当前位置:文档之家› 51单片机数字时钟

51单片机数字时钟

51单片机数字时钟
51单片机数字时钟

计算机硬件综合课程

设计报告

课目:

学院:

班级:

姓名:

指导教师:

目录

1 设计要求

功能需求

设计要求

2 硬件设计及描述

总体描述

系统总体框图

Proteus仿真电路图3 软件设计流程及描述

程序流程图

函数模块及功能

4 心得体会

附:源程序

1设计要求

1.1功能需求

(1)实现数字时钟准确实时的计时与显示功能;

(2)实现闹钟功能,即系统时间到达闹钟时间时闹铃响;

(3)实现时间和闹钟时间的调时功能;

(4)刚启动系统的时候在数码管上滚动显示数字串(学号)。

1.2设计要求

(1)应用MCS-51单片机设计实现数字时钟电路;

(2)使用定时器/计数器中断实现计时;

(3)选用8个数码管显示时间;

(4)使用3个按钮实现调时间和闹钟时间的功能。按钮1:更换模式(模式0:正常显示时间;模式1:调当前时间的小时;模式2;调当前

时间的分钟;模式3:调闹钟时间的小时;模式4:调闹钟时间的分

钟);按钮2:在非模式0下给需要调节的时间数加一,但不溢出;

按钮3:在非模式0下给需要调节的时间数减一,但不小于零;

(5)在非0模式下,给正在调节的时间闪烁提示;

(6)使用扬声器实现闹钟功能;

(7)采用C语言编写程序并调试。

2 硬件设计及描述

2.1总体描述

(1)单片机采用AT89C51型;

(2)时间显示电路:采用8个共阴极数码管,P1口驱动显示数字,P2口作为扫描信号;

(3)时间设置电路:、、分别连接3个按键,实现调模式,时间加和时间减;

(4)闹钟:口接扬声器。

2.2系统总体框图

2.3Proteus仿真电路图

3 软件设计流程及描述

(1)void display_led()

学号的滚动显示函数;

(2)void display()

显示时间以及显示调节时间和闹钟时间的闪烁;

(3)void key_prc()

键盘功能函数,实现3个按键有关的模式转换以及数字加一减一;

(4)void init()

初始化设置中断;

(5)void time1() interrupt 3

定时器1中断函数,实现计时功能。

4 心得体会

首先在做本次课程设计的过程中,我感触最深的当属查阅大量的设计资料了。为了让自己的设计更加完善,查阅这方面的设计资料是十分必要的,同时也是必不可少的。我们是在做单片机实习,我们一切都要有据可依,有理可寻,不切实际的构想永远只能是构想,永远无法升级为设计。

其次,在这次课程设计中,我们运用到了以前所学的专业课知识,如:C语言、模拟和数字电路知识等。虽然过去从未独立应用过它们,但在学习的过程中带着问题去学我发现效率很高,这是我做这次课程设计的又一收获。

最后,在设计之前,我们要对所用单片机的内部结构有一个系统的了解,知道该单片机内有哪些资源;要有一个清晰的思路和一个完整的的软件流程图;在设计程序时,不能妄想一次就将整个程序设计好,反复修改、不断改进是程序设计的必经之路;要养成注释程序的好习惯,一个程序的完美与否不仅仅是实现功能,而应该让人一看就能明白你的思路,这样也为资料的保存和交流提供了方便;在实习过程中遇到问题是很正常的,但我们应该将每次遇到的问题记录下来,并分析清楚,以免下次再碰到同样的问题。但是从中学到的知识会让我受益终身。发现、提出、分析、解决问题和实践能力提高都会受益于我在以后的学习、工作和生活中。

附:源程序

#include<>

unsigned char led[12]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x40,0x00}; //用一维数组定义-9、横杠、全灭

unsigned char num[10]={2,0,0,8,0,1,1,6,6,8} ;

unsigned char a[8];

unsigned char second=0,minute=0,hour=0;

unsigned char minute1=0,hour1=0;

unsigned char b[8]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; //扫描

unsigned char k=0;

unsigned int temp; // 记录毫秒为秒的变量

unsigned char M,S_flag; //M是模式,更新时间的种模式加上正常模式S_flag闪烁标志

sbit K1=P3^0;

sbit K2=P3^1;

sbit K3=P3^2;

sbit BEEP=P3^3;

void delay(unsigned n) //毫秒

{

int x,y;

for(x=0;x

for(y=0;y<24;y++);

}

void init()

{

M=0;

S_flag=0; //闪烁标志位

TMOD=0x10; //定时器以方式定时

TH1=0xfc;

TL1=0x18;

EA=1; //打开总中断

ET1=1; //允许定时器中断

TR1=1; //开启定时器(开始定时计数)

}

void display_led()

{

int x;

char l,a,m;

for(a=0;a<26;a++)

{

x=a-8;

for(l=0;l<50;l++)

{

for(m=0;m<8;m++)

{

P2=b[m];

if(x>=0&&x<10) P1=led[num[x]];

else P1=led[11];

delay(10);

x++;

}

x-=8;

}

}

}

void time1() interrupt 3 //定时器中断函数{

TH1=0xfc; //定时ms

TL1=0x18;

temp++;

if(temp==1000) //配合定时器定时s

{ temp=0;

second++;

}

if(second==59)

{ second=0;

if(minute<59)

minute++;

else { minute=0;

hour++;

hour%=24;

}

}

if(hour1==hour&&minute1==minute&&second<10) //闹钟时间到 {

BEEP=!BEEP;

}

if(temp%250==0) //每ms

S_flag=!S_flag; //闪烁标志位取反

if(k==8) k=0;

P1=a[k];

P2=b[k++];

delay(1);

P2=0xff;

}

void display()

{

switch(M)

{

case 0:

{

a[0]=led[hour/10];

a[1]=led[hour%10];

a[2]=led[10];

a[3]=led[minute/10];

a[4]=led[minute%10];

a[5]=led[10];

a[6]=led[second/10];

a[7]=led[second%10];

}break;

case 1:

{

if(S_flag==1)

{

a[0]=led[hour/10];

a[1]=led[hour%10];

}

else

{

a[0]=led[11];

a[1]=led[11];

}

a[2]=led[10];

a[3]=led[minute/10];

a[4]=led[minute%10];

a[5]=led[10];

a[6]=led[second/10];

a[7]=led[second%10];

}break;

case 2:

{

a[0]=led[hour/10];

a[1]=led[hour%10];

a[2]=led[10];

if(S_flag==1)

{

a[3]=led[minute/10];

a[4]=led[minute%10];

}

else

{

a[3]=led[11];

a[4]=led[11];

}

a[5]=led[10];

a[6]=led[second/10];

a[7]=led[second%10];

}break;

case 3:

{

if(S_flag==1)

{

a[0]=led[hour1/10];

a[1]=led[hour1%10];

}

else

{

a[0]=led[11];

a[1]=led[11];

}

a[2]=led[10];

a[3]=led[minute1/10];

a[4]=led[minute1%10];

a[5]=led[10];

a[6]=led[11];

a[7]=led[11];

}break;

case 4:

{

a[0]=led[hour1/10];

a[1]=led[hour1%10];

a[2]=led[10];

if(S_flag==1)

{

a[3]=led[minute1/10];

a[4]=led[minute1%10];

}

else

{

a[3]=led[11];

a[4]=led[11];

}

a[5]=led[10];

a[6]=led[11];

a[7]=led[11];

}

}

}

void key_prc()

{

if(K1==0)

{

delay(10); //延时去抖

if(K1==0) //按K1进行模式切换

{ M++;

if(M==5)

M=0;

}

while(!K1);//等待按键释放

}

if(M!=0)

{

switch(M)

{

case 1: //模式——调时

{

if(K2==0)

{

delay(10); //延时去抖

if(K2==0) //加键按下

{

if(hour<23) hour++;

else hour=0;

}

while(!K2); //等待按键释放

}

if(K3==0)

{

delay(10);

if(K3==0)

{

if(hour> 0) hour--;

else hour=23;

}

while(!K3);

}

} break;

case 2: //模式——调分

{

if(K2==0)

{

delay(10);

if(K2==0)

{

if(minute<59) minute++;

else minute=0;

}

while(!K2);

}

if(K3==0)

{

delay(10);

if(K3==0)

{

if(minute>0) minute--;

else minute=59;

}

while(!K3);

}

} break;

case 3: //模式——闹钟调时

{

if(K2==0)

{

delay(10);

if(K2==0)

{

if(hour1<23)

hour1++;

else hour1=0;

}

while(!K2);

}

if(K3==0)

{

delay(10);

if(K3==0)

{ if(hour1>0) hour1--;

else hour1=23;

}

while(!K3);

}

} break;

case 4: //模式——闹钟调分 {

if(K2==0)

{

delay(10);

if(K2==0)

{

if(minute1<59)

minute1++;

else minute1=0;

}

while(!K2);

}

if(K3==0)

{

delay(10); //延时去抖

if(K3==0) //减键按下

{ if(minute1>0)

minute1--;

else minute1=59;

}

while(!K3);

}

} break;

}

}

}

void main()

{

display_led();

init();

while(1)

{

key_prc();

display();

}

}

51单片机汇编指令集(附记忆方法)

51单片机汇编指令集 一、数据传送类指令(7种助记符) MOV(英文为Move):对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送; MOVC(Move Code)读取程序存储器数据表格的数据传送; MOVX (Move External RAM) 对外部RAM的数据传送; XCH (Exchange) 字节交换; XCHD (Exchange low-order Digit) 低半字节交换; PUSH (Push onto Stack) 入栈; POP (Pop from Stack) 出栈; 二、算术运算类指令(8种助记符) ADD(Addition) 加法; ADDC(Add with Carry) 带进位加法; SUBB(Subtract with Borrow) 带借位减法; DA(Decimal Adjust) 十进制调整; INC(Increment) 加1; DEC(Decrement) 减1; MUL(Multiplication、Multiply) 乘法; DIV(Division、Divide) 除法; 三、逻辑运算类指令(10种助记符) ANL(AND Logic) 逻辑与; ORL(OR Logic) 逻辑或; XRL(Exclusive-OR Logic) 逻辑异或; CLR(Clear) 清零; CPL(Complement) 取反; RL(Rotate left) 循环左移; RLC(Rotate Left throught the Carry flag) 带进位循环左移; RR(Rotate Right) 循环右移; RRC (Rotate Right throught the Carry flag) 带进位循环右移; SWAP (Swap) 低4位与高4位交换; 四、控制转移类指令(17种助记符) ACALL(Absolute subroutine Call)子程序绝对调用; LCALL(Long subroutine Call)子程序长调用; RET(Return from subroutine)子程序返回; RETI(Return from Interruption)中断返回; SJMP(Short Jump)短转移; AJMP(Absolute Jump)绝对转移; LJMP(Long Jump)长转移; CJNE (Compare Jump if Not Equal)比较不相等则转移;

51单片机作的电子钟程序及电路图

51单片机作的电子钟程序在很多地方已经有了介绍,对于单片机学习者而言这个程序基本上是一道门槛,掌握了电子钟程序,基本上可以说51单片机就掌握了80%。常见的电子钟程序由显示部分,计算部分,时钟调整部分构成。 时钟的基本显示原理:时钟开始显示为0时0分0秒,也就是数码管显示000000,然后每秒秒位加1 ,到9后,10秒位加1,秒位回0。10秒位到5后,即59秒,分钟加1,10秒位回0。依次类推,时钟最大的显示值为23小时59分59秒。这里只要确定了1秒的定时时间,其他位均以此为基准往上累加。 开始程序定义了秒,十秒,分,十分,小时,十小时,共6位的寄存器,分别存在30h,31h,32h,33h,34h,35h单元,便于程序以后调用和理解。 6个数码管分别显示时、分、秒,一个功能键,可以切换调整时分秒、增加数值、熄灭节电等功能全部集一键。

以下是部分汇编源程序,购买我们产品后我们用光盘将完整的单片机汇编源程序和烧写文件送给客户。;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 中断入口程序 ;; (仅供参考) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ORG 0000H ;程序执行开始地址 LJMP START ;跳到标号START执行 ORG 0003H ;外中断0中断程序入口 RETI ;外中断0中断返回 ORG 000BH ;定时器T0中断程序入口 LJMP INTT0 ;跳至INTTO执行 ORG 0013H ;外中断1中断程序入口

RETI ;外中断1中断返回 ORG 001BH ;定时器T1中断程序入口 LJMP INTT1 ;跳至INTT1执行 ORG 0023H ;串行中断程序入口地址 RETI ;串行中断程序返回 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 主程序 ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; START: MOV R0,#70H ;清70H-7AH共11个内存单元MOV R7,#0BH ;clr P3.7 ; CLEARDISP: MOV @R0,#00H ; INC R0 ; DJNZ R7,CLEARDISP ; MOV 20H,#00H ;清20H(标志用) MOV 7AH,#0AH ;放入"熄灭符"数据 MOV TMOD,#11H ;设T0、T1为16位定时器 MOV TL0,#0B0H ;50MS定时初值(T0计时用)MOV TH0,#3CH ;50MS定时初值 MOV TL1,#0B0H ;50MS定时初值(T1闪烁定时用)MOV TH1,#3CH ;50MS定时初值 SETB EA ;总中断开放 SETB ET0 ;允许T0中断 SETB TR0 ;开启T0定时器 MOV R4,#14H ;1秒定时用初值(50M S×20)START1: LCALL DISPLAY ;调用显示子程序 JNB P3.7,SETMM1 ;P3.7口为0时转时间调整程序SJMP START1 ;P3.7口为1时跳回START1 SETMM1: LJMP SETMM ;转到时间调整程序SETMM ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 1秒计时程序 ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;T0中断服务程序 INTT0: PUSH ACC ;累加器入栈保护 PUSH PSW ;状态字入栈保护

简单51单片机数字时钟设计

题目:简单51单片机数字时钟设计 院系: 物理与电气工程学院 专业:自动化专业 班级:10级自动化 姓名:苏吉振 学号:2 老师:李艾华

引言 20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。 时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。 目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS 化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。下面是单片机的主要发展趋势。 单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。 单片机模块中最常见的是数字钟,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。 数字钟是采用数字电路实现对时,分,秒数字显示的计时装置,广泛用于个 人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。

51单片机课程设计

课程设计说明书
课程设计名称






学生姓名
指导教师
单片机原理及应用课程设计 电子信息工程 140405 20141329 李延琦 胡黄水
2016 年 12 月 26 日

课程设计任务书
课程设计 题目
酒精测试仪
起止日期
2016 年 12 月 26 日— 2017 年 1 月 6 日
设计地点
计算机科学与工程学 院单片机实验室 3409
设计任务及日程安排: 设计任务:分两部分: (一)、设计实现类:进行软、硬件设计,并上机编程、联线、调试、 实现; 1.电子钟的设计 2.交通灯的设计 3.温度计的设计 4.点阵显示 5.电机调速 6.电子音乐发声(自己选曲) 7.键盘液晶显示系统 (二)、应用系统设计类:不须上机,查资料完成软、硬件设计画图。 查资料选定题目。 说明:第 1--7 题任选其二即可。(二)里题目自拟。 日程安排: 本次设计共二周时间,日程安排如下: 第 1 天:查阅资料,确定题目。 第 2--4 天:进实验室做实验,连接硬件并编写程序作相关的模块实验。 第 5--7 天:编写程序,并调试通过。观察及总结硬件实验现象和结果。 第 8--9 天:整理资料,撰写课程设计报告,准备答辩。 第 10 天:上交课程设计报告,答辩。 设计报告要求:
1. 设计报告里有两个内容,自选题目内容+附录(实验内容),每 位同学独立完成。 2. 自选题目不须上机实现,要求能正确完成硬件电路和软件程序 设计。内容包括: 1) 设计题目、任务与要求 2)硬件框图与电路图 3) 软件及流程图 (a)主要模块流程图 (b)源程序清单与注释 4) 总结 5) 参考资料 6)附录 实验上机调试内容
注:此任务书由指导教师在课程设计前填写,发给学生做为本门课程设计 的依据。

基于51单片机的数字钟

专业课程设计报告 专业班级 课程 题目基于51单片机的数字钟的设计报告学号 学生姓名 指导教师 成绩 2013年6月20日

基于A T89C51的数字钟总体设计说明书 目录 1. 51单片机设计数字钟设计的现实意义 (2) 2. 总体设计 (2) 2.1.开发与运行环境 (2) 2.2.硬件功能描述 (2) 2.3.硬件结构 (3) 3. 硬件模块设计 (3) 3.1.描述 (3) 3.1.1. AT89C51单片机简介 (3) 3.1.2. 键盘电路的设计 (4) 3.1.3. 显示器的选择 (5) 3.1.4. 蜂鸣器驱动电路 (5) 3.1.5. 各部分功能 (6) 4. 嵌入式软件设计 (7) 4.1.流程逻辑 (7) 4.2.算法 (7) 4.2.1. 中断定时器的设置 (27) 4.2.2. 闹钟子函数 (28) 4.2.3. 计时函数 (29) 4.2.4. 键盘扫描函数 (31) 4.2.5. 时间和闹钟的设置 (32) 5. 实验器材清单 (33) 6. 测试与性能分析 (33) 6.1.测试结果 (33) 6.2.优点 (33) 6.3.结论 (34) 7. 心得体会 (36) 8. 致谢 (36) 9. 参考文献 (37)

1.51单片机设计数字钟设计的现实意义 20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。例如,许多火灾都是由于人们一时忘记了关闭煤气或是忘记充电时间等造成的。而钟表的数字化给人们生产生活带来了极大的方便。数字钟是通过数字电路实现时,分,秒数字显示的计时装置,广泛用于个人家庭、车站、码头办公室等公共场所,成为人们日常生活中不可少的必需品。由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表,钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能,诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烤箱、通断动力设备、甚至各种定时电气的自动启用等。所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。 2.总体设计 2.1.开发与运行环境 在硬件方面,除了CPU外,使用八个七段LED数码管来进行显示,LED采用的是动态扫描显示。通过LED能够较为准确地显示时、分、秒。四个简单的按键实现对时间的调整。软件方面采用C语言编程。使用Keil单片机模拟调试软件,测试程序的可行性并用Proteus进行仿真。 2.2.硬件功能描述 硬件部分设置了的三个按键S1、S2、S3、S4。当按键S1第一次按下时,停止计时进

基于51单片机的电子时钟设计源程序

#include unsigned char DispBuf[6]; //时间显示缓冲区 unsigned char Disdate[6]; //日期显示缓冲区 unsigned char DisSec[6]; //秒表缓冲区 struct //设定时间结构体 { unsigned char Hour; unsigned char Min; unsigned char Sec; }Time; struct //设定日期结构体 { unsigned char Year; unsigned char Month; unsigned char Days; }Date; struct //设定毫秒结构体 { unsigned char Minite; unsigned char Second; unsigned char MilliSec; }Millisecond; unsigned char point=0; unsigned char point1=0; unsigned char point2=0; unsigned char Daymount; unsigned char Daymount1; unsigned char T0_Int_Times=0; //中断次数计数变量 unsigned char Flash_flag=0; //闪烁标志,每半秒闪烁 unsigned char Flash_flag1=0; //闪烁标志,每半秒闪烁 unsigned char DisPlay_Back=0; //显示缓冲区更新备份,如果显示缓冲区更新则跟闪烁标志不一致 unsigned char DisPlay_Back1=0; //显示缓冲区更新备份,如果显示缓冲区更新则跟闪烁标志不一致 unsigned char i,j; unsigned char SetMillisecond; //启动秒表 code unsigned char LEDCode[]={0x01,0xd7,0x22,0x82,0xc4,0x88,0x08,0xc1,0x00,0x80}; //数码管显示代码 code unsigned char ErrorLEDCode[]={0x01,0xe7,0x12,0x82,0xc4,0x88,0x08,0xc1,0x00,0x80};//绘制错误图纸的数码管显示代码 void DisPlayBuf(); void ChangeToDispCode(); void ChangeToDispCode1(); void changedate(); // 调日期 void displaydate(); // 显示日期 void makedays(); //确定每个月的日期 void runSec();

51单片机课程设计 AD转换

课程设计报告 华中师范大学武汉传媒学院 传媒技术学院 电子信息工程2011 仅发布百度文库,版权所有.

AD转换 要求: A.使用单片机实现AD转换 B.可以实现一位AD转换,并显示(保留4位数字)设计框图:

方案设计: AD转换时单片机设计比较重要的实验。模数转换芯片种类多,可以满足不同用途和不同精度功耗等。 外部模拟量选择的是简单的电位器,通过控制电位器来改变模拟电压。显示电压值采用一般的四位七段数码管。而AD转换芯片采用使用最广的ADC0809 ADC0809芯片有28条引脚,采用双列直插式封装,如图所示。 下面说明各引脚功能: ?IN0~IN7:8路模拟量输入端。 ?2-1~2-8:8位数字量输出端。 ?ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。?ALE:地址锁存允许信号,输入端,高电平有效。 ?START: A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。 ?EOC: A/D转换结束信号,输出端,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。 ?OE:数据输出允许信号,输入端,高电平有效。当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。 ?CLK:时钟脉冲输入端。要求时钟频率不高于640KHz。

?REF(+)、REF(-):基准电压。 ?Vcc:电源,单一+5V。 ?GND:地 工作原理: 首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位。下降沿启动A/D转换,之后EOC输出信号变低,指示转换正在进行。直到A/D转换完成,EOC 变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。 本次实验采用中断方式 把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。 不管使用上述哪种方式,只要一旦确定转换完成,即可通过指令进行数据传送。 首先送出口地址并以信号有效时,OE信号即有效,把转换数据送上数据总线,供单片机接受。 采用中断可以减轻单片机负担。并可以使程序有更多的空间作二次开发。

51单片机指令表汇总

51单片机指令表 助记符指令说明字节数周期数 (数据传递类指令) MOV A,Rn 寄存器内容传送到累加器 1 1 MOV A,direct 直接地址内容传送到累加器 2 1 MOV A,@Ri 间接RAM内容传送到累加器 1 1 MOV A,#data 立即数传送到累加器 2 1 MOV Rn,A 累加器内容传送到寄存器 1 1 MOV Rn,direct 直接地址内容传送到寄存器 2 2 MOV Rn,#data 立即数传送到寄存器 2 1 MOV direct,Rn 寄存器内容传送到直接地址 2 2 MOV direct,direct 直接地址传内容传送到直接地址 3 2 MOV direct,A 累加器内容传送到直接地址 2 1 MOV direct,@Ri 间接RAM内容传送到直接地址 2 2 MOV direct,#data 立即数传送到直接地址 3 2 MOV @Ri,A 累加器内容传送到间接RAM 1 1 MOV @Ri,direct 直接地址内容传送到间接RAM 2 2 MOV @Ri,#data 立即数传送到间接RAM 2 1 MOV DPTR,#data16 16 位地址传送到数据指针 3 2 MOVC A,@A+DPTR 代码字节传送到累加器 1 2 MOVC A,@A+PC 代码字节传送到累加器 1 2 MOVX A,@Ri 外部RAM(8位地址)内容传送到累加器 1 2 MOVX A,@DPTR 外部RAM(16位地址)内容传送到累加器 1 2 MOVX @Ri,A 累加器内容传送到外部RAM(8位地址) 1 2 MOVX @DPTR,A 累加器内容传送到外部RAM(16 地址) 1 2 PUSH direct 直接地址内容压入堆栈 2 2 POP direct 堆栈内容弹出到直接地址 2 2 XCH A,Rn 寄存器和累加器交换 1 1 XCH A, direct 直接地址和累加器交换 2 1

基于51单片机的电子时钟的设计

目录 0 前言 (1) 1 总体方案设计 (2) 2 硬件电路设计 (2) 3 软件设计 (5) 4 调试分析及说明 (7) 5 结论 (9) 参考文献 (9) 课设体会 (10) 附录1 电路原理 (12) 附录2 程序清单 (13)

电子时钟的设计 许山沈阳航空航天大学自动化学院 摘要:传统的数字电子时钟采用了较多的分立元器件,不仅占用了很大的空间而且利用率也比很低,随着系统设计复杂度的不断提高,用传统时钟系统设计方法很难满足设计需求。 单片机是集CPU、RAM、ROM、定时器/计数器和多种接口于一体的微控制器。它体积小、成本低、功能强,广泛应用于智能产品和工业自动化上。而51系列的单片机是各单片机中最为典型和最有代表性的一种。,本次设计提出了系统总体设计方案,并设计了各部分硬件模块和软件流程,在用C语言设计了具体软件程序后,将各个模块完全编译通过过后,结果证明了该设计系统的可行性。该设计给出了以AT89C2051为核心,利用单片机的运算和控制功能,并采用系统化LED显示模块实时显示数字的设计方案,适当地解决了实际生产和日常生活中对计时高精确度的要求,因此该设计在现代社会中具有广泛的应用性。 关键字:AT89C2051,C语言程序,电子钟。 0前言 利用51单片机开发电子时钟,实现时间显示、调整和闹铃功能。具体要求如下: (1)按以上要求制定设计方案,并绘制出系统工作框图; (2)按要求设计部分外围电路,并与单片机仿真器、单片机实验箱、电源等正确可靠的连接,给出电路原理图; (3)用仿真器及单片机实验箱进行程序设计与调试;

(4)利用键盘输入调整秒、分和小时时刻,数码管显示时间; (5)实现闹钟功能,在设定的时间给出声音提示。 1总体方案设计 该电子时钟由89C51,BUTTON,1602 LCD液晶屏等构成,采用晶振电路作为驱动电路,利用单片机内部定时计数器0通过软件扩展产生的一秒定时,达到时分秒的计时,六十秒为一分钟,六十分钟为一小时,满二十四小时为一天。闹钟和时钟的时分秒的调节是由一个按键控制,而另外一个按键控制时钟和闹钟的时间的调节。 图1 系统结构框图 该电子时钟由STC89C51,BUTTON,1602 LCD液晶屏等构成,采用晶振电路作为驱动电路,晶振电路的晶振频率为12MHZ,使用的定时器/计数器工作方式0,通过软件扩展产生的一秒定时,达到时分秒的计时,60秒为一分钟,60分钟为一小时,24小时为一天,又重00:00:00开始计时。没有按键按键按下时,时钟正常运行,当按下调节时钟按键K1,就会关闭时钟,当按下闹钟按键K3时时钟就会进入设置时间界面,但是时钟不会停止工作,按K2键,,就可以对时钟和闹钟要设置的时间进行调整。 2硬件电路设计

51单片机课程设计实验报告

51单片机课程设计报告 学院: 专业班级: 姓名: 指导教师: 设计时间:

51单片机课程设计 一、设计任务与要求 1.任务:制作并调试51单片机学习板 2.要求: (1)了解并能识别学习板上的各种元器件,会读元器件标示; (2)会看电路原理图; (3)制作51单片机学习板; (4)学会使用Keil C软件下载调试程序; 用调试程序将51单片机学习板调试成功。 二、总原理图及元器件清单 1.总原理图 2.元件清单 三、模块电路分析 1. 最小系统: 单片机最小系统电路分为振荡电路和复位电路, 振荡电路选用12MHz 高精度晶振, 振荡电容选用22p和30p 独石电容;

图 1 图 2 复位电路使用RC 电路,使用普通的电解电容与金属膜电阻即可; 图 3 当单片机上电瞬间由于电容电压不能突变会使电容两边的电位相同,此时RST 为高电平,之后随着时间推移电源负极通过电阻对电容放电,放完电时RST 为低电平。正常工作为低电平,高电平复位。 2. 显示模块: 分析发光二极管显示电路: 图 4 发光二极管显示电路分析:它是半导体二极管的一种,可以把电能转化成光能,常简写为

LED。发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,产生自发辐射的荧光。图中一共有五个发光二极管 其中一个为电源指示灯,当学习板通电时会发光以指示状态。其余四个为功能状态指示灯,实际作用与学习板有关 分析数码管显示电路 图 5 数码管显示电路分析:数码管按段数分为七段数码管和八段数码管,图中所用为八段数码管(比七段管多了一个小数点显示位),按发光二极管单元连接方式分为共阳极数码管和共阴极数码管。共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管.共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管。数码管主要用来显示经电路板处理后的程序的运行结果。图中使用了八个八段数码管,可以显示八个0-15的数字。使用数码管可以直观的得到程序运行所显示的结果.也可以显示预置在学习板上的程序,主要通过16个开关来控制。 四、硬件调试 1、是否短路 用万用表检查P2两端是短路。电阻为0,则短路,电阻为一适值,电路正常。 2、焊接顺序 焊接的顺序很重要,按功能划分的器件进行焊接,顺序是功能部件的焊接--调试--另一功能部件的焊接,这样容易找到问题的所在。 3、器件功能 1)检查原理图连接是否正确 2)检查原理图与PCB图是否一致 3)检查原理图与器件的DA TASHEET上引脚是否一致 4)用万用表检查是否有虚焊,引脚短路现象 5)查询器件的DA TASHEET,分析一下时序是否一致,同时分析一下命令字是否正确 6)通过示波器对芯片各个引脚进行检查,检查地址线是否有信号的 7)飞线。用别的的口线进行控制,看看能不能对其进行正常操作,多试验,

(完整版)51单片机汇编指令(全)

指令中常用符号说明 Rn当前寄存器区的8个工作寄存器R0~R7(n=0~7) Ri当前寄存器区可作为地址寄存器的2个工作寄存器R0和R1(i=0,1) Direct8位内部数据寄存器单元的地址及特殊功能寄存器的地址 #data表示8位常数(立即数) #data16表示16位常数 Add16表示16位地址 Addr11表示11位地址 Rel8位代符号的地址偏移量 Bit表示位地址 @间接寻址寄存器或基址寄存器的前缀 ( )表示括号中单元的内容 (( ))表示间接寻址的内容 指令系统 数据传送指令(8个助记符) 助记符中英文注释 MOV Move 移动 MOV A , Rn;Rn→A,寄存器Rn的内容送到累加器A MOV A , Direct;(direct)→A,直接地址的内容送A MOV A ,@ Ri;(Ri)→A,RI间址的内容送A MOV A , #data;data→A,立即数送A MOV Rn , A;A→Rn,累加器A的内容送寄存器Rn MOV Rn ,direct;(direct)→Rn,直接地址中的内容送Rn MOV Rn , #data;data→Rn,立即数送Rn MOV direct , A;A→(direct),累加器A中的内容送直接地址中 MOV direct , Rn;(Rn)→direct,寄存器的内容送到直接地址 MOV direct , direct;(direct)→direct,直接地址的内容送到直接地址 MOV direct , @Ri;((Ri))→direct,间址的内容送到直接地址 MOV direct , #data;8位立即数送到直接地址中 MOV @Ri , A;(A)→@Ri,累加器的内容送到间址中 MOV @Ri , direct;direct→@Ri,直接地址中的内容送到间址中 MOV @Ri , #data; data→@Ri ,8位立即数送到间址中 MOV DPTR , #data16;data16→DPTR,16位常数送入数据指针寄存器,高8位送入DPH,低8位送入DPL中(单片机中唯一一条16位数据传送指令) (MOV类指令共16条)

51单片机简易可调的数码管电子钟程序

#include sbit KEY1=P3^0; sbit KEY2=P3^1; sbit KEY3=P3^2; sbit KEY4=P3^3; sbit LED=P1^2; code unsigned char tab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //共阳数码管0-9 unsigned char StrTab[8]; //定义缓冲区 unsigned char minute=30,hour=12,second; //定义并且初始化值12:30:00 void delay(unsigned int cnt)//延时函数 { while(--cnt); } void Displaypro(void) { StrTab[0]=tab[hour/10]; //显示正常时间 StrTab[1]=tab[hour%10]; StrTab[2]=0xBF; StrTab[3]=tab[minute/10]; StrTab[4]=tab[minute%10]; StrTab[5]=0xBF; StrTab[6]=tab[second/10]; StrTab[7]=tab[second%10]; } main()//主函数 { TMOD |=0x01;//定时器0 10ms in 12M crystal 用于计时 TH0=0xd8; TL0=0xf0; ET0=1; TR0=1; TMOD |=0x10; //定时器1用于动态扫描 TH1=0xF8; TL1=0xf0; ET1=1; TR1=1; EA =1; Displaypro();

51单片机课程设计报告

成绩: 单片机原理及应用课程设计 课程名<<单片机原理及应用>> 学部机械与电子信息工程学部 专业移动通信技术 学号 姓名 指导教师 日期

一、设计任务与要求 1.任务:制作并调试51单片机学习板 2.要求: (1)了解并能识别学习板上的各种元器件,会读元器件标示; (2)会看电路原理图; (3)制作51单片机学习板; (4)学会使用Keil C软件下载调试程序; 用调试程序将51单片机学习板调试成功。 二、实验内容 (5)AT89S52芯片工作电路,利用晶振提供控制信号。 (6)10引脚下载口与A T89S52芯片相关引脚相连完成下载电路。 (7)8个10K电阻与AT89S52芯片P0口相连,利用上拉电阻组成上拉电路。 (8)使用开关与5.1K电阻连成外部中断0、1电路和复位电路。 (9)利用16个开关做成键盘,实现输入号对已编程的AT89S52芯片的控制并通过数码管显示0--F。 (10)用2片74HC573N具有锁存功能芯片与8个数码管相连,通过编程的A T89S52位选和段选实现输出信号的显示功能。 (11)使用74HC573N锁存功能结合ULN2003AG芯片8非门芯片和74HC04N6非门芯片与4个2N5551三极管实现对步进电机的控制,和控制步进电机的信号结 合LED输出显示的功能。 (12)6、利用1片74HC573N芯片与8个共阴极LED实现跑马灯功能。 三、总原理图 1.总原理图

四、硬件调试 1、是否短路 用万用表检查P2两端是短路。电阻为0,则短路,电阻为一适值,电路正常。 2、焊接顺序 焊接的顺序很重要,按功能划分的器件进行焊接,顺序是功能部件的焊接--调试-- 另一功能部件的焊接,这样容易找到问题的所在。 3、器件功能 1)检查原理图连接是否正确 2)检查原理图与PCB图是否一致 3)检查原理图与器件的DATASHEET上引脚是否一致 4)用万用表检查是否有虚焊,引脚短路现象 5)查询器件的DATASHEET,分析一下时序是否一致,同时分析一下命令字是否正确 6)通过示波器对芯片各个引脚进行检查,检查地址线是否有信号的 7)飞线。用别的的口线进行控制,看看能不能对其进行正常操作,多试验,才能找到问题出现在什么地方。 五、软件调试 1、设置硬件仿真环境 设置硬件仿真环境的具体操作步骤如下: 首先,点击所建工程:Project菜单中的Options for Target…Targer 1?,出现工程的配置窗口,

C51单片机指令集大全

格式功能简述字节数周期 一、数据传送类指令 MOV A, Rn 寄存器送累加器 1 1 MOV Rn,A 累加器送寄存器 1 1 MOV A ,@Ri 内部RAM单元送累加器 1 1 MOV @Ri ,A 累加器送内部RAM单元 1 1 MOV A ,#data 立即数送累加器 2 1 MOV A ,direct 直接寻址单元送累加器 2 1 MOV direct ,A 累加器送直接寻址单元 2 1 MOV Rn,#data 立即数送寄存器 2 1 MOV direct ,#data 立即数送直接寻址单元 3 2 MOV @Ri ,#data 立即数送内部RAM单元 2 1 MOV direct ,Rn 寄存器送直接寻址单元 2 2 MOV Rn ,direct 直接寻址单元送寄存器 2 2 MOV direct ,@Ri 内部RAM单元送直接寻址单元 2 2 MOV @Ri ,direct 直接寻址单元送内部RAM单元 2 2 MOV direct2,direct1 直接寻址单元送直接寻址单元 3 2 MOV DPTR ,#data16 16位立即数送数据指针 3 2 MOVX A ,@Ri 外部RAM单元送累加器(8位地址) 1 2 MOVX @Ri ,A 累加器送外部RAM单元(8位地址) 1 2 MOVX A ,@DPTR 外部RAM单元送累加器(16位地址) 1 2 MOVX @DPTR ,A 累加器送外部RAM单元(16位地址) 1 2 MOVC A ,@A+DPTR 查表数据送累加器(DPTR为基址) 1 2 MOVC A ,@A+PC 查表数据送累加器(PC为基址) 1 2 XCH A ,Rn 累加器与寄存器交换 1 1 XCH A ,@Ri 累加器与内部RAM单元交换 1 1 XCHD A ,direct 累加器与直接寻址单元交换 2 1 XCHD A ,@Ri 累加器与内部RAM单元低4位交换 1 1 SWAP A 累加器高4位与低4位交换 1 1 POP direct 栈顶弹出指令直接寻址单元 2 2 PUSH direct 直接寻址单元压入栈顶 2 2 二、算术运算类指令 ADD A, Rn 累加器加寄存器 1 1 ADD A,@Ri 累加器加内部RAM单元 1 1 ADD A, direct 累加器加直接寻址单元 2 1 ADD A, #data 累加器加立即数 2 1 ADDC A, Rn 累加器加寄存器和进位标志 1 1 ADDC A,@Ri 累加器加内部RAM单元和进位标志 1 1 ADDC A, #data 累加器加立即数和进位标志 2 1 ADDC A, direct 累加器加直接寻址单元和进位标志 2 1 INC A 累加器加1 1 1 INC Rn 寄存器加1 1 1

51单片机数码管时钟程序

本人初学51,编写简单时钟程序。仅供参考学习 #include #define uint unsigned int #define uchar unsigned char Uchar code table_d[16] = {0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef,0xf7,0xfc,0xb9,0xde,0xf9,0xf1 }; uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0xef}; void delay(uint); unsigned long i,num,t=1; void main() { TMOD=0X01; TH0=(65536-10000)/256; TL0=(65536-10000)%256; EA=1; ET0=1; TR0=1; while(1) { num=i/20;//i为秒位 if(i==1728000)//一天大概是这个秒吧,,,应该是,呵呵。就是世间到24时就归零。 i=0; //也可用下面这个部分来代替上面的。 /*if(i==20) { i=0; num++; if(num==5184000) num=0; }*/ //num=9; P2=7;//P2口为数码管控制端,我的是38译码器控制,就直接对其赋值来控制时,分,秒的显示; P0=table[i%100%10]; delay(t); P2=6; P0=table[i%100/10]; delay(t); P0=table_d[(num%60)%10]; P2=5; delay(t); P0=table[(num%60)/10]; P2=4;

51单片机应用设计课后答案

第一章单片机概述 1.2除了单片机这一名称之外,单片机还可称为(微控制器)和(嵌入式控制器)。 1.3单片机与普通计算机的不同之处在于其将(微处理器)、(存储器)和(各种输入输出接 口)三部分集成于一块芯片上。 4、单片机的发展大致分为哪几个阶段? 答:单片机的发展历史可分为四个阶段: 第一阶段(1974年----1976年):单片机初级阶段。 第二阶段(1976年----1978年):低性能单片机阶段。 第三阶段(1978年----现在):高性能单片机阶段。 第四阶段(1982年----现在):8位单片机巩固发展及16位单片机、32位单片机推出阶段 1.5单片机根据其基本操作处理的位数可分为哪几种类型? 答:单片机根据其基本操作处理的位数可分为:1位单片机、4位单片机、8位单片机、16位 单片机和32位单片机。 1.6 MCS-51系列单片机的基本芯片分别为哪几种?它们的差别是什么? 答:基本芯片为8031、8051、8751。 8031内部包括1个8位cpu、128BRAM,21个特殊功能寄存器(SFR)、4个8位并行I/O 口、1 个全双工串行口,2个16位定时器/计数器,但片内无程序存储器,需外扩EPROM芯片。 8051是在8031的基础上,片内又集成有4KBROM,作为程序存储器,是1个程序不超过4KB 的小系统。 8751是在8031的基础上,增加了4KB的EPROM,它构成了1个程序小于4KB的小系统。用户可以将程序固化在EPROM中,可以反复修改程序。 1.7 MCS-51系列单片机与80C51系列单片机的异同点是什么? 答:共同点为它们的指令系统相互兼容。不同点在于MCS-51是基本型,而80C51采用CMOS 工艺,功耗很低,有两种掉电工作方式,一种是CPU停止工作,其它部分仍继续工作;另 一种是,除片内RAM继续保持数据外,其它部分都停止工作。 1.8 8051与8751的区别是(C) (A、内部数据存储单元数目的不同(B、内部数据存储器的类型不同 (C)内部程序存储器的类型不同(D、内部的寄存器的数目不同 1.9在家用电器中使用单片机应属于微型计算机的(B) (A、辅助设计应用(B、测量、控制应用(C)数值计算应用(D)数据处理应用 1.10说明单片机主要应用在哪些领域? 答:单片机主要运用领域为:工业自动化;智能仪器仪表;消费类电子产品;通信方面;武 器装备;终端及外部设备控制;多机分布式系统。 第二章MCS-51单片机的硬件结构 2.1 MCS-51单片机的片内都集成了哪些功能部件?各个功能部件的最主要的功能是什么?答:功能部件如下:微处理器(CPU);数据存储器(RAM );程序存储器(ROM/EPROM , 8031没有此部件),4个8位并行I/O 口(P0口、P1 口、P2口、P3口);1个全双工的串行口;2个16位定时器/计数器;中断系统;21个特殊功能寄存器(SFR)。 各部件功能:CPU (微处理器)包括了运算器和控制器两大部分,还增加了面向控制的处理 功能,不仅可处理字节数据,还可以进行位变量的处理;数据存储器(RAM、片内为128B (52系列的为256B),片外最多可外扩64KB。数据存储器来存储单片机运行期间的工作变 量、运算的中间结果、数据暂存和缓冲、标志位等;程序存储器(ROM/EPROM、用来存储

51单片机时钟程序

51单片机时钟程序 #include #define uint unsigned int #define uchar unsigned char uchar code duan[]= {0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71,}; uchar code we[]={0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfe,0xff,}; uint z; void display(uchar miao,uchar fen,uchar xiaoshi); uchar t=0,miao,fen,xiaoshi,shi1,ge1,shi2,ge2,shi,ge,a; void delay(uint z) { uint x,y; for(x=80;x>0;x--) for(y=z;y>0;y--); } void InitTimer0() { TMOD=0x01; TH0=0x3C; TL0=0x0B0; EA=1; ET0=1; TR0=1; } void Timer0Interrupt() interrupt 1 { TH0=0x3C;

TL0=0x0B0; t++; } void main() { InitTimer0(); miao=0; fen=10; xiaoshi=21; while(1) { if(t==20) { t=0; miao++; if(miao==60) { miao=0; fen++; if(fen==60) { fen=0; xiaoshi++; if(xiaoshi==24)

常用51单片机汇编指令

常用单片机汇编指令: 1 .MOV A,Rn寄存器内容送入累加器 2 .MOV A,direct 直接地址单元中的数据送入累加器 3 .MOV A,@Ri (i=0,1) 间接RAM中的数据送入累加器 4 .MOV A,#data 立即数送入累加器 5 .MOV Rn,A累加器内容送入寄存器 6 .MOV Rn,direct 直接地址单元中的数据送入寄存器 7 .MOV Rn,#data 立即数送入寄存器 8 .MOV direct,A 累加器内容送入直接地址单元 9 .MOV direct,Rn 寄存器内容送入直接地址单元 10. MOV direct,direct 直接地址单元中的数据送入另一个 直接地址单元 11 .MOV direct,@Ri (i=0,1) 间接RAM中的数据送入直接地址单元 12 MOV direct,#data 立即数送入直接地址单元 13 .MOV @Ri,A (i=0,1) 累加器内容送间接RAM单元 14 .MOV@Ri,direct (i=0,1)直接地址单元数据送入间接RAM 单元 15 .MOV @Ri,#data (i=0,1) 立即数送入间接RAM单元 16 .MOV DPTR,#data16 16 位立即数送入地址寄存器 17 .MOVC A,@A+DPTR以DPTR^基地址变址寻址单元中的数 据送入累加器

18 .MOVC A,@A+PC以PC为基地址变址寻址单元中的数据送入累加器 19 .MOVX A,@Ri (i=0,1) 外部RAM(8位地址)送入累加器 20 .MOVX A,@DPTR外部RAM(16位地址)送入累加器 21 .MOVX @Ri,A (i=0,1) 累计器送外部RAM(8位地址) 22 .MOVX @DPTR,A累计器送外部RAM( 16位地址) 23 .PUSH direct 直接地址单元中的数据压入堆栈 24 .POP direct 弹栈送直接地址单元 25 .XCH A,Rn 寄存器与累加器交换 26 .XCH A,direct 直接地址单元与累加器交换 27 .XCH A,@Ri (i=0,1) 间接RAM与累加器交换 28 .XCHD A,@Ri (i=0,1) 间接RAM的低半字节与累加器交换算术操作类指令: 1. ADD A,Rn 寄存器内容加到累加器 2 .ADD A,direct 直接地址单元的内容加到累加器 3 A.DD A,@Ri (i=0,1) 间接ROM的内容加到累加器 4 .ADD A,#data 立即数加到累加器 5 .ADDC A,Rn寄存器内容带进位加到累加器 6 .ADDC A,direct 直接地址单元的内容带进位加到累加器 7 .ADDC A,@Ri(i=0,1) 间接ROM的内容带进位加到累加器 8 .ADDC A,#data 立即数带进位加到累加器

相关主题
文本预览
相关文档 最新文档