能够减少发动机噪音输出的技术。
该涂层通常由吸声材料和表面粗糙度调整剂构成,能够通过吸收噪音和改变噪音传播路径来降低发动机产生的噪音水平。
降噪涂层的应用可以有效改善乘客舒适度,减少航空噪声对环境的影响。
3. 增强结构强度•硬质涂层硬质涂层是一种附着在金属表面的高硬度涂层,可以提供结构件的抗磨损和抗腐蚀能力。
在航空发动机中,硬质涂层通常应用于涡轮轴承、气门、活塞等部件表面,能够减少零部件间的摩擦和磨损,提高结构件的使用寿命。
常见的硬质涂层材料包括碳化硅、氮化硼等。
•纳米涂层纳米涂层是一种厚度在纳米级别的超薄涂层,它能够提供出色的防腐蚀和防磨损性能。
航空发动机中的纳米涂层可应用于活塞环、气缸内壁等部件表面,能够减少部件摩擦和磨损,提高结构件的使用寿命。