交流调压及斩波电路分解
- 格式:ppt
- 大小:2.87 MB
- 文档页数:37
斩波式交流调压电路工作原理嘿,朋友们!今天咱来唠唠斩波式交流调压电路的工作原理。
你看啊,这斩波式交流调压电路就像是一个神奇的魔术师。
它能把普通的交流电变得不一样,就好比咱能把一块普通的布料变成一件漂亮的衣服。
想象一下,交流电就像一条流淌的小河,有高有低,有起有伏。
而斩波式交流调压电路呢,就是在这条小河上设置的一道道关卡。
它可以根据我们的需要,把小河里的水拦住一部分,或者放过去一部分。
在这个过程中,有个关键的元件叫晶闸管。
这晶闸管就像是个聪明的守门员,它能根据指令,准确地开关,控制电流的通过和阻断。
当晶闸管导通的时候,电流就可以顺畅地通过,就像打开了水龙头,水哗哗地流。
当晶闸管阻断的时候,电流就过不去啦,就像把水龙头给关上了。
那它是怎么实现调压的呢?嘿嘿,这就有意思了。
通过控制晶闸管的导通和阻断时间,就能改变输出电压的大小。
比如说,导通时间长一点,输出电压就高一点;导通时间短一点,输出电压就低一点。
这多神奇呀!就好像我们走路,走得快一点,就能在同样时间里走更远的路;走得慢一点,走的路就少一些。
斩波式交流调压电路就是这样巧妙地控制着电压。
而且啊,这种调压方式还有很多优点呢!它反应速度快,就像短跑运动员一样,能迅速做出反应。
而且效率高,不会浪费太多的能量,就跟咱过日子要精打细算一样。
在实际应用中,斩波式交流调压电路可厉害啦!像一些需要调节电压的设备,比如电动机的调速,它就能大显身手。
能让电动机跑得更快或者更慢,适应不同的工作需求。
你说这斩波式交流调压电路是不是很了不起?它就像一个默默工作的小英雄,在我们看不到的地方发挥着重要的作用。
让我们的生活变得更加方便、高效。
所以啊,咱可别小瞧了这小小的斩波式交流调压电路,它里面蕴含的学问可大着呢!咱得好好研究研究,让它为我们的生活创造更多的价值!这就是斩波式交流调压电路的工作原理啦,大家明白了吗?。
斩控调压是如何实现的斩控交流调压电路作原
◆斩控交流调压电路工作原理
◆斩控调压电路的优点
◆相控调压电路的缺陷
☞深控时,功率因数很低。
控时功率数很低
☞谐波含量很高。
◆能不能找到很好的解决方案?
◆斩控式交流调压电路的基本原理
☞一般采用
般采用全控型器件作为开关器件
☞基本原理和直流斩波电路有类似之处
正半周和负半周分别有斩波器件和续流器件☞u
1
正半周和负半周,分别有斩波器件和续流器件
☞设斩波器件(V
1或V
2
)导通时间为t
on
,开关周期为T,改变可调节输出电压
则导通比α=t
on
/T,改变α可调节输出电压,斩波控制有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
波控制用V V 1
VD 1
3给负载电
流提供续流通
道
R i 1
V VD V VD
◆注意:调节占空比可
斩控式单相交流调压器的特性
(电阻负载时)改变输出电压有效值
☞电源电流的基波分量和电
源电压同相位,即位移因数
为1。
☞电源电流不含低次谐波,
只含和开关周期T有关的高次
谐波。
☞功率因数接近1。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
本节要点
1、斩控调压电路原理
掌握控制方法
2、分析斩控调压的输出波形
输出电压的调整过程3、斩控调压的优点。
单相斩控式交流调压电路设计概述单相斩控式交流调压电路的设计用于对交流电源进行调压控制,使输出电压能够稳定在需求范围内。
本文将对该调压电路的设计原理、电路构成、工作原理以及参数选取等进行全面详细的探讨。
设计原理单相斩控式交流调压电路的设计原理基于斩波调压技术,通过控制晶闸管的导通时间来改变输出电压的大小。
其基本思想是在每个交流周期的一定时刻截止半导体器件的导通,从而将源电压锯齿状的波形转换为脉宽调制形式,通过改变脉宽来调节输出电压。
电路构成单相斩控式交流调压电路主要由以下几个部分构成:输入滤波电路输入滤波电路主要用于对输入电压进行平滑滤波,降低谐波成分,获得稳定的直流电压。
常用的输入滤波电路包括电容滤波电路和电感滤波电路。
斩波电路斩波电路是单相斩控式交流调压电路的核心部分,用于将交流电压转换为可调的脉冲电压。
斩波电路一般由晶闸管、二极管以及继电器等组成。
控制电路控制电路用于生成脉宽调制信号,对晶闸管的导通时间进行控制,从而实现输出电压的调节。
一般采用微处理器或者模拟控制电路来生成控制信号。
输出滤波电路输出滤波电路主要用于对输出脉冲进行滤波平滑,得到稳定的直流输出电压。
常用的输出滤波电路包括电感滤波电路和电容滤波电路。
工作原理单相斩控式交流调压电路的工作原理如下:1.输入电压经过输入滤波电路进行滤波后,进入斩波电路。
2.斩波电路将交流电压转换为可调的脉冲电压,通过控制电路的控制信号对晶闸管进行导通和截止控制,改变输出脉冲的脉宽。
3.输出脉冲经过输出滤波电路进行滤波平滑后,得到稳定的直流输出电压。
参数选取在设计单相斩控式交流调压电路时,需要选取合适的参数来保证电路的稳定性和性能。
主要包括以下几个方面:输入电压范围根据实际应用情况选择合适的输入电压范围,通常是根据供电网络的标准电压范围来确定。
输出电压范围根据需求确定输出电压的范围,确保设计的电路可以满足实际需求。
控制信号频率控制信号频率越高,调压速度越快,但也会增加电路的复杂度和功耗。
斩波电路原理一、斩波电路概述斩波电路是一种将直流电转换为交流电的电路,通常用于交流电机驱动、逆变器等应用中。
其原理是通过周期性地开关导通和断开,使直流电源经过一个高频变压器的变换,输出具有一定频率和幅值的交流电。
二、斩波电路分类1. 单极性斩波电路:只有一个半桥开关管或全桥开关管,在负载两端产生单向脉冲。
2. 双极性斩波电路:有两个半桥开关管或全桥开关管,在负载两端产生双向脉冲。
三、单极性斩波电路原理单极性斩波电路主要由直流源、半桥开关管、高频变压器和输出滤波器四部分组成。
其中直流源提供稳定的直流输入,半桥开关管控制输入信号的导通和断开,高频变压器将输入信号变换成具有一定频率和幅值的交流信号,输出滤波器则对交流信号进行平滑处理。
1. 直流源直流源通常使用整流桥将市区或三相交流转换为稳定的直流电源,直流电压的大小取决于所选用的整流桥和滤波器。
2. 半桥开关管半桥开关管通常由一个N沟道MOSFET管和一个二极管组成。
当N 沟道MOSFET导通时,二极管截止;当N沟道MOSFET截止时,二极管导通。
通过控制N沟道MOSFET的导通和截止,可以实现直流信号的周期性开关。
3. 高频变压器高频变压器是斩波电路中最重要的部分之一。
它通过将输入信号变换为具有一定频率和幅值的交流信号,实现了直流到交流的转换。
高频变压器通常由磁芯、一些绕组和辅助元件组成。
4. 输出滤波器输出滤波器主要用于对交流信号进行平滑处理,去除其残留的脉冲噪声和杂散波形。
输出滤波器通常由电感、电容等元件组成。
四、双极性斩波电路原理双极性斩波电路与单极性斩波电路类似,只不过在半桥开关管上增加了一个相同结构相反的开关管。
这样,当一个开关管导通时,另一个开关管截止,从而在负载两端产生双向脉冲。
五、斩波电路优缺点1. 优点:(1) 斩波电路可以将直流电源转换为交流电源,用于驱动交流负载。
(2) 斩波电路具有高效率、高速度和可靠性等优点。
(3) 斩波电路可以实现输出电压和频率的调节。
单相斩控式交流调压电路设计单相斩控式交流调压电路是一种常见的电路设计,它可以将交流电源的电压进行调节,使其符合特定的要求。
本文将介绍单相斩控式交流调压电路的原理、设计和应用。
一、原理单相斩控式交流调压电路的原理是利用斩波器对交流电源进行控制,从而实现电压的调节。
斩波器是一种电子元件,它可以将交流电源的正半周或负半周进行截取,从而得到一个脉冲信号。
这个脉冲信号的宽度可以通过控制斩波器的导通时间来进行调节,从而实现对电压的控制。
在单相斩控式交流调压电路中,斩波器通常采用晶闸管或场效应管。
当斩波器导通时,交流电源的电流会通过斩波器流入负载,从而使负载得到电源的供电。
当斩波器截止时,电源的电流就会被截断,负载也就不再得到电源的供电。
通过不断地重复这个过程,就可以实现对电压的调节。
二、设计单相斩控式交流调压电路的设计需要考虑多个因素,包括电源电压、负载电流、斩波器的选择和控制电路的设计等。
下面将分别介绍这些因素的设计要点。
1. 电源电压电源电压是单相斩控式交流调压电路设计的重要参数,它决定了电路的输出电压范围和负载能力。
一般来说,电源电压越高,输出电压范围就越大,负载能力也就越强。
但是,电源电压过高也会增加电路的复杂度和成本,因此需要根据实际需求进行选择。
2. 负载电流负载电流是单相斩控式交流调压电路设计的另一个重要参数,它决定了电路的输出功率和稳定性。
一般来说,负载电流越大,输出功率就越高,但是电路的稳定性也会受到影响。
因此,在设计电路时需要根据负载的实际需求进行选择。
3. 斩波器的选择斩波器是单相斩控式交流调压电路中最关键的元件之一,它的选择直接影响到电路的性能和稳定性。
一般来说,晶闸管和场效应管是常用的斩波器,它们具有导通压降低、响应速度快等优点。
但是,晶闸管的控制电路比较复杂,而场效应管的价格较高,因此需要根据实际需求进行选择。
4. 控制电路的设计控制电路是单相斩控式交流调压电路中另一个重要的设计要素,它负责控制斩波器的导通和截止。
交流电降压斩波电路工作原理
交流电降压斩波电路是一种常见的电子电路,它通过斩波的方式将输入的交流电压降低到所需的输出电压。
其工作原理如下:
1. 斩波器工作原理,斩波器是斩波电路的核心部分,它由开关管和控制电路组成。
当输入交流电压通过斩波器时,控制电路会控制开关管的导通和截止,使得输出波形呈现出一定的占空比,从而有效地降低输出电压。
2. 脉宽调制(PWM)原理,斩波电路通常采用脉宽调制技术,即通过调节开关管的导通时间来控制输出电压的大小。
当需要输出较低的电压时,开关管导通时间较短;当需要输出较高的电压时,开关管导通时间较长。
3. 输出滤波原理,斩波电路输出的是脉冲波形,为了得到稳定的直流电压,通常会接入滤波电路,通过电感和电容等元件将脉冲波形平滑成稳定的直流电压输出。
4. 控制电路原理,斩波电路的控制电路负责监测输出电压,并根据设定值调节斩波器的工作状态,以保持输出电压稳定在设定值
附近。
总的来说,交流电降压斩波电路通过斩波器的工作原理,结合脉宽调制技术和输出滤波,实现将输入的交流电压降低到所需的输出电压。
同时,控制电路能够保持输出电压稳定,从而实现对交流电压的有效降压。
斩控式沟通调压电路试验报告沟通调压的掌握方式有三种:①整周波通断掌握。
整周波掌握调压——适用于负载热时间常数较大的电热掌握系统。
晶闸管导通时间与关断时间之比,使沟通开关在某几个周波连续导通,某几个周波连续关断,如此反复循环地运行,其输出电压的波形如图 1-1 所示。
转变导通的周波数和掌握周期的周波数之比即可转变输出电压。
为了提高输出电压的区分率,必需增加掌握周期的周波数。
为了削减对四周通信设备的干扰,晶闸管在电源电压过零时开头导通。
但它也存在一些缺点那就是:在负载容量很大时,开关的通断将引起对电网的冲击,产生由掌握周期打算的奇数次谐波,这些谐波引起电网电压变化,造成对电网的污染。
图1-1 周期掌握的电压波形②相位掌握。
相位掌握调压——利用掌握触发滞后角α的方法,掌握输出电压。
晶闸管承受正向电压开头到触发点之间的电角度称为触发滞后角α。
在有效移相范围内转变触发滞后角,即能转变输出电压。
有效移相范围随负载功率因数不同而不同,电阻性负载最大,纯感性负载最小。
图 1-2 是阻性负载时相控方式的沟通调压电路的输出电压波形。
相控沟通调压电路输出电压包含较多的谐波重量,当负载是电动机时,会使电动机产脉动转矩和附加谐波损耗。
另外它还会引起电源电压畸变。
为减少对电源和负载的谐波影响,可在电源侧和负载侧分别加滤波网络。
③斩波掌握。
斩波掌握调压——使开关在一个电源周期中屡次通断,将输入电压切成几个小段,用转变段的宽度或开关通断的周期来调整输出电压。
斩控调压电路输出电压的质量较高,对电源的影响也较小。
图 1-2 为斩波掌握的沟通调压电路的输出电压波形。
图1-2 相位掌握的电压输出波形在斩波掌握的沟通调压电路中,为了在感性负载下供给续流通路,除了串联的双向开关 S1 外,还须与负载并联一只双向开关S2。
当开关 S1 导通,S2 关断时,输出电压等于输入电压;开关 S1 关断,S2 导通时,输出电压为零。
掌握开关导通时间与关断时间之比即能掌握沟通调压器的输出电压。
斩控式单相交流调压电路设计一、电路结构1.调压变压器:调压变压器用于将输入电压调整为需要的输出电压。
其一次侧连接到交流电源,二次侧连接到斩波电路。
2.斩波电路:斩波电路由开关管和与之配套的电路组成。
开关管负责控制电源的通断,电路则根据开关管的导通状态,控制输出电压。
3.滤波电路:滤波电路用于对输出电压进行平滑处理,减小其峰值值波动。
4.负载:负载是电路的输出部分,可以是电阻、电感或电容等元件。
二、电路原理1.斩波原理斩波电路采用开关管控制输出电源通断,实现对交流电压的控制。
在正半周,开关管导通,电源输出;在负半周,开关管关断,电源不输出。
通过控制开关管的导通时间,可以实现对输出电压的控制。
2.滤波原理滤波电路主要通过电感、电容等元件,对输出电压进行平滑处理,减小其峰值值波动。
电感对交流信号有滤波作用,而电容则具有存储电荷的特性,可以增大负载电流。
三、设计步骤1.确定输出电压根据实际需求,确定所需的输出电压。
2.选择调压变压器根据所需的输出电压和电流,选择合适的调压变压器。
3.选择开关管根据输出电压和负载要求,选择合适的开关管。
常用的开关管有MOSFET和IGBT等。
4.设计斩波电路根据开关管的参数和工作原理,设计和优化斩波电路。
可以使用各种控制技术,如脉冲宽度调制(PWM)等。
5.设计滤波电路根据输出电压的波动情况,选择合适的滤波电路设计。
可以使用RC 滤波电路、LCL滤波电路等。
6.验证电路设计使用仿真软件对电路进行仿真验证,检查输出电压波形是否稳定、峰值值是否满足要求。
根据仿真结果进行优化调整。
7.电路实现与调试根据设计结果,搭建电路原型并进行实际调试。
检查输出电压是否符合要求,观察电路工作是否稳定。
8.性能评估与改进对实际搭建的电路进行性能评估,并进行必要的优化改进。
通过以上步骤,可以设计出符合实际要求的斩控式单相交流调压电路。
在实际应用中,还需要考虑电压变化范围、功率损耗、开关管和滤波元件的选取等问题。