数列的单调性及其判定
- 格式:doc
- 大小:179.00 KB
- 文档页数:3
高等数学中的数列与极限引言:数列与极限是高等数学中的重要概念,它们在数学分析、微积分等学科中起着至关重要的作用。
本教案将从数列的定义开始,逐步介绍数列的性质、收敛与发散的判定方法,以及极限的概念及其性质。
通过本教案的学习,学生将能够深入理解数列与极限的概念与性质,为后续的数学学习打下坚实的基础。
一、数列的定义与性质数列是按照一定规律排列的一组数的有序集合。
数列的定义包括了数列的通项公式和数列的项数范围。
数列的性质包括有界性、单调性和有限项和等。
1.1 有界性数列的有界性是指数列的所有项都在某个范围内,即存在上界和下界。
上界是指数列中的所有项都小于等于某个数,下界是指数列中的所有项都大于等于某个数。
有界数列在数学分析中具有重要的性质和应用。
1.2 单调性数列的单调性是指数列的项随着项数的增加而单调递增或单调递减。
单调递增数列是指数列的后一项大于等于前一项,单调递减数列是指数列的后一项小于等于前一项。
单调性是数列性质中的重要概念,对于数列的收敛与发散的判定有着重要的影响。
1.3 有限项和有限项和是指数列中前n项的和,记作S(n)。
对于某些数列,当n趋向于无穷大时,有限项和也会趋向于某个数。
这个数就是数列的极限。
二、收敛与发散的判定方法数列的收敛与发散是数列理论中的重要概念,它们对于理解数列的性质和应用有着重要的作用。
本小节将介绍数列收敛与发散的判定方法。
2.1 收敛数列的定义数列收敛是指数列的项随着项数的增加逐渐趋近于某个数,这个数称为数列的极限。
数列收敛的定义可以用极限的ε-N语言来描述,即对于任意给定的正数ε,存在正整数N,使得当n大于等于N时,数列的项与极限的差的绝对值小于ε。
2.2 发散数列的定义数列发散是指数列的项随着项数的增加没有趋近于某个数的性质。
发散数列可以分为无穷大和无穷小两类。
2.3 收敛与发散的判定方法判定数列是否收敛或发散的方法有多种。
其中,夹逼定理、单调有界数列的性质以及数列极限的四则运算法则是常用的判定方法。
数列极限的定义和判定方法数列是数学中的重要概念,它在许多数学领域中都有广泛的应用。
在数列中,极限是一个关键的概念,它可以帮助我们更好地理解数列的变化趋势和性质。
本文将介绍数列极限的定义和判定方法,希望能够对读者有所帮助。
一、数列极限的定义数列的极限是指随着数列项的无限增加,数列的值逐渐趋近于一个常数。
数列极限的定义可以用以下形式来描述:对于给定的实数L,如果对于任意给定的正数ε,存在正整数N,使得当n大于N时,数列的项a_n满足不等式|a_n - L| < ε,那么我们说数列的极限为L。
在这个定义中,L表示数列的极限值,ε表示误差范围,N表示某个正整数。
二、数列极限的判定方法1. 数列极限的定义判定法根据数列极限的定义,我们可以通过判断数列是否满足定义来确定其极限。
具体步骤如下:(1)根据给定的极限值L和误差范围ε,找到对应的正整数N。
(2)验证对于任意大于N的整数n,数列的项a_n是否满足不等式|a_n - L| < ε。
(3)如果满足上述条件,则数列的极限为L;否则,数列不存在极限。
这种判定方法较为直接,但需要根据具体的数列和极限值进行具体的推导分析。
2. 数列极限的基本性质判定法数列极限的判定方法中,除了直接根据定义判断外,还有一些基本性质可以用来帮助判断。
以下是常用的基本性质:(1)有界性:如果数列有界,即存在一个常数M,使得对于所有的正整数n,都有|a_n| ≤ M,那么数列必存在极限。
(2)单调性:如果数列单调递增且有上界(或递减且有下界),那么数列必存在极限。
(3)夹逼准则:如果存在两个数列{a_n}和{b_n},使得对于所有的正整数n,都有a_n ≤ c_n ≤ b_n,且数列{a_n}和{b_n}的极限都为L,那么数列{c_n}的极限也为L。
(4)递推公式:如果数列通过递推公式来定义,且递推公式能够收敛到一个常数L,那么数列的极限也为L。
根据上述性质,我们可以利用数列的特点和性质,通过分析数列的变化趋势来判定其极限。
专题突破二 数列的单调性和最大(小)项一、数列的单调性(1)定义:若数列{a n }满足:对一切正整数n ,都有a n +1>a n (或a n +1<a n ),则称数列{a n }为递增数列(或递减数列).(2)判断单调性的方法①转化为函数,借助函数的单调性,如基本初等函数的单调性等,研究数列的单调性. ②利用定义判断:作差比较法,即作差比较a n +1与a n 的大小;作商比较法,即作商比较a n +1与a n 的大小,从而判断出数列{a n }的单调性.例1 已知函数f (x )=1-2x x +1(x ≥1),构造数列a n =f (n )(n ∈N *).试判断数列的单调性. 解 f (x )=1-2x x +1=-2+3x +1. 方法一 ∵a n =-2+3n +1(n ∈N *),a n +1=-2+3n +2, ∴a n +1-a n =3n +2-3n +1=3(n +1-n -2)(n +1)(n +2)=-3(n +1)(n +2)<0. ∴a n +1<a n .∴数列{a n }是递减数列.方法二 设x 1>x 2≥1,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫-2+3x 1+1-⎝ ⎛⎭⎪⎫-2+3x 2+1 =3x 1+1-3x 2+1=3(x 2-x 1)(x 1+1)(x 2+1), ∵x 1>x 2≥1,∴x 1+1>0,x 2+1>0,x 2-x 1<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在[1,+∞)上为减函数,∴a n =f (n )为递减数列.反思感悟 研究数列的单调性和最大(小)项,首选作差,其次可以考虑借助函数单调性.之所以首选作差,是因为研究数列的单调性和研究函数单调性不一样,函数单调性要设任意x 1<x 2,而数列只需研究相邻两项a n +1,a n ,证明难度是不一样的.另需注意,函数f (x )在[1,+∞)上单调,则数列a n =f (n )一定单调,反之不成立.跟踪训练1 数列{a n }的通项公式为a n =-3×2n -2+2×3n -1,n ∈N *.求证:{a n }为递增数列. 证明 a n +1-a n =-3×2n -1+2×3n -(-3×2n -2+2×3n -1)=3(2n -2-2n -1)+2(3n -3n -1)=-3×2n -2+4×3n -1 =2n -2⎣⎡⎦⎤12×⎝⎛⎭⎫32n -2-3, ∵n ≥1,n ∈N *,∴⎝⎛⎭⎫32n -2≥⎝⎛⎭⎫321-2=23,∴12×⎝⎛⎭⎫32n -2≥8>3,∴12×⎝⎛⎭⎫32n -2-3>0,又2n -2>0, ∴a n +1-a n >0,即a n +1>a n ,n ∈N *.∴{a n }是递增数列.二、求数列中的最大(或最小)项问题常见方法:(1)构造函数,确定函数的单调性,进一步求出数列的最值.(2)利用⎩⎪⎨⎪⎧ a n ≥a n +1,a n ≥a n -1(n ≥2)求数列中的最大项a n ;利用⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1(n ≥2)求数列中的最小项a n .当解不唯一时,比较各解大小即可确定.例2 在数列{a n }中,a n =n - 2 018n - 2 019,求该数列前100项中的最大项与最小项的项数. 解 a n =n - 2 018n - 2 019=1+ 2 019- 2 018n - 2 019,设f (x )=1+ 2 019- 2 018x - 2 019,则f (x )在区间(-∞, 2 019)与( 2 019,+∞)上都是减函数.因为44< 2 019<45,故数列{a n }在0<n ≤44,n ∈N *时递减,在n ≥45时递减,借助f (x )=1+2 019- 2 018x - 2 019的图象知数列{a n }的最大值为a 45,最小值为a 44.所以最大项与最小项的项数分别为45,44.反思感悟 本题考查根据数列的单调性求数列的最大项和最小项,此类题一般借助相关函数的单调性来研究数列的单调性,然后再判断数列的最大项与最小项.跟踪训练2 已知数列{a n }的通项公式a n =411-2n,则{a n }的最大项是( ) A .a 3B .a 4C .a 5D .a 6 答案 C解析 f (x )=411-2x 在⎝⎛⎭⎫-∞,112,⎝⎛⎭⎫112,+∞上都是增函数. 且1≤n ≤5时,a n >0,n ≥6时,a n <0.∴{a n }的最大值为a 5.例3 已知数列{a n }的通项公式为a n =n 2-5n +4,n ∈N *.(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出其最小值.解 (1)由n 2-5n +4<0,解得1<n <4.∵n ∈N *,∴n =2,3.∴数列中有两项是负数.(2)∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94,且n ∈N *, ∴当n =2或n =3时,a n 有最小值,其最小值为22-5×2+4=-2.反思感悟 有时也可借助函数最值来求数列最值.但应注意函数最值点不是正整数的情形.跟踪训练3 已知(-1)n a <1-12n 对任意n ∈N *恒成立,则实数a 的取值范围是 . 答案 ⎝⎛⎭⎫-12,34 解析 设f (n )=1-12n ,n ≥1,则f (n )单调递增.当n 为奇数时,有-a <1-12n 又f (n )min =f (1)=1-12=12. ∴-a <12即a >-12. 当n 为偶数时,a <1-12n . f (n )min =f (2)=1-14=34. ∴a <34.综上,-12<a <34. 例4 已知数列{a n }的通项公式为a n =n ⎝⎛⎭⎫79n +1,n ∈N *,则该数列是否有最大项,若有,求出最大项的项数;若无,说明理由.解 ∵a n +1-a n =(n +1)·⎝⎛⎭⎫79n +2-n ⎝⎛⎭⎫79n +1=⎝⎛⎭⎫79n +1·7-2n 9,且n ∈N *,∴当n >3,n ∈N *时,a n +1-a n <0;当1≤n ≤3,n ∈N *时,a n +1-a n >0.综上,可知{a n }在n ∈{1,2,3}时,单调递增;在n ∈{4,5,6,7,…}时,单调递减.所以存在最大项.又a 3=3×⎝⎛⎭⎫793+1<a 4=4×⎝⎛⎭⎫794+1,所以第4项为最大项. 反思感悟 如果本例用函数单调性来解决,就会变得很麻烦.跟踪训练4 已知数列{b n }的通项公式为b n =2n -92n ,n ∈N *,求{b n }的最大值. 解 ∵b n +1-b n =2n -72n +1-2n -92n =-2n +112n +1,且n ∈N *, ∴当n =1,2,3,4,5时,b n +1-b n >0,即b 1<b 2<b 3<b 4<b 5.当n =6,7,8,…时,b n +1-b n <0,即b 6>b 7>b 8>…,又b 5=132<b 6=364. ∴{b n }的最大值为b 6=364. 三、利用数列的单调性确定变量的取值范围常利用以下等价关系:数列{a n }递增⇔a n +1>a n 恒成立;数列{a n }递减⇔a n +1<a n 恒成立,通过分离变量转化为代数式的最值来解决.例5 已知数列{a n }中,a n =n 2+λn ,n ∈N *.(1)若{a n }是递增数列,求λ的取值范围.(2)若{a n }的第7项是最小项,求λ的取值范围.解 (1)由{a n }是递增数列⇔a n <a n +1⇔n 2+λn <(n +1)2+λ(n +1)⇔λ>-(2n +1),n ∈N *⇔λ>-3. ∴λ的取值范围是(-3,+∞).(2)依题意有⎩⎪⎨⎪⎧ a 7≤a 6,a 7≤a 8,即⎩⎪⎨⎪⎧72+7λ≤62+6λ,72+7λ≤82+8λ, 解得-15≤λ≤-13,即λ的取值范围是[-15,-13].反思感悟 注意只有对二次函数这样的单峰函数,这个解法才成立,对于如图的多峰函数满足⎩⎪⎨⎪⎧a 7≤a 6,a 7≤a 8,不一定a 7最小.跟踪训练5 数列{a n }中,a n =2n -1-k ·2n -1,n ∈N *,若{a n }是递减数列,求实数k 的取值范围.解 a n +1=2(n +1)-1-k ·2n +1-1=2n +1-k ·2n ,a n +1-a n =2-k ·2n -1.∵{a n }是递减数列,∴对任意n ∈N *,有2-k ·2n -1<0,即k >22n -1恒成立, ∴k >⎝ ⎛⎭⎪⎫22n -1max =2, ∴k 的取值范围为(2,+∞).1.设a n =-2n 2+29n +3,n ∈N *,则数列{a n }的最大项是( )A .103B.8658C.8258D .108答案 D解析 ∵a n =-2⎝⎛⎭⎫n -2942+2×29216+3,而n ∈N *, ∴当n =7时,a n 取得最大值,最大值为a 7=-2×72+29×7+3=108.故选D.2.已知数列{a n }的通项公式为a n =⎝⎛⎭⎫49n -1-⎝⎛⎭⎫23n -1,则数列{a n }( )A .有最大项,没有最小项B .有最小项,没有最大项C .既有最大项又有最小项D .既没有最大项也没有最小项答案 C解析 a n =⎝⎛⎭⎫49n -1-⎝⎛⎭⎫23n -1=⎣⎡⎦⎤⎝⎛⎭⎫23n -12-⎝⎛⎭⎫23n -1,令⎝⎛⎭⎫23n -1=t ,则t 是区间(0,1]内的值,而a n =t 2-t =⎝⎛⎭⎫t -122-14,所以当n =1,即t =1时,a n 取最大值.使⎝⎛⎭⎫23n -1最接近12的n 的值为数列{a n }中的最小项,所以该数列既有最大项又有最小项. 3.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大( )A .10B .11C .10或11D .12答案 C解析 ∵a n =-n 2+10n +11是关于n 的二次函数,∴数列{a n }是抛物线f (x )=-x 2+10x +11上的一些离散的点,∴{a n }前10项都是正数,第11项是0,∴数列{a n }前10项或前11项的和最大.故选C.4.数列{a n }中,a 1=2,a n =2a n -1(n ∈N *,2≤n ≤10),则数列{a n }的最大项的值为 . 答案 1 024解析 ∵a 1=2,a n =2a n -1,∴a n >0,∴a n a n -1=2>1, ∴a n >a n -1,即{a n }单调递增,∴{a n }的最大项为a 10=2a 9=22a 8=…=29·a 1=29·2=210=1 024.5.已知数列{a n }中,a n =1+12n -1+m.若a 6为最大项,则实数m 的取值范围是 . 答案 (-11,-9)解析 根据题意知,y =1+12x -1+m 的图象如下:由a 6为最大项,知5<1-m 2<6.∴-11<m <-9.一、选择题1.已知数列{a n }满足a 1>0,2a n +1=a n ,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .以上都不对答案 B解析 ∵a 1>0,a n +1=12a n ,∴a n >0,∴a n +1a n =12<1,∴a n +1<a n ,∴数列{a n }是递减数列.2.在数列{a n }中,a n =n ,则{a n }是( )A .递增数列B .递减数列C .常数列D .以上都不是答案 A解析 ∵a n +1-a n =(n +1)-n =1>0,∴数列{a n }是递增数列.3.已知数列{a n }的通项公式为a n =n 2-9n -100,则其最小项是() A .第4项 B .第5项C .第6项D .第4项或第5项答案 D解析 f (x )=x 2-9x -100的对称轴为x =92,且开口向上.∴a n =n 2-9n -100的最小项是第4项或第5项.4.在递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值范围是( )A .RB .(0,+∞)C .(-∞,0)D .(-∞,0]答案 C解析 ∵{a n }是递减数列,∴a n +1-a n =k (n +1)-kn =k <0.5.函数f (x )满足f (n +1)=f (n )+3(n ∈N *),a n =f (n ),则{a n }是( )A .递增数列B .递减数列C .常数列D .不能确定 答案 A解析 a n +1-a n =f (n +1)-f (n )=3>0.6.已知p >0,n ∈N *,则数列{log 0.5p n }是( )A .递增数列B .递减数列C .增减性与p 的取值有关D .常数列 答案 C解析 令a n =log 0.5p n .当p >1时,p n +1>p n ,∴log 0.5p n +1<log 0.5p n ,即a n +1<a n ;当0<p ≤1时,p n +1≤p n ,∴log 0.5p n +1≥log 0.5p n ,即a n +1≥a n .故选C.7.已知数列{a n }的通项公式为a n =n n 2+6(n ∈N *),则该数列的最大项为( ) A .第2项B .第3项C .第2项或第3项D .不存在 答案 C解析 易知,a n =1n +6n.函数y =x +6x (x >0)在区间(0,6)上单调递减,在区间(6,+∞)上单调递增,故数列a n =1n +6n(n ∈N *)在区间(0,6)上递增,在区间(6,+∞)上递减. 又2<6<3,且a 2=a 3,所以最大项为第2项或第3项.8.已知数列a n 的通项公式a n =n +k n,若对任意的n ∈N *,都有a n ≥a 3,则实数k 的取值范围为( )A .[6,12]B .(6,12)C .[5,12]D .(5,12)答案 A解析 n +k n ≥3+k 3对任意的n ∈N *恒成立,则k ⎝⎛⎭⎫1n -13≥3-n , k (3-n )3n≥3-n , 当n ≥4时,k ≤3n ,所以k ≤12,当n =1时,k ≥3,当n =2时,k ≥6,以上三个要都成立,故取交集得6≤k ≤12.二、填空题9.已知数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }的各项中的最小项是第 项. 答案 5解析 易知,a n =3n 2-28n =3⎝⎛⎭⎫n -1432-1963,故当n 取143附近的正整数时,a n 最小. 又4<143<5,且a 4=-64,a 5=-65,故数列{a n }的各项中的最小项是第5项. 10.若数列{a n }为递减数列,则{a n }的通项公式可能为 (填序号).①a n =-2n +1;②a n =-n 2+3n +1;③a n =12n ;④a n =(-1)n . 答案 ①③解析 可以通过画函数的图象一一判断,②有增有减,④是摆动数列.11.设函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是 .答案 (2,3)解析 由题意,得点(n ,a n )分布在分段函数f (x )=⎩⎪⎨⎪⎧ (3-a )x -3,x ≤7,a x -6,x >7的图象上. 因此当3-a >0时,a 1<a 2<a 3<…<a 7;当a >1时,a 8<a 9<a 10<…;为使数列{a n }递增还需a 7<a 8.故实数a 满足条件⎩⎪⎨⎪⎧3-a >0,a >1,f (7)<f (8),解得2<a <3,故实数a 的取值范围是(2,3). 三、解答题12.已知数列{a n }中,a n =n 2-kn (n ∈N *),且{a n }递增,求实数k 的取值范围. 解 因为a n +1=(n +1)2-k (n +1),a n =n 2-kn , 所以a n +1-a n =(n +1)2-k (n +1)-n 2+kn =2n +1-k . 由于数列{a n }递增,故应有a n +1-a n >0,即2n +1-k >0,n ∈N *恒成立,分离变量得k <2n +1, 故需k <3即可,所以k 的取值范围为(-∞,3).13.已知数列{a n }的通项公式为a n =n 2+11n .(1)判断{a n }的单调性; (2)求{a n }的最小项.解 (1)a n +1-a n =(n +1)+11n +1-⎝⎛⎭⎫n +11n =1+11n +1-11n =n (n +1)-11n (n +1),且n ∈N *,当1≤n ≤2时,a n +1-a n <0, 当n ≥3时,a n +1-a n >0, 即n =1,n =2时,{a n }递减, n ≥3时,{a n }递增.(2)由(1)知{a n }的最小项从a 2,a 3中产生. 由a 2=152>a 3=203,∴{a n }的最小项为a 3=203.14.已知数列a n =n +13n -16,则数列{a n }中的最小项是第 项.答案 5解析 a n =n +13n -16=n -163+1933n -16=13+1933n -16,令3n -16<0,得n <163.又f (n )=a n 在⎝⎛⎭⎫0,163上单调递减,且n ∈N *, 所以当n =5时,a n 取最小值.15.作出数列{a n }:a n =-n 2+10n +11的图象,判断数列的增减性,若有最值,求出最值. 解 列表图象如图所示.由数列的图象知,当1≤n≤5时数列递增;当n>5时数列递减,最大值为a5=36,无最小值.。
一、如何判断数列的单调性
1.对单调数列的理解:数列是特殊的函数,特殊在于其定义域为正整数集或它的子集.有些数列不存在单调性.有些数列在正整数集上有多个单调情况,有些数列在正整数集上单调性一定;
2.单调数列的判定方法:已知数列{a n}的通项公式,要讨论这个数列的单调性,即比较a n与a n+1的大小关系,可以作差比较;也可以作商比较,前提条件是数列各项为正。
二、单调数列:
递增数列和递减数列通称为单调数列.
1、一般地,一个数列{a n},如果从第2项起,每一项都大于它的前一项的数列叫做递增数列
2、如果从第2项起,每一项都小于它的前一项的数列叫做递减数列。
三、递增数列的定义:
一般地,一个数列{a n},如果从第2项起,每一项都大于它的前一项的数列叫做递增数列。
递减数列的定义:
如果从第2项起,每一项都小于它的前一项的数列叫做递减数列。
数列的单调性(1)一个数列{a n },如果从第2项起,每一项都大于它前面的一项,即a n +1>a n ,那么这个数列叫作递增数列.(2)一个数列,如果从第2项起,每一项都小于它前面的一项,即a n +1<a n ,那么这个数列叫作递减数列.(3)一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫作摆动数列.(4)如果数列{a n }的各项都相等,那么这个数列叫作常数列.[典例] 已知数列{a n }的通项公式为a n =22n -9,画出它的图像,并判断增减性. [解] 图像如图所示,该数列在{1,2,3,4}上是递减的,在{5,6,…}上也是递减的.利用数列的图像判断数列的增减性数列的图像可直观地反映数列各项的变化趋势,从而可判断数列的增减性.[典例] 已知数列{a n }的通项公式a n =nn 2+1,试判断该数列的增减性. [解] a n +1-a n =n +1(n +1)2+1-n n 2+1 =1-n 2-n [(n +1)2+1](n 2+1). 因为n ∈N +,所以1-n 2-n <0,所以a n +1-a n <0,即a n +1<a n .故该数列为递减数列.应用函数单调性判断数列增减性的方法(1)作差法,将a n +1-a n 与0进行比较;(2)作商法,将a n +1a n与1进行比较(在作商时,要注意a n <0还是 a n >0). 1.已知数列{a n }的通项公式a n =(n +1)⎝⎛⎭⎫1011n (n ∈N +),试问数列{a n }有没有最大项?若有,求最大项和最大项的项数;若没有,说明理由.解:法一:假设数列{a n }中存在最大项.∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ·9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ;当n =9时,a n +1-a n =0,即a n +1=a n ;当n >9时,a n +1-a n <0,即a n +1<a n .故a 1<a 2<a 3<…<a 9=a 10>a 11>a 12…,所以数列中有最大项,最大项为第9、10项,且a 9=a 10=1010119. 法二:假设数列{a n }中有最大项,并设第k 项为最大项,则⎩⎪⎨⎪⎧ a k ≥a k -1,a k ≥a k +1对任意的k ∈N +且k ≥2都成立.即⎩⎨⎧ (k +1)⎝⎛⎭⎫1011k ≥k ⎝⎛⎭⎫1011k -1,(k +1)⎝⎛⎭⎫1011k ≥(k +2)⎝⎛⎭⎫1011k +1,∴⎩⎨⎧1011(k +1)≥k ,k +1≥1011(k +2),解得9≤k ≤10.又k ∈N +, ∴数列{a n }中存在最大项是第9项和第10项,且a 9=a 10=1010119. 题点二:由数列的单调性求参数问题2.已设数列{a n }的通项公式为:a n =n 2+kn (n ∈N +),若数列{a n }是单调递增数列,求实数k 的取值范围 .解:法一:∵数列{a n }是单调递增数列,∴a n +1-a n >0(n ∈N +)恒成立.又∵a n =n 2+kn (n ∈N +),∴(n +1)2+k (n +1)-(n 2+kn )>0恒成立.即2n +1+k >0.∴k >-(2n +1)(n ∈N +)恒成立.而n ∈N +时,-(2n +1)的最大值为-3(n =1时),∴k >-3.即k 的取值范围为(-3,+∞).法二:结合二次函数y =x 2+kx 的图像,要使{a n }是递增数列,只要a 1<a 2即可, 即1+k <4+2k ,得k >-3,所以k 的取值范围为(-3,+∞).题点三:数列与函数的综合应用3.已知函数f (x )=2x -2-x ,数列{a n }满足f (log 2a n )=-2n .(1)求数列{a n }的通项公式;(2)证明数列{a n }是递减数列.解:(1)∵f (x )=2x -2-x ,f (log 2a n )=-2n ,∴2log 2a n -2-log 2a n =-2n ,∴a n -1a n =-2n , ∴a 2n +2na n -1=0,解得a n =-n ±n 2+1. ∵a n >0,∴a n =n 2+1-n ,n ∈N +.(2)证明:a n +1a n =(n +1)2+1-(n +1)n 2+1-n=n 2+1+n(n +1)2+1+(n +1)<1. ∵a n >0,∴a n +1<a n ,∴数列{a n }是递减数列.函数思想方法在数列问题中的应用(1)数列的单调性是通过比较{a n }中任意相邻两项a n 与a n +1的大小来判定的.某些数列的最大项或最小项问题,可以通过研究数列的单调性加以解决.(2)数列是特殊函数,一定要注意其定义域是N +(或它的有限子集).n n (1)n 为何值时,a n 有最小值?并求出最小值;(2)数列{a n }有没有最大项?若有,求出最大项,若没有说明理由.解:(1)因为a n =n 2-21n +20=⎝⎛⎭⎫n -2122-3614,可知对称轴方程为n =212=10.5.又因n ∈N +,故n =10或n =11时,a n 有最小值,其最小值为102-21×10+20=-90.(2)由(1)知,对于数列{a n }有:a 1>a 2>…>a 10=a 11<a 12<…,故数列{a n }没有最大项.。
数列的收敛性数列是数学中一个重要的概念,它在各个领域都有广泛的应用。
在数列的研究中,收敛性是一个核心概念,它描述了数列是否趋向于某个特定的值。
本文将介绍数列的收敛性及其相关性质和定理。
一、数列的概念及基本性质数列是按照一定规则排列的一系列数,通常用{an}表示,其中an表示数列的第n项。
数列的基本性质包括有界性和单调性。
1. 有界性如果存在常数M,对于数列中的所有项an,都有|an| ≤ M,那么称该数列是有界的。
有界性是数列收敛性的一个重要判断条件。
2. 单调性如果对于数列中的每一项an,都有an≤an+1(或者an≥an+1),那么称该数列是递增的(或递减的)。
如果一个数列既不递增也不递减,那么它是不单调的。
二、数列的极限数列的极限是数列收敛性的基本概念,它描述了数列是否趋向于某个特定的值。
1. 数列的收敛如果存在常数L,对于任意给定的正数ε,都存在正整数N,使得当n>N时,有|an-L|<ε成立,那么称数列{an}收敛于L,并将L称为该数列的极限。
用符号lim(n→∞)an = L表示。
2. 数列的发散如果数列{an}不满足收敛的条件,那么称其为发散的。
有界的数列可以发散。
三、数列收敛性的判定准则确定数列是否收敛,需要使用一些判定准则。
1. 单调有界准则如果一个数列既是单调递增的(或递减的),又是有界的,那么它一定是收敛的。
2. 夹逼准则如果数列{an}、{bn}和{cn}满足an≤bn≤cn,并且lim(n→∞)an = lim(n→∞)cn = L,那么数列{bn}的极限也是L。
3. 子数列收敛准则如果数列{an}收敛于L,并且存在N,使得当n>N时,有an≤bn≤cn,那么数列{bn}也收敛于L。
四、数列收敛的性质和定理在数列的研究中,有一些重要的性质和定理与数列的收敛性密切相关。
1. 收敛数列的性质如果数列{an}收敛于L,那么它满足以下性质:- 数列的极限是唯一的,即如果数列{an}同时收敛于L1和L2,则L1=L2。
数学知识点归纳数列与级数的收敛与发散数学知识点归纳:数列与级数的收敛与发散数列与级数是数学中的重要概念,在数学分析和高等数学课程中通常会详细学习这两个概念及其性质。
在本文中,我们将归纳总结数列与级数的收敛与发散的相关内容。
一、数列的概念与性质数列是按照一定规律排列的一串数值,可以表示为{an}或者(a1, a2,a3, ...)。
数列中的每个数值被称为数列的项,用an表示。
数列的通项公式可以给出数列的每一项,例如:等差数列:an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
等比数列:an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
斐波那契数列:an = an-1 + an-2,其中a1 = a2 = 1,n≥3。
数列的性质包括有界性、单调性和有极限性:有界性:数列如果存在一个上界或下界,则称它是有界数列。
单调性:数列如果是递增或递减的,则称它是单调数列。
有极限性:数列如果存在极限,则称它是收敛数列;如果不存在极限,则称它是发散数列。
二、收敛数列的定义和判定收敛数列指的是当数列包含的项数趋向于无穷大时,数列中的各项趋于某一确定的数值。
收敛数列的定义如下:定义:数列{an}收敛于实数a,记作lim(n→∞) an = a,如果对于任意给定的正数ε,存在正整数N,使得当n > N时,总有|an - a| < ε成立。
根据收敛数列的定义,我们可以判定数列的收敛性,主要包括以下方法:夹逼准则:如果对于数列{bn}、{cn}和{an},当n趋于无穷大时,有bn ≤ an ≤ cn成立,并且lim(n→∞) bn = lim(n→∞) cn = L,则lim(n→∞) an = L。
单调有界准则:如果数列{an}是单调数列,并且有界,则它是收敛数列。
柯西收敛原理:对于数列{an},它是收敛数列的充分必要条件是:对于任意给定的正数ε,存在正整数N,使得当m、n > N时,总有|am - an| < ε成立。
数列的单调性以及恒成立的问题一、数列的单调性(一)数列的单调性与函数的单调性的区别【例题1】已知()2*n a n n n N λ=+∈是单调递增数列,则λ的取值范围是 【例题2】给定函数y =f (x )的图像在下列图中,并且对任意a 1()0,1∈,由关系a n+1=f (a n )得到a n+1>a n (n *N ∈),则该函数的图像是(二)a n =f (n )的单调性【例题3】已知{a n }的通项a n =(n 2-1)c n +c n-1(n *N ∈),其中实数c ≠0,若对一切k *N ∈有a 2k >a 2k-1,求c 的取值范围.【例题4】已知a 1=a ,a n+1=S n +3n,若a n+1≥a n (n *N ∈),求a 的取值范围.【变式训练】设数列{a n }满足a 1=2,11n n na a a +=+(n *N ∈). (I )证明:21n a n >+对一切正整数n 成立;(II )令n b =n *N ∈),试判断b n 和b n+1的大小,并说明理由.【例题5】已知数列{a n }中,a 1=2,对于任意的p ,q *N ∈,有a p+q =a p +a q . (I )求数列{a n }的通项公式; (II )若数列{b n }满足()112121212121n nn n b b b a -=-++-+++,求数列{b n }的通项公式; (III )若3nn n c b λ=+,是否存在实数λ,使得当n *N ∈时,c n+1>c n 恒成立?【变式训练】设数列{a n }的各项都是正数,且对任意的n *N ∈,都有333212n n a a a S +++=,其中,S n 为数列{a n }的前n 项和.(I )求证:2112n n n a S a ++=+;(II )求数列{a n }的通项公式; (III )设()1312n n a n n b λ-=+-⋅⋅为非零整数,n *N ∈,试确定λ的值,使得对任意的n *N ∈,都有b n+1>b n 成立.(三)a n+1=f (a n )的单调性【知识点】对于迭代数列a n+1=f (a n ),如果有y=f (x )是非递减函数,那么:①若a 1<a 2,则数列{a n }递增;②若a 1=a 2,那么数列{a n }是常数列;③若a 1>a 2,则数列{a n }递减. 特别地,对于迭代数列a n+1=f (a n ),若f (x )是二次函数,则数列单调递增的充要条件是a 1<a 2<a 3,且对于任意的n ≥2,n *N ∈,在[a 2,a n ]上,函数f (x )为单调递增函数.【例题6】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N ) (1)证明:112nn a a +≤≤(n ∈*N ); (2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).【变式训练】在数列{}n a 中,13a =,2110n n n n a a a a λμ++++=,()n N +∈(1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0001,2,1,k N k k λμ+=∈≥=-证明:010*********k a k k ++<<+++【变式训练】数列{x n }满足:x 1=0,x n+1= -x n 2+x n +c (n *N ∈) (I )证明:数列{x n }单调递减的充分必要条件是c <0; (II )求c 的取值范围,使数列{x n }是单调递增数列.二、数列的单调性应用 (一)数列的最值问题【例题7】数列{a n }和数列{b n }满足:①a 1=a<0,b 1=b>0;②当k ≥2时,若a k -1+b k -1≥0,则a k =a k -1,112k k k ab b --+=;若a k -1+b k -1<0,则111,2k k k k k a b a b b ---+==. (1)若a= -1,b=1,求a 2,b 2,a 3,b 3的值;(2)设S n =(b 1 –a 1)+(b 2 –a 2)+…+(b n -a n ),求S n (用a ,b 表示);(3)若存在n *N ∈,对任意的正整数k ,当2≤k ≤n 时,恒有b k -1>b k 成立,求n 的最大值(用a ,b 表示).【变式训练】在数列{a n }中,a 1=3,a n b n =a n +2,n =2,3,4,… (I)求a 2,a 3,判断数列{a n }的单调性并证明; (II)求证|a n -2|<1124n a --(n =2,3,4,…); (III)是否存在常数M ,对任意n ≥2,有b 2b 3…b n ≤M ?若存在,求出M 的值;若不存在,说明理由.(二)数列中的恒成立问题【例题8】如图,在平面直角坐标系xOy 中,设a 1=2,有一组圆心在x 轴的正半轴上的圆A n (n *N ∈)与x 轴的交点分别为A 0(1,0)和A n+1(a n +1,0),过圆心A n 作x 轴的垂线l n 在第一象限与圆A n 交于点B n (a n ,b n ). (1)求数列{a n }的通项公式;(2)设曲边形A n+1B n B n+1(阴影部分所示)的面积为S n ,若对于任意n *N ∈,12111nm S S S +++≤恒成立,试求实数m 的取值范围.【变式训练】已知数列{}n a 与{}n b 满足()112n n n n a a b b ++-=-,n *∈N .(1)若35n b n =+,且11a =,求数列{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0n n a a >(n *∈N ),求证:数列{}n b 的第0n 项是最大项;(3)设10a λ=<,n n b λ=(n *∈N ),求λ的取值范围,使得{}n a 有最大值M 与最小值m ,且()2,2mM∈-.【课时作业】1、设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1{}n a 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值.2、设数列{a n }的前n 项和为S n ,已知a 1=a (a ≠3),a n+1=S n +3n,n *N ∈. (I )设b n =S n -3n,求证:数列{b n }是等比数列,并写出{b n }的通项公式; (II )若数列{a n }是单调递增数列,求a 的取值范围.3、设数列{a n }的前n 项和为S n ,()24*,n n S a n n N R λλ=+-∈∈,且数列|a n -1|为等比数列.(I )求实数λ的值,并写出数列{a n }的通项公式; (II )(i )判断数列111n n a a ⎧⎫-⎨⎬-⎩⎭(n *N ∈)的单调性;(ii )设()11n n nb a --=,数列{b n }的前n 项和为T n ,求证:229n T <.4、已知数列{a n },{b n }中,a 1=1,b n =221111nn n a a a ++⎛⎫-⋅ ⎪⎝⎭,n *N ∈,数列{b n }的前n 项和为S n .(I )若a n =2n -1,求S n ;(II )是否存在等比数列{a n },使得b n+2=S n 对于任意的n *N ∈恒成立?若存在,求出所有满足条件的数列{a n }的通项公式;若不存在,请说明理由. (III )若{a n }是单调递增数列,求证:S n <2.5、已知数列{a n }的前n 项和为S n ,其中,a 1=1,且1nn nS a a λ+=(n *N ∈). (I )求常数λ的值,并写出{a n }的通项公式; (II )记3nn n a b =,数列{b n }的前n 项和为T n ,求最小的正整数k ,使得对任意的n ≥k ,都有3144n T n-<成立.6、数列{a n },a n ≥0,a 1=0,a n+12+a n+1-1=a n 2(n *N ∈),求证:当n *N ∈时,a n <a n+1.7、【变式训练】设a 1=1,11n a +=(n *N ∈),问:是否存在实数c ,使得a 2n <c <a 2n+1对所有的n *N ∈成立?证明你的结论.8、首项为正数的数列a n 满足:a n+1=()2134n a +. n *N ∈ (I)证明:若a 1为奇数,则对于任意的n ≥2,a n 为奇数; (II)若对于任意的n *N ∈,都有a n+1≥a n ,求a 1的取值范围.。
《数列的单调性》教学设计一、教学内容解析本节课内容是由《普通高中课程标准实验教科书数学》人教B 版必修5第二章《数列》中的数列的单调性定义结合高考命题在高三一轮复习中增加的一个专题,本节教学内容为判断数列的单调性以及利用数列的单调性解决最值问题,是高考对数列考查的一个热点,难度属于中、高档难度.在研究数列单调性过程中,可以利用数列单调性的定义,结合函数图像,体现了对数列作为离散函数的性质的研究.加强“数”与“形”的结合,由直观到抽象;由特殊到一般.在对数列单调性的探究过程中,培养学生观察、归纳、抽象的能力和语言表达能力,让学生感知从特殊到一般,从感性到理性的认知过程. 二、教学目标设置 (一)学习目标1 掌握数列单调性的定义,利用数列单调性定义判定和证明数列的单调性2.理解数列单调性与相应连续函数单调性的联系,同时也能清楚数列)(n f a n =的单调性与[)+∞∈=,1),(x x f y 的单调性不完全一致.3 通过对数列单调性定义的探究,能利用数列的单调性解决最值,不等式恒成立问题.4 通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯,感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.(二)目标解析1.能够结合数列的单调性定义“ 数列{}n a 是递增数列⇔n n a a N n >∈∀+1*,恒成立”, 通过作差或作商法判定或证明一般数列的单调性.2.数列)(n f a n =的单调性与[)+∞∈=,1),(x x f y 的单调性不完全一致.一般情况下,不能把数列的单调性转化为相应连续函数的单调性来处理.但若数列对应的连续函数是单调函数,则可以借助其单调性来求解数列的单调性问题,即“离散函数有单调性≠>连续函数有单调性”在探究数列单调性定义时,领悟到数形结合思想、转化思想,并能运用这些数学思想解决有关数列单调性的问题.(三)教学重点和难点教学重点:数列单调性的判定教学难点:学生分析,转化能力的培养三、学生学情分析学生经历了高一、高二的学习,对函数的单调性和数列的知识已经有所掌握,但是经过两年有所遗忘,函数与数列又是高中学习的难点学生普遍知道数列是函数,但是容易忽略定义域是正整数这一要求,从而把数列的单调性和对应连续函数的单调性混淆导致错误另外常常利用数列单调性解决最值和不等式问题,这类问题又是学生的一个难点四、教学策略分析为实现本节课的教学目标,突出重点,突破难点,教学上我主要采取了以下的策略:(1)通过对考纲的明确,让学生了解高考什么、考到什么程度,通过本节课我应该掌握什么.(2)①先明确一般数列的单调性的定义,有一个判断的主要依据②通过等差、等比数列的单调性的题目,由学生自己总结出等差、等比数列单调性③通过对一般数列的最值问题,掌握什么时候用定义法,什么时候用对应函数的单调性来判断数列单调性,从而解决问题④通过对已知数列的单调性求参数取值范围问题的处理进一步强调数列的单调性问题的解决方法(3)注重思想方法的培养.感悟数形结合思想、特殊到一般思想.五、教学过程(一)明确考纲,确定方向考纲展示:1了解数列是自变量为正整数的一类特殊函数2了解等差数列与一次函数、等比数列与指数函数的关系(二)回扣教材数列单调性定义:从第二项起,每一项大于它的前一项的数列叫做递增数列; 从第二项起,每一项小于它的前一项的数列叫做递减数列(三)考点探究考点一 等差、等比数列的单调性师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充. 例1、(必修5教材55页)等比数列{}n a 中,如果公比1<q ,那么等比数列{}n a 是( )A 递增数列B 递减数列C 常数列D 无法确定数列的增减性解题思路:等比数列{}n a 中,1a 的符号无法判断教材变式:(2021北京理5)设{}n a 是公比为q 的等比数列,则"1">q 是“{}n a 为递增数列”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件【设计意图】通过学生熟悉的等比数列引入课题.学生通过解决试题明确等比数列的单调性. 例2、1已知函数3311)(2+-=x x x f ,讨论函数)(x f 的单调性 解题思路:根据二次函数的开口方向和对称轴确定单调性 2已知数列{}n a 的通项33112+-=n n a n ,求n a 的最小值 解题思路一:根据(1)的结论可得解题思路二:利用数列单调性定义,比较1+n a 和n a 的大小变式:已知数列{}n a 的通项nn a n 3311+-=,求n a 的最小值 解题思路:结合对号函数xx x f 33)(+=的性质可得 【设计意图】通过函数,数列,以及变式为结合对号函数,使学生明确利用数列对应的连续函数的单调性解决数列单调性问题例3、(必修5教材28页) 数列{}n a 的通项公式是9897--=n n a n ,它的前n 项中最大的项是第几项?最小的第几项?解题思路一:9897981--+=n a n ,结合函数9897981)(--+=x x f 的图象确定最大、最小项解题思路二:结合斜率的两点式,将问题转化为函数x y =上的点),(n n 和()97,98两点连线的斜率,由图象可知【设计意图】选取教材课后习题,强调高考命题源于教材,提醒学生复习过程中重视教材 例4、(2021新课标Ⅱ)等差数列{}n a 的前n 项和是n S ,已知010=S ,2515=S ,则n nS 的最小值为解题思路:先求出2331031n n nS n -=,设函数2331031)(x x x f -=,则)320(320)(2-=-='x x x x x f ,结合)(x f 单调性,48)6(-=f ,49)7(-=f【设计意图】结合三次函数,把数列的问题和导数结合起来,但是要注意定义域例5、已知无穷数列{}n a 的通项公式nn n n a 10)1(9+=,试判断此数列是否有最大项,若有,求出第几项最大,若没有,说明理由解题思路一:作差)8(10911n a a n nn n -=-++,当8<n 时,n n a a >+1即178a a a >>> ,当8=n 时,n n a a =+1即98a a =,当8>n 时,n n a a <+1即 >>109a a ,所以最大项为第八、九项,8998109==a a解题思路二:作商10108110101891+--=++=+n n n n a a n n 【设计意图】通过观察通项形式选择作差法还是作商法,注意作商时符号问题。
浅谈函数单调性在高中数学中的学习与运用1. 引言1.1 引言在高中数学学习中,函数单调性是一个重要的概念。
它不仅在数学理论中有着重要的地位,而且在解决实际问题中也具有很大的应用价值。
本文将从函数单调性的概念入手,探讨在高中数学中函数单调性的学习与运用。
函数单调性是指函数在定义域上的增减性质。
在高中数学课程中,我们学习了很多种函数,如线性函数、二次函数、指数函数、对数函数等。
了解这些函数的单调性,可以帮助我们更好地理解函数的性质,进而解决各种数学问题。
在学习函数单调性时,我们需要掌握如何判断一个函数的单调性。
一般来说,可以通过求导数或者利用函数的增减性质来确定一个函数的单调性。
我们还需要注意函数在定义域上的特殊点,如奇点和间断点,这些点可能影响函数的单调性。
函数单调性在高中数学中有着广泛的应用。
比如在求函数的最值、解不等式、证明不等式等问题中,函数的单调性往往能起到关键作用。
在物理、化学等自然科学中,函数的单调性也常常被用来描述物理规律和现象。
2. 正文2.1 函数单调性的概念函数单调性是函数在定义域内具有特定的增减规律的性质。
简单来说,就是函数随着自变量的增大而增大,或随着自变量的减小而减小。
在数学中,函数单调性是对函数变化规律的一种重要描述,它能够帮助我们更好地理解和分析函数的性质。
具体来说,函数的单调性分为严格单调和非严格单调两种。
严格单调是指函数在整个定义域内严格递增或严格递减,即任意两个不同的自变量对应的函数值之间的大小关系是确定的。
非严格单调则是指函数在整个定义域内递增或递减,但可以存在相等的情况。
函数单调性的概念为我们提供了研究函数的新视角,通过研究函数的单调性,我们可以得到函数图像的大致形状和变化规律。
这对于解题和分析问题都有重要意义。
在高中数学中,函数单调性是一个重要的概念,通过对函数单调性的学习和理解,我们可以更深入地掌握函数的性质和特点。
函数单调性是数学中一个基础而重要的概念,它在高中数学中具有重要的教学意义和应用价值。
数列知识点归纳及例题分析一、数列的概念:1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: 10,-3,8,-15,24,....... 221,211,2111,21111,......(3), (17)9,107,1,232.n a 与n S 的关系:⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化求通项例2:已知数列}{n a 的前n 项和⎩⎨⎧≥+==2,11,32n n n S n ,求n a .3.数列的函数性质:(1)单调性的判定与证明:定义法;函数单调性法 (2)最大小项问题:单调性法;图像法(3)数列的周期性:注意与函数周期性的联系例3:已知数列}{n a 满足⎪⎩⎪⎨⎧<<-≤≤=+121,12210,21n n n n n a a a a a ,531=a ,求2017a . 二、等差数列与等比数列例4等差数列的判定或证明:已知数列{a n}中,a1=错误!,a n=2-错误!n≥2,n∈N,数列{b n}满足b n=错误!n∈N.1求证:数列{b n}是等差数列;2求数列{a n}中的最大项和最小项,并说明理由.1证明∵a n=2-错误!n≥2,n∈N,b n=错误!.∴n≥2时,b n-b n-1=错误!-错误!=错误!-错误!=错误!-错误!=1.∴数列{b n}是以-错误!为首项,1为公差的等差数列.2解由1知,b n=n-错误!,则a n=1+错误!=1+错误!,设函数fx=1+错误!,易知fx在区间错误!和错误!内为减函数.∴当n=3时,a n取得最小值-1;当n=4时,a n取得最大值3.例5等差数列的基本量的计算设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn ,满足S5S6+15=0.1若S5=5,求S6及a12求d的取值范围.解1由题意知S6=错误!=-3,a6=S6-S5=-8. 所以错误!解得a1=7,所以S6=-3,a1=7.2方法一∵S5S6+15=0,∴5a 1+10d 6a 1+15d +15=0, 即2a 错误!+9da 1+10d 2+1=0.因为关于a 1的一元二次方程有解,所以 Δ=81d 2-810d 2+1=d 2-8≥0, 解得d ≤-2错误!或d ≥2错误!. 方法二 ∵S 5S 6+15=0, ∴5a 1+10d 6a 1+15d +15=0, 9da 1+10d 2+1=0.故4a 1+9d 2=d 2-8.所以d 2≥8.故d 的取值范围为d ≤-2错误!或d ≥2错误!.例6前n 项和及综合应用1在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值;2已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和. 解 方法一 ∵a 1=20,S 10=S 15,∴10×20+错误!d =15×20+错误!d ,∴d =-错误!. ∴a n =20+n -1×错误!=-错误!n +错误!. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+错误!×错误!=130.方法二 同方法一求得d =-错误!.∴S n =20n +错误!·错误!=-错误!n 2+错误!n =-错误!错误!2+错误!. ∵n ∈N,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 2∵a n =4n -25,a n +1=4n +1-25,∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令错误!由①得n <6错误!;由②得n ≥5错误!,所以n =6. 即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则 T n =错误! =错误!例7已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例8等差数列{},{}n n a b 的前n 项和分别为{},{}n n S T ,且7453nnS n T n ,则使得n na b 为正整数的正整数n 的个数是 3 . 先求an/bn n=5,13,35例9已知数列{}n a 中,113a =,当2≥n 时,其前n 项和n S 满足2221nn n S a S =-,则数列{}n a 的通项公式为 ()()21132214n n a n n ⎧=⎪=⎨⎪-⎩≥例10在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a = .例1111a a -+是和的等比中项,则a +3b 的最大值为 2 . 例12 若数列1, 2cos θ, 22cos 2θ,23cos 3θ, … ,前100项之和为0, 则θ的值为例13 △ABC 的三内角成等差数列, 三边成等比数列,则三角形的形状为__等边三角形_三、数列求和: 1倒序相加法如:已知函数1()()42x f x x R =∈+,求12()()()m mS f f f m m m =+++_________2错位相减法:{}n n b a 其中{ n a }是等差数列,{}n b 是等比数列; 3裂项相消法:形如)11(1))((1CAn B An B C C An B An a n +-+-=++=4拆项分组法:形如n n n c b a ±=,如:n n n a 32+=,65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,21)1(n a n n ⋅-=-练习:1、数列1,211+,3211++,···,n+++ 211的前n 项和为 B A .122+n n B .12+n nC .12++n nD .12+n n2、数列,,1617,815,413,211 前n 项和=n S .3、数列{}n a 的通项公式为nn a n ++=11,则S 100=_________________;4、设()111126121n S n n =+++++,且134n n S S +⋅=,则=n .65、设*N n ∈,关于n 的函数21)1()(n n f n ⋅-=-,若)1()(++=n f n f a n ,则数列}{n a 前100项的和=++++100321a a a a ________.答案:100.解答:])1[()1()1()1()1()1()(22221n n n n n f n f a n n n n -+-=+⋅-+⋅-=++=-,)12()1(+-=n n ,所以201)199(9)7(5)3(100321+-+++-++-=++++ a a a a100502=⨯=. 四、求数列通项式2ln n+1公式法:121+=+n n a a ,112++-=⋅n n n n a a a a ,121+=+n nn a a a 等 2累加法:形如)2)((1≥=--n n f a a n n 或)(1n f a a n n +=-,且)(n f 不为常数 3累乘法:形如)2)((1≥⋅=-n n f a a n n 且)(n f 不为常数 4待定系数法:形如1,0(,1≠+=+k b ka a n n ,其中a a =1型5转换法:已知递推关系0),(=n n a S f ⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n解题思路:利用⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn变化1已知0),(11=--n n a S f ;2已知0),(1=--n n n S S S f (6)猜想归纳法慎用练习:考点三:数列的通项式1、在数列{}n a 中,前n 项和842--=n n S n ,则通项公式=n a _______________3、已知数列的前n 项和n n S 23+=,则=n a _______________15122n n n a n -=⎧=⎨≥⎩4、已知数列{}n a ,21=a ,231++=+n a a n n ,则 =n a )(,23*2N n nn ∈+5、在数列{}n a 中,1112,lg 1n n a a a n +⎛⎫==++ ⎪⎝⎭*N n ∈,则n a = .6、如果数列{}n a 满足)(53111*++∈=-=N n a a a a a n n n n ,,则=n a ________________7、}{n a 满足11=a ,131+=+n n n a a a ,则n a =_______132n -8、已知数列{}n a 的首项12a =,且121n n a a +=-,则通项公式n a = 121n -+ 9、若数列{}n a 满足()*112,32n n a a a n N +==+∈,则通项公式n a =10、如果数列{}n a 的前n 项和323-=n n a S ,那么这个数列的通项公式是 DA .)1(22++=n n a nB .n n a 23⋅=C .13+=n a nD .n n a 32⋅=五、数列应用题: 等差数列模型1、一种设备的价格为450000元,假设维护费第一年为1000元,以后每年增加1000元,当此设备的平均费用为最小时为最佳更新年限,那么此设备的最佳更新年限为 ;30年2、在一次人才招聘会上,有甲、乙两家公司分别公布它们的工资标准:甲公司:第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; 乙公司:第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%.设某人年初同时被甲、乙公司录取,试问:1若该人打算连续工作n 年,则在第n 年的月工资收入分别是多少元2若该人打算连续工作10年,且只考虑工资收入的总量,该人应该选择哪家公司为什么精确到1元解:1设在甲公司第n 年的工资收入为n a 元,在乙公司第n 年的工资收入为n b 元 则2301270n a n =+,120001.05n n b -=⋅ 2设工作10年在甲公司的总收入为S 甲,在甲公司的总收入为S 乙由于S S >乙甲,所以该人应该选择甲公司.等比数列模型例 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据计划,本年度投入800万元,以后每年投入将比上一年度减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增加41;1设n 年内本年度为第一年总投入为n a 万元,旅游业总收入为n b 万元,写出n a 、n b 的表达式;2至少经过几年旅游业的总收入才能超过总投入精确到整数 参考解答:112511800511800511800800-⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=n n a2解不等式n n a b >,得5≥n ,至少经过5年,旅游业的总收入才能超过总投入.六、2017年高考题一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1. 2017年新课标Ⅰ 记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为2. 2017年新课标Ⅱ卷理 我国古代数学名着算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯1.A 盏 3.B 盏 5.C 盏 9.D 盏 3.2017年新课标Ⅲ卷理 等差数列{}n a 的首项为1,公差不为0.若632,,a a a 成等比数列,则{}n a 前6项的和为4. 2017年浙江卷 已知等差数列}{n a 的公差为d ,前n 项和为n S ,则“0>d ”是“5642S S S >+”的.A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件5.2017年新课标Ⅰ 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列⋯,16,8,4,2,1,8,4,2,1,4,2,1,2,1,1其中第一项是02,接下来的两项是102,2,再接下来的三项是2102,2,2,依此类推.求满足如下条件的最小整数100:>N N 且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 二、填空题将正确的答案填在题中横线上6. 2017年北京卷理 若等差数列{}n a 和等比数列{}n b 满足8,14411==-==b a b a ,22a b =_______.7.2017年江苏卷等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =_______________.8. 2017年新课标Ⅱ卷理 等差数列{}n a 的前n 项和为n S ,33a =,410S =, 则11nk kS ==∑. 9.2017年新课标Ⅲ卷理设等比数列{}n a 满足3,13121-=--=+a a a a ,则=4a __. 三、解答题应写出必要的文字说明、证明过程或演算步骤10. 2017年新课标Ⅱ文已知等差数列}{n a 前n 项和为n S ,等比数列}{n b 前n 项和为.2,1,1,2211=+=-=b a b a T n 1若533=+b a ,求}{n b 的通项公式; 2若213=T ,求3S . 11.2017年新课标Ⅰ文 记nS 为等比数列{}n a 的前n 项和,已知.6,232-==S S1求{}n a 的通项公式; 2求n S ,并判断21,,++n n n S S S 是否成等差数列; 12. 2017年全国Ⅲ卷文设数列{}n a 满足()123+212n a a n a n ++-=…1求数列{}n a 的通项公式; 2求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和;13.2017年天津卷文已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=. 1求{}n a 和{}n b 的通项公式; 2求数列2{}n n a b 的前n 项和*()n ∈N . 14.2017年山东卷文已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==.1求数列{}n a 的通项公式;2{}n b 为各项非零等差数列,前n 项和n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭前n 项和n T15. 2017年天津卷理已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.1求{}n a 和{}n b 的通项公式; 2求数列221{}n n a b -的前n 项和()n *∈N . 16. 2017年北京卷理 设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数. 1若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; 2证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.17.2017年江苏卷对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.1证明:等差数列{}n a 是“(3)P 数列”;2若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 18.本小题满分12分已知}{n x 是各项均为正数的等比数列,且.2,32321=-=+x x x x Ⅰ求数列}{n x 的通项公式;Ⅱ如图,在平面直角坐标系xOy 中,依次连接点)1,(,),2,(),1,(11211+⋯++n x P x P x P n n 得到折线121+⋯n P P P ,求由该折线与直线11,,0+===n x x x x y 所围成的区域的面积n T .19.2017年浙江卷已知数列}{n x 满足:).)(1ln(,1*111N n x x x x n n n ∈++==++证明:当*N n ∈时,1n n x x <<+10; 22211++≤-n n n n x x x x ; 3212121++≤≤n n n x .。
数列的单调性及其判定
河北省武安市邯郸学院武安分院 056300 贾书银
数列是指按照一定规律排列的一列数,这种规律体现于数列的项与项数之间的关系,我们通常用通项公式去描述它;体现于数列的项与项之间的关系,我们通常用递推公式去描述它;体现于数列的整体趋势,我们通常用极限去描述它。
而为了确定某个数列是否存在极限,当然不可能将每个实数依定义一一验证,根本的办法是直接从数列本身的特征来做出判断。
例如运用柯西收敛准则来判断;例如对于一个单调数列来说,如果它有界那么必然存在极限。
所以能够对一个数列的单调性做出正确的判断,具有至关重要的作用。
下面将对数列的单调性及其判定方法详加论述。
定义:如果数列{}n x 满足1n n x x +≤ 1,2,3n =则称数列{}n x 为单调增加数列;如果
数列{}n x 满足1n n x x +≥ 1,2,3
n =则称数列{}n x 为单调减少数列。
判定方法一:定义法
例1 判断数列11n n x n ⎛⎫=+ ⎪⎝⎭,1
11n n y n +⎛⎫
=+ ⎪
⎝⎭
的单调性。
12n
a a a n
++
+≤
()0i a >
或12
12
n
n n a a a a a a n +++⎛⎫
≤ ⎪⎝⎭
111n n x n ⎛⎫=+⋅ ⎪⎝⎭
1
1111n n n n +⎛⎫⎛⎫++ ⎪ ⎪⎝⎭
⎪≤+ ⎪ ⎪⎝⎭ 1
111n n +⎛
⎫=+ ⎪+⎝⎭
1n x +=
∴数列{}n x 为单调增加数列。
1111n n n y n +⎛⎫=⋅ ⎪+⎝⎭()2
1112n n n n n +⎛⎫++ ⎪+≤ ⎪+ ⎪
⎝⎭
2
12n n n ++⎛⎫
= ⎪+⎝⎭
2
1111n n +=
⎛⎫+ ⎪+⎝⎭
1
1n y +=
∴1n n y y +≥∴数列{}
n y 为单调减少数列。
判定方法二:作差法
例2 已知数列{}n x 满足:11x =,1n x +=1,2,3
n =
试判断数列
{}n x 的单调性。
解:首先,1014x <=<;假设04k x <<,则104k x +<=<=,
所以由数学归纳法可知:任意n N +∈,04n x <<。
其次,221n n x x +-=2
43n n x x +-=()()410n n x x -+>,所以1n n x x +>
∴数列{}n x 为单调增加数列。
判定方法三:作商法
例3已知数列{}n x 满足:11x =,1132n n n x x x +⎛⎫=+ ⎪⎝⎭
,1,2,3n =
试判断数列{}n x 的单调性。
解:显然()01,2,3n x n >= 1132n n n x x x +⎛⎫=+≥ ⎪⎝⎭
12⋅=121313111223n n n x x x +⎛⎫⎛⎫
=+≤+= ⎪ ⎪⎝⎭
⎝⎭,即1n n x x +≤ ∴数列{}n x 为单调减少数列。
判定方法四:数学归纳法
例4已知数列{}n x
满足:1x =
1n x +=,1,2,3n =
试判断数列{}n x 的单调性。
解:21x x =
=>=;假设1k k x x ->
>,
即1k k x x +>。
由数学归纳法可知,数列{}n x 为单调增加数列。
判定方法五:作差法和数学归纳法的综合运用 例5已知数列{}n x 满足:1,x k = 1121n
n n
x x x ++=+,1,2,3n =
试判断数列{}n x 的单调性。
解:显然10121n
n n
x x x +<=+
<+,1,2,3n =
22112111k k k x x k k k
++--=-=++
,解得当1122k -+<<时,21x x >
;当12k +>
或12
k -<
时,21x x <。
首先考虑1122k -+<<时,21x x >;假设1n n x x ->,则
()()
11
111111111n n n n n n n n n n x x x x x x x x x x --+--⎛⎫⎛⎫--=+-+=
⎪ ⎪++++⎝⎭⎝⎭>0,即1n n x x +> 由数学归纳法可知:数列{}n x 为单调增加数列。
同理可得:12k +>
或12
k <时,数列{}n x 为单调减少数列。