初中数学自主招生模拟试题
- 格式:doc
- 大小:46.50 KB
- 文档页数:4
2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。
中招考试数学模拟考试卷(附有答案解析)一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.22.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7 4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a65.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>17.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°8.已知方程组,则x﹣y=()A.5B.2C.3D.49.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<110.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有个.13.圆内接正方形的边长为3,则该圆的直径长为.14.计算:(+a)•=.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了人,扇形统计图中表示“C”的圆心角为°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,平均每天的销量为件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是,位置关系是;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.参考答案与解析一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.2【分析】直接估算无理数大小的方法以及实数比较大小的方法分析得出答案.【解答】解:∵1<<2;∴0<<1;故﹣2<﹣<<1<2;故选:D.2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形,从上面看有两层,上层有4个正方形,下层有一个正方形且位于左二的位置.【解答】解:从上面看,得到的视图是:;故选:A.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000202=2.02×10﹣7.故选:D.4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a6【分析】根据合并同类项的运算法则、同底数幂的除法、积的乘方分别进行计算即可得出答案.【解答】解:A、2a﹣a=a,故本选项错误;B、6a2÷2a=3a,故本选项正确;C、6a+2a=8a,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项错误;故选:B.5.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个【分析】根据众数和中位数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知7个出现次数最多,所以众数为7个;因为共有50个数据;所以中位数为第25个和第26个数据的平均数,即中位数为7个.故选:A.6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0,得:x>1;解不等式2x﹣4≤1,得:x≤;则1<x≤;故选:B.7.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°【分析】利用对顶角相等及三角形内角和定理,可求出∠4的度数,由直线l1∥l2,利用“两直线平行,内错角相等”可求出∠2的度数.【解答】解:∵∠A+∠3+∠4=180°,∠A=30°,∠3=∠1=85°;∴∠4=65°.∵直线l1∥l2;∴∠2=∠4=65°.故选:D.8.已知方程组,则x﹣y=()A.5B.2C.3D.4【分析】方程组两方程相减即可求出所求.【解答】解:;①﹣②得:(2x+3y)﹣(x+4y)=16﹣13;整理得:2x+3y﹣x﹣4y=3,即x﹣y=3;故选:C.9.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<1【分析】根据反比例函数的性质对A、B、D进行判断;根据反比例函数系数k的几何意义对C进行判断.【解答】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;B、在每一象限,y随x的增大而增大,所以B选项错误;C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;D、若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是0<y<1,所以D选项错误.故选:C.10.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.【分析】根据题意,作出合适的辅助线,然后根据矩形的性质和正方形的性质,可以得到BG和EG的长,从而可以得到tan∠EBC的值.【解答】解:作EF⊥DC于点F,作EG⊥BC交BC的延长线于点G;则四边形CGEF是矩形;设AB=2a;∵在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE;∴EF=a,BC=2a;∴EG=a,CG=a;∴tan∠EBC=;故选:A.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=2(x﹣y)2.【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣4xy+2y2;=2(x2﹣2xy+y2);=2(x﹣y)2.故答案为:2(x﹣y)2.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有20个.【分析】由摸到红球的频率稳定在0.2附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个;∵摸到红色球的频率稳定在0.2左右;∴口袋中得到红色球的概率为0.2=;∴=;解得:x=20;即白球的个数为20个;故答案为:20.13.圆内接正方形的边长为3,则该圆的直径长为3.【分析】连接BD,利用圆周角定理得到BD是圆的直径,然后根据边长利用勾股定理求得直径的长即可.【解答】解:如图;∵四边形ABCD是⊙O的内接正方形;∴∠C=90°,BC=DC;∴BD是圆的直径;∵BC=3;∴BD===3;故答案为:3.14.计算:(+a)•=.【分析】先把括号内通分,然后约分得到原式的值.【解答】解:原式=•=•=.故答案为.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为32m2.【分析】设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,首先列出矩形的面积y关于x的函数解析式,结合x的取值范围,利用二次函数的性质可得最值情况.【解答】解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8;∵墙长为15m;∴16﹣2x≤15;∴0.5≤x<8;∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.【分析】过点F作FH⊥AD于H,易证∠DFH=30°,设CF=x,则DF=6﹣x,DH=(6﹣x),HF =(6﹣x),EH=DE+DH=5﹣,由折叠的性质得EF=CF=x,在Rt△EFH中,EF2=EH2+HF2,即可得出答案.【解答】解:过点F作FH⊥AD于H,如图所示:∵四边形ABCD是菱形,∠A=60°;∴AB=CD=6,∠EDF=120°;∴∠FDH=60°;∴∠DFH=30°;设CF=x;则DF=6﹣x,DH=DF=(6﹣x),HF=(6﹣x);∴EH=DE+DH=2+(6﹣x)=5﹣;由折叠的性质得:EF=CF=x;在Rt△EFH中,EF2=EH2+HF2;即x2=(5﹣)2+[(6﹣x)]2;解得:x=;∴CF=;故答案为:.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.【分析】直接利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣2+1﹣2=﹣.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.【分析】先根据题意列举出所有可能的结果与取出的两个球上的汉字恰能组成“中国”或“加油”的情况,再利用概率公式即可求得答案.【解答】解:列举如下:中国加油中/(国,中)(加,中)(油,中)国(中,国)/(加,国)(油,国)加(中,加)(国,加)/(油,加)油(中,油)(国,油)(加,油)/所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“中国”或“加油”的情况有4种;则取出的两个球上的汉字恰能组成“中国”或“龙岩加油”的概率为=.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【解答】(1)证明:∵BE⊥CE,AD⊥CE;∴∠E=∠ADC=90°;∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°;∴∠EBC=∠DCA.在△BCE和△CAD中;;∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7;∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13;∴△ACD的周长为:5+12+13=30;故答案为:30.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了500人,扇形统计图中表示“C”的圆心角为72°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.【分析】(1)从两个统计图中可知“A非常了解”的人数为150人,占调查人数的30%,可求出调查人数;用360°乘以“C”所占的百分比即可得出“C”的圆心角度数;(2)用总人数减去其它等级的人数求出B等级的人数,从而补全条形统计图;(3)用总人数乘以不太了解垃圾分类人数所占的百分比即可.【解答】解:(1)小明共调查的总人数是:150÷30%=500(人);扇形统计图中表示“C”的圆心角为:360°×=72°;故答案为:500,72;(2)B等级的人数有:500×40%=200人,补全条形统计图如图所示:(3)根据题意得:50000×=5000(人);答:估计50000名市民中不太了解垃圾分类相关知识的人数有5000人.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为(50﹣x)元,平均每天的销量为(20+2x)件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?【分析】(1)根据“这种衬衫的售价每降低1元时,平均每天能多售出2件”结合每件衬衫的原利润及降价x元,即可得出降价后每件衬衫的利润及销量;(2)根据总利润=每件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)∵每件衬衫降价x元;∴每件衬衫的利润为(50﹣x)元,销量为(20+2x)件.故答案为:(50﹣x);(20+2x).(2)依题意,得:(50﹣x)(20+2x)=1600;整理,得:x2﹣40x+300=0;解得:x1=10,x2=30.∵为了扩大销售,尽快减少库存;∴x=30.答:每件衬衫应降价30元.22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.【分析】(1)连接OD,AD,根据圆周角定理得到AD⊥BC,根据等腰三角形的性质得到∠BAD=∠CAD,推出OD∥AC,根据平行线的性质得到OD⊥DE,于是得到DE是⊙O的切线;(2)设AD=3k,BD=4k,根据勾股定理得到AB=5k,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OD,AD;∵AB是⊙O的直径;∴AD⊥BC;∵AB=AC;∴∠BAD=∠CAD;∵OA=OD;∴∠OAD=∠ODA;∴∠DAC=∠ADO;∴OD∥AC;∵DE⊥AC;∴OD⊥DE;∴DE是⊙O的切线;(2)∵tan B==;∴设AD=3k,BD=4k;∴AB=5k;∵∠AED=∠ADB=90°,∠BAD=∠DAE;∴△ABD∽△DAE;∴=;∴=;∴k=;∴AB=5k=.故答案为:.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.【分析】(1)设直线AB的解析式为y=kx+b,把A,B两点坐标代入,转化为解方程组即可.(2)由题意M(m,m+1),N(m,﹣m+4),根据MN=MP,构建方程解决问题即可.(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.由BT∥OJ,推出∠BJO =∠TBJ,推出tan∠TBJ=tan∠BJO=,推出=,设EK=m,BK=2m,则BE=m,推出EK =BE,由点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK,推出当D,E,K 共线,DE+EK的值最小.【解答】解:(1)设直线AB的解析式为y=kx+b;∵点A的坐标是(﹣1,0),点B(2,3);∴;解得:;∴直线AB的解析式为y=x+1;(2)∵点B(2,3),点C(3,);∴直线BC的解析式为y=﹣x+4;∵点P(m,0),PM∥y轴,交直线AB于点M,交直线BC于点N;∴M(m,m+1),N(m,﹣m+4);∵MN=MP;∴m+1=(﹣m+4)﹣(m+1);解得:m=;∴M(,);(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.∵直线BC的解析式为y=﹣x+4;∴tan∠BJO=;∵BT∥OJ;∴∠BJO=∠TBJ;∴tan∠TBJ=tan∠BJO=;∴=,设EK=m,BK=2m,则BE=m;∴EK=BE;∵点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK;∴当D,E,K共线,DE+EK的值最小,此时DE=DJ=2,EK=BK=1;∴点P在整个运动过程中的运动时间的最小值为2+1=3秒,此时E(4,2).24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是AD=BE,位置关系是AD⊥BE;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.【分析】(1)由等腰直角三角形的性质可得AO=BO,DO=EO,∠AOB=∠DOE=90°,由“SAS”可证△BOE≌△AOD,可得AD=BE,∠OBE=∠OAD,由直角三角形的性质可得AD⊥BE;(2)通过证明△AOD∽△BOE,可得=,∠OAD=∠OBE,可得结论;(3)如图3,连接AO,DO,由勾股定理可求AO的长,由(2)可知:△BEO∽△ADO,可求AD=2BE,由勾股定理可求解.【解答】解:(1)如图1,延长AD,BE交于点H;∵AB=AC,DE=DF,∠BAC=∠EDF=90°,OB=OC,OE=OF;∴AO=BO,DO=EO,∠AOB=∠DOE=90°;∴∠BOE=∠AOD;∴△BOE≌△AOD(SAS);∴AD=BE,∠OBE=∠OAD;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;故答案为:AD=BE,AD⊥BE;(2)AD=BE不成立,AD⊥BE仍然成立;理由如下:如图2,连接AO,DO;∵AB=AC,DE=DF,∠BAC=∠EDF=60°;∴△ABC和△DEF是等边三角形;∵OB=OC,OE=OF;∴∠DOE=90°=∠AOB,DO=EO,AO=BO;∴∠AOD=∠BOE,;∴△AOD∽△BOE;∴=,∠OAD=∠OBE;∴AD=BE;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;(3)如图3,连接AO,DO;∵AC=3=AB,OB=OC,BC=6;∴AO⊥BC,BO=3;∴AO===6;由(2)可知:△BEO∽△ADO,AD⊥BE;∴==2;∴AD=2BE;∵AB2=AD2+BD2;∴45=4BE2+(5+BE)2;∴BE=﹣1;∴AD=2﹣2;∴sin∠ABD==.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.【分析】(1)将点A,B坐标代入抛物线解析式中,求解即可得出结论;(2)先求出点E坐标,进而表示出OM,利用三角形面积公式建立方程求解即可得出结论;(3)先判断出△MON∽△DEM,得出;再分点M在线段OE上和EO的延长线上,表示出ME,ON,进而得出n=,即可得出结论.【解答】解:∵抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0);∴设抛物线的解析式为y=a(x+1)(x﹣4)=ax2﹣3ax﹣4a;∴﹣4a=2;∴a=﹣;∴抛物线的解析式为y=﹣x2+x+2;(2)由(1)知,抛物线的解析式为y=﹣x2+x+2;∴C(0,2),对称轴为x=;∵点D和点C关于对称轴对称;∴D(3,2);∵DE⊥OB;∴E(3,0);∵N(0,n),且N在线段OC上;∴CN=OC﹣ON=2﹣n;∵ME=ON=n;∴OM=OE﹣ME=3﹣n;∵△CMN的面积是;∴S△CMN=CN•OM=(2﹣n)(3﹣n)=;∴n=或n=(舍去);∴M(,0);(3)∵∠DME=∠MNO=α,∠MON=∠DEM;∴△MON∽△DEM;∴;∵D(3,2);∴DE=2;设M(m,0);当m=0时,点M和点O重合,不能构成三角形MON;当点M在线段OE上时,则0<m<3;∴OM=m,ME=3﹣m;∴ON=n;∴;∴n===;∴0<n<;当点M在x轴负半轴时,则m<0;∴OM=﹣m,ME=3﹣m;∴ON=﹣n;∴;∴n===;∴n<0;即n的取值范围n<且n≠0.。
1. 已知一元二次方程 x^2 - 4x + 3 = 0,则其判别式Δ 等于()A. 0B. 1C. 2D. 32. 若 a、b、c 是等差数列,且 a + b + c = 12,则 2a + 4b + 6c 的值为()A. 36B. 48C. 60D. 723. 下列函数中,单调递增的是()A. y = x^2B. y = 2xC. y = x^3D. y = x^44. 已知三角形的三边长分别为 3、4、5,则这个三角形的面积是()A. 6B. 8C. 10D. 125. 在平面直角坐标系中,点 A(2,3) 关于直线 y = x 的对称点为()A. (2,3)B. (3,2)C. (-2,3)D. (-3,2)二、填空题6. 若 m^2 - 6m + 9 = 0,则 m 的值为______。
7. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C 的度数为______。
8. 已知函数 f(x) = 2x + 1,若 f(x) > 3,则 x 的取值范围为______。
9. 若等差数列 {an} 的前 n 项和为 Sn,且 a1 = 3,公差 d = 2,则 S10=______。
10. 在平面直角坐标系中,点 P(3,4) 到直线 x - 2y + 1 = 0 的距离为______。
三、解答题11. 解方程:x^2 - 5x + 6 = 0。
12. 已知等差数列 {an} 的前 n 项和为 Sn,若 a1 = 2,公差 d = 3,求 Sn 的表达式。
13. 已知函数 f(x) = x^2 - 4x + 3,求 f(x) 的最小值。
14. 在平面直角坐标系中,已知点 A(2,3),B(4,5),求线段 AB 的中点坐标。
15. 已知△ABC 的三边长分别为 a、b、c,且满足 a^2 + b^2 = c^2,求△ABC 的形状。
答案:一、选择题1. C2. A3. C4. B5. B二、填空题6. 37. 75°8. x > 29. 90 10. 1三、解答题11. 解:x^2 - 5x + 6 = 0,因式分解得 (x - 2)(x - 3) = 0,所以 x1 = 2,x2 = 3。
深圳市新安中学重点中学初一数学自主招生试卷模拟试题(5套带答案)初一自主招生数学测试卷一、填空题。
(每题2分,共24分)1、六百零三万七千写作(),981829000省略“万”后面的尾数约是()万。
2、2÷( )=0.25=3:( )=()%=()折3、在61、0.166、16.7%、0.17中,最大的数是( ),最小的数是()。
4、一杯240克的盐水中含盐15克,如果在杯加入10克水,盐水的含盐率是();如果要使这杯盐水含盐率为10%,应该在水杯中加入()克盐。
5、六(1)班有学生48人,昨天有3人请假,到校的人数与请假的人数的最简比是( ),出勤率是( )。
6、20千米比()千米少20%;()吨比5吨多52。
7、一个长方体的玻璃鱼缸,长8dm ,宽5dm ,高6dm ,水深2.8dm 。
如果放入一块棱长为4dm 的正方体铁块,缸里的水上升()dm 。
8、姐姐的年龄比妹妹的年龄大31,妹妹比姐姐小3岁,姐姐( )岁。
9、如果一个三角形三个内角之比为2:7:4,那么这个三角形是()。
10、环形跑道的周长是400米,学校召开运动会,在跑道的周围每隔8米插上一面红旗,然后在相邻两面红旗之间每隔2米插上一面黄旗,应准备红旗( )面,黄旗()面。
11、在边长为a 厘米的正方形上剪下一个最大的圆,那么,这个圆与正方形的周长比是()。
(π取3.14)12、=++++24328122729232( )。
二、选择题。
(每题2分,共10分)1、小华双休日想帮妈妈做下面的事情:用洗衣机洗衣服要用20分钟;扫地要用6分钟;擦家具要用10分钟;晾衣服要用5分钟。
她经过合理安排,做完这些事情至少要花( )分钟。
A 、41B 、25C 、26D 、212、投掷3次硬币,有2次正面朝上,1次反面朝上,那么投掷第4次硬币正面朝上的可能性是( )。
A 、41 B 、21 C 、31 D 、323、甲数是a ,它比乙数的3倍少b ,表示乙数的式子是()。
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 已知 a + b = 5,a - b = 1,则 ab 的值为()A. 12B. 10C. 8D. 63. 下列函数中,为一次函数的是()A. y = 2x + 3B. y = x^2 - 4x + 4C. y = 3x^3 - 2x + 1D. y = √x + 24. 在等腰三角形ABC中,底边AB=AC=6cm,腰BC=8cm,那么三角形ABC的面积是()A. 18cm^2B. 24cm^2C. 27cm^2D. 30cm^25. 下列方程中,无解的是()A. 2x - 3 = 7B. 5x + 2 = 3x + 8C. 4x - 1 = 3x + 5D. 3x + 2 = 3x - 16. 下列各式中,完全平方公式正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^27. 已知等腰三角形ABC中,AB=AC,BC=8cm,底边BC上的高AD=6cm,则三角形ABC的周长是()A. 20cmB. 24cmC. 28cmD. 32cm8. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 1D. y = 3x - 29. 下列方程中,解为x=2的是()A. 2x - 3 = 1B. 3x + 2 = 7C. 4x - 5 = 9D. 5x + 1 = 1010. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)二、填空题(每题5分,共50分)11. 若 a > b > 0,则 a^2 + b^2 的值()12. 已知 a + b = 7,a - b = 3,则 ab 的值为______。
初三自主招生考试模拟数学试题第一卷(选择题,共36分)一.选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列运算中,计算结果正确的是( ) A .123=-x x B .2x x x =⋅C .2222x x x =+D .326()a a -=-2.如图,抛物线2y ax bx c =++,若OA =OC ,则下列关系中正确的是 ( ) A .ac +1=b B .ab +1=c C .bc +1=a D .1ac b+= 3.如图,MN 是圆柱底面的直径,MP 是圆柱的高,在圆柱的侧面上,过点M 、P 有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿MP 剪开,所得的侧面展开图可以是( )4.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB =2,BC =3,则图中阴影部分的面积为( )A .6B . 3C .2D . 15.如图,若正方形OABC ,ADEF 的顶点A 、D 、C 在坐标轴上,点F 在AB 上,点B 、E 在函数1y x=(0x >)的图象上,则点E 的坐标是( )A.11(,)22 B.11,)22C.33(,22+ D.33(22x3题图 4题图 5题图6.如图,已知直线b x y +=3与2-=ax y 的交点的横坐标为2-,根据图象有下列3个结论: ①0>a ;②0>b ;③2->x 是不等式23->+ax b x 的解集. 其中,正确结论的个数是( )6题图7题图9题图10题图7.如图,圆锥的母线AB=6,底面半径CB=2,则其侧面展开图扇形的圆心角α的度数为( )A.90oB.100oC.120oD.150o8.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形,此时第七个图形中小正方体木块总数应是( )A.25B.66C. 91D.1209.如图,在三角形纸片ABC中,90ACB∠=,BC=3,AB=6,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为( )A.3B.6C.D10.如图,点A、B、C、D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )A.4B.5C.6D.711.如下右图,在矩形ABCD中,AB=4,BC=3,点F在DC边上运动,连结AF,过点B作BE⊥AF于E,设BE=y,AF=x,则能反映y与x之间函数关系的大致图象是()A. B. C. D.12.一次函数(0)y ax b a=+≠、二次函数2y ax bx=+和反比例函数(0)ky kx=≠在同一直角坐标系中的图象如图,A点为(-2,0).则下列结论中,正确的是( )A.2b a k=+B.a b k=+C.0a b>>D.0a k>>第二卷(非选择题,共114分)二.填空题(本大题共6个小题,每小题4分,共24分.将答案填写在答题卡相应的横线上)13.一个函数的图像关于y轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数24y x bx=+-是“偶函数”,该函数的图像与x轴交于点A和点B,顶点为P,那么△ABP的面积是___________.14.如图,OA是⊙B的直径,OA=4,CD是⊙B的切线,D为切点,∠DOC=30°,则点C的坐标为.⎪⎧≥)(bab a(1)(2)(3)________________________.16.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率等于____________.17.定义:a 是不为1的有理数,我们把11a -称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2012a =.14题图 16题图 18题图18.如图,在等腰直角ABC ∆中,90ACB O∠=,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且90DOE O ∠=,DE 交OC 于点P .则下列结论:①图形中全等的三角形只有两对;②ABC ∆的面积等于四边形CDOE 面积的2倍;③CD CE +=;④222AD BE OP OC +=⋅.其中,正确结论的序号是_____________.三.解答题:本大题共7个小题,共90分.解答应写出文字说明.证明过程或演算步骤. 19.(本题共2个小题,每小题8分,共16分)解答下列各题:(1)解不等式组33213(1)8x x x x-⎧+≥⎪⎨⎪--<-⎩,并把其解集在数轴上表示出来.(2)将4个数a ,b ,c ,d 排成2行、2列,记成ab c d ⎛⎫⎪⎝⎭,定义a b ad bc c d ⎛⎫=- ⎪⎝⎭,上述记号就叫做2阶行列式.若11611x x x x +-⎛⎫= ⎪-+⎝⎭,求x 的值.20.(本题满分12分)绵阳市“创建文明城市”活动如火如荼的展开.南山中学为了搞好“创建”活动的宣传,校学生会就本校学生对绵阳“市情市况”的了解程度进行了一次调查测试.经过对测试成绩的分析,得到如下图所示的两幅不完整的统计图(A :59分及以下;B :60—69分;C :70—79分;D :80—89分;E :90—100分).请你根据图中提供的信息解答以下问题:(Ⅰ)求该校共有多少名学生;(Ⅱ)将条形统计图补充完整;(Ⅲ)在扇形统计图中,计算出“60—69分”部分所对应的圆心角的度数; (Ⅳ)从该校中任选一名学生,其测试成绩为“90—100分”的概率是多少?21.(本小题满分12分)如图,已知双曲线=ky x和直线y =mx +n 交于点A 和B ,B 点的坐标是(2,-3), AC 垂直y 轴于点C ,AC =32. (Ⅰ)求双曲线和和直线的解析式; (Ⅱ)求△AOB 的面积.(第20题图)50A 10% B30%D CE 35%22.(本题满分12分)已知:如图,在△ABC 中,AB =BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点, 交BD 于点G ,交AB 于点F . (Ⅰ)求证:AC 与⊙O 相切; (Ⅱ)当BD =6,sin C =53时,求⊙O 的半径.23.(本题满分12分)如图,△ ABC 中,AB =BC ,AC =8,tan A =k ,P 为AC 边上一动点,设PC =x ,作PE ∥AB 交BC 于E ,PF ∥BC 交AB 于F .(Ⅰ)证明: △PCE 是等腰三角形;(Ⅱ)EM 、FN 、BH 分别是△PEC 、△AFP 、△ABC 的高,用含x 和k 的代数式表示EM 、FN ,并探究EM 、FN 、BH 之间的数量关系;(Ⅲ)当k =4时,求四边形PEBF 的面积S 与x 的函数关系式.并求当x 为何值时,S 有最大值?并求出S 的最大值.A24.(本题满分12分,其中第(Ⅰ)小题3分,第(Ⅱ)小题4分,第(Ⅲ)小题5分)已知点A 、B 分别是x 轴、y 轴上的动点,点C 、D 是某个函数图像上的点,当四边形ABCD (A 、B 、C 、D 各点依次排列)为正方形时,我们称这个正方形为此函数图像的“伴侣正方形”.例如:在图1中,正方形ABCD 是一次函数1y x =+图像的其中一个“伴侣正方形”. (Ⅰ)如图1,若某函数是一次函数1y x =+,求它的图像的所有“伴侣正方形”的边长; (Ⅱ)如图2,若某函数是反比例函数ky x=(0)k >,它的图像的“伴侣正方形”为ABCD ,点(2,)D m (2)m <在反比例函数图像上,求m 的值及反比例函数的解析式;(Ⅲ)如图3,若某函数是二次函数2y ax c =+(0)a ≠,它的图像的“伴侣正方形”为ABCD ,C 、D 中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.25.(本题满分14分)如图,已知抛物线的方程C 1:1(2)()y x x m m=-+-(m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(Ⅰ)若抛物线C 1过点M (2, 2),求实数m 的值; (Ⅱ)在(Ⅰ)的条件下,求△BCE 的面积;(Ⅲ)在(Ⅰ)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(Ⅳ)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由. (第24题图3)(第24题图1) (第24题图2)初三自主招生考试模拟数学试题参考答案一.选择题(本大题共12)二.填空题(本大题共613. 8 14.(6,0) 15.-3或2137- 16.62517.43 18.②③④.三.解答题:本大题共7个小题,共90分.解答应写出文字说明.证明过程或演算步骤.19.(1)解不等式332x x -+≥,得3x ≤, 解不等式13(1)8x x --<-,得2x >-. 所以,原不等式组的解集是2<3x -≤.在数轴上表示为(2)因为ab ad bc cd ⎛⎫=-⎪⎝⎭,所以11611x x x x +-⎛⎫= ⎪-+⎝⎭可以转化为(x +1)(x +1)-(x -1)(1-x )=6, 即(x +1)2+(x -1)2=6,所以x 2=2,即x =20.(Ⅰ)该学校的学生人数是:30030%1000?(人). (Ⅱ)条形统计图如图所示.(Ⅲ)在扇形统计图中,“60—69分”部分所对应的 圆心角的度数是:200360(100%)721000︒⨯⨯=︒. (Ⅳ)从该校中任选一名学生, 其测试成绩为“90—100分”的概率是:501100020=. 21.(Ⅰ)∵点B (2,-3)在双曲线上,∴3=2k-,解得k =-6, ∴双曲线解析式为6=y x-. ∵AC =32,∴点A 的横坐标是32-,∴点A 的横坐标6==432y --,∴点A 的坐标是(32-,4).∵点A 、B 在直线y =mx +n 上,∴3+=422+=3m n m n ⎧-⎪⎨⎪-⎩,解得=2=1m n -⎧⎨⎩,∴直线的解析式为y =-2x +1.(Ⅱ)如图,设直线AB 与x 轴的交点为D ,当y =0时,-2x +1=0,解得x =12, 50(第20题答案图)∴111137*********AOB AOD BOD S S S ∆∆∆=+=⨯⨯+⨯⨯=+=. 22. (Ⅰ)连接OE ,∵AB =BC 且D 是BC 中点,∴BD ⊥AC .∵BE 平分∠ABD ,∴∠ABE =∠DBE , ∵OB =OE ,∴∠OBE =∠OEB ,∴∠OEB =∠DBE , ∴OE ∥BD ,∴OE ⊥AC ,∴AC 与⊙O 相切. (Ⅱ)∵BD =6,sin C =53,BD ⊥AC ,∴BC =10,∴AB =10, 设⊙O 的半径为r ,则AO =10-r , ∵AB =BC ,∴∠C =∠A ,∴sin A =sin C =53, ∵AC 与⊙O 相切于点E ,∴OE ⊥AC , ∴sin A =OA OE =r r -10=53,∴r =415. 23.(Ⅰ)∵AB =BC ,∴∠A =∠C ,∵PE ∥AB ,∴∠CPE =∠A ,∴∠CPE =∠C ,∴△PCE 是等腰三角形.(Ⅱ)∵△PCE 是等腰三角形,EM ⊥CP ,∴CM =12CP =2x,tan C =tan A =k , ∴EM =CM •tan C =22x kxk ⨯=,同理:FN =AN •tan A =8422x kxk k -⨯=-,由于BH =AH •tan A =12×8•k =4k ,而EM +FN =4422kx kxk k +-=,∴EM +FN =BH .(Ⅲ)当k =4时,EM =2x ,FN =16-2x ,BH =16, 所以,S △PCE =12x •2x =x 2,S △APF =12(8-x )•(16-2x )=(8-x )2, S △ABC =12×8×16=64,S =S △ABC -S △PCE -S △APF =64-x 2-(8-x )2=-2x 2+16x , 配方得,S =-2(x -4)2+32,所以,当x =4时,S 有最大值32.24.(Ⅰ)①如图1,当点A 在x 轴正半轴、点B 在y 轴负半轴上时:正方形ABCD .②当点A 在x 轴负半轴、点B 在y 轴正半轴上时:设正方形边长为a ,易得3a =解得3a =,此时正方形的边∴所求“伴侣正方形”(Ⅱ)如图2,作DE ⊥x 轴,CF ⊥y 轴,垂足分别为点E 、F ,易证△ADE ≌△BAO ≌△CBF . ∵点D 的坐标为(2,)m ,2m <,∴DE = OA = BF = m ,∴OB = AE = CF = 2-m .∴OF = BF + OB = 2,∴点C 的坐标为(2,2)m -.∴22(2)m m =-,解得1m =.∴反比例函数的解析式为2y x=. (Ⅲ)212388y x =+或272234040y x =-+或23177y x =+或235577y x =-+. 25.(Ⅰ)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-⨯-.解得m =4.(Ⅱ)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(Ⅲ)如图1,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么HP EOCP CO=. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.(Ⅳ)①如图2,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BCCB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+.解得x =m +2,所以F ′(m +2, 0).由'CO BF CE BF =,4m BF +=.所以BF =. 由2BC CE BF =⋅,得2(2)m +=整理,得0=16,此方程无解.(第24题图2)(第24题图1)图1 图2 图3②如图3,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′, 由于∠EBC =∠CBF ,所以BE BCBC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF′=2m +2,2)BF m =+.由2BC BE BF =⋅,得2(2)2)m m +=+.解得2m =±综合①、②,符合题意的m 为2+。
自主招生模拟试卷(数学卷)题号 一二三总分得分一、选择题(共7题,每题5分,共35分)1.二次函数2y ax bx c =++的图像如右图所示,则化简二次根式22()()a c b c ++-的结果是( )A .a+bB .-a-bC .a-b+2cD .-a+b-2c2.有4支队伍进行4项比赛,每项比赛的第一、第二、第三、第四名分别得到5、3、2、1分。
每队的4项比赛得分之和算作总分,如果已知各队的总分不相同,并且其中一队获得了三项比赛的第一名,问总分最少的队伍最多得多少分?( )A .7B .8C .9D .103.已知a 是方程3310x x +-=的一个实数根,则直线1y ax a =+-不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.有一种长方体集装箱,其内空长为5米,高4.5米,宽3.4米,用这样的集装箱运长为 5米,横截面的外圆直径为0.8米的圆柱形钢管,最多能运( )根。
A .20根B .21根C .24根D .25根5.将5个相同的球放入位于一排的8个格子中,每格至多放一个球,则3个空格相连的概 率是( ) A .328 B . 528 C . 356 D . 5566.用[x]表示不大于x 的最大整数,则方程[]2230x x --=的解的个数是( ) A .1 B .2 C .3 D .4 7.对每个x ,y 是x y 21=,1223,232+-=+=x y x y 三个值中的最小值,则当x 变化时,函数y 的最大值是( )A . 4B . 6C . 8D . 487二、填空题(共7题,每题5分,共35分) 8. 已知()21()()4b c a b c a -=--,且a ≠0,则b c a += 。
9.G 是△ABC 的重心,过G 的直线交AB 于M ,交AC 于N , 则BM CNAM AN+= 。
10. 已知a 、b 、c 都是实数,且满足a>b>c,a+b+c=0.那么,ca的取值范围是 。
一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. -2.5B. √16C. 0.333...D. π2. 下列等式中,正确的是()A. √4 = 2B. √(-4) = 2C. √(4/9) = 2/3D. √(16/25) = 4/53. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 14. 已知二次函数y = ax^2 + bx + c(a≠0),若a > 0,则该函数的图像()A. 开口向上,有最大值B. 开口向下,有最小值C. 开口向上,有最小值D. 开口向下,有最大值5. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°6. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 5 = 2x + 1C. 5x - 2 = 0D. 2x^2 + 3x - 4 = 07. 下列图形中,不是相似图形的是()A. 正方形B. 等腰三角形C. 等边三角形D. 平行四边形8. 已知等差数列{an}中,a1 = 3,d = 2,则第10项an =()A. 21B. 22C. 23D. 249. 下列各数中,不是无理数的是()A. √2B. πC. 1/√2D. √(4/9)10. 下列命题中,正确的是()A. 所有奇数都是质数B. 所有偶数都是合数C. 所有正数都有正的平方根D. 所有负数都有负的平方根二、填空题(每题5分,共50分)1. 已知x^2 - 4x + 3 = 0,则x = _______。
2. 若sin∠A = 1/2,则∠A的度数是 _______。
3. 已知等比数列{an}中,a1 = 2,q = 3,则第5项an = _______。
4. 若a,b,c是等差数列,且a + b + c = 15,则b = _______。
2023年某中学自主招生数学模拟试卷一、选择题(每小题2分,共30分)1. 下列选项中,哪一组数都是互质数?A. 6和8B. 11和16C. 15和25D. 21和352. 已知直线l上有两个点A(2,3)和B(4,y),如果直线l 的斜率为2/3,则y的值为多少?A. -3B. -1C. 1D. 33. 角A的度数是30°,则角A的弧度数是A. π/6B. π/4C. π/3D. π/24. 若函数f(x) = ax² + bx + c关于x = 1对称,则a、b、c应满足的条件是A. a = 1,b = -1,c = 2B. a = 1,b = 2,c = 1C. a = 1,b = 0,c = 1D. a = 1,b = 1,c = 05. 设a是一个负数,b是一个正数,下列哪个不等式成立?A. a < 0B. b > 0C. a + b < 0D. -a > 0...二、填空题(每小题3分,共15分)1. 若sin θ = 1/2,则θ的值是___.2. 在△ABC中,已知∠A = 60°,BC = 8,AC = 5,则AB的值是___.3. 解方程2x + 7 = 15的解为___.4. 若函数f(x) = x² - 4x + 3,则f(2)的值是___.5. 已知等差数列{an}的前n项和为Sn = 2n²+ 3n,若a1 = ___,则a3 = ___....三、解答题(共55分)1. 完整三次根式∛(x² - 2x + 1)的表达式为___.2. 已知函数f(x) = x³ + mx² + nx + 2,当x = 1时,f(x) = 4;当x = -1时,f(x) = 0. 求f(x)的表达式.3. 解二次方程2x² - 3x + 1 = 0.4. 在△ABC中,∠A = 90°,AB = 6,BC = 8,求∠B的度数....---此试卷为2023年某中学自主招生数学模拟试卷,内容涵盖了选择题、填空题和解答题。
初中数学自主招生模拟试题(一)
一、
选择题(每小题6分,共30分) 1、 设a,b,c,d 为整数,且a <2b ,b <3c ,c <4d ,若
d <100,则a 可能取的最大值为( )
A. 2367
B. 2375
C. 2391
D. 2399
2、若方程02022222=-+=++b cx x b ax x 与有一个相同的根,且a,b,c 为一个三角形的三边,则此三角形一定是( )。
A. 直角三角形
B. 等腰三角形
C. 等边三角形
D. 等腰直角三角形
3、如果一条直线l 经过不同的三点A(a,b),B(b,a),C(a-b,b-a),那么直线l 经过第( )象限。
A. 二、四
B. 一、三
C. 二、三、四
D. 一、
三、四
4、如图,AB 是圆的直径,CD 是平行于AB 的弦, 且AC 和BD 相交于E ,∠AED=α,那么△CDE
和△ABE 的面积之比是( )
A.αcos
B. α2sin
C. α2
cos D. αsin 1- 5、点P 在锐角△ABC 的内部,若∠PAB+∠PBC+∠
PCA=90°,则点P 是△ABC 的( )
A. 外心、内心或重心
B. 内心或重心或垂心
C. 外心或内心或垂心
D. 外心或重心或垂心
二、填空题(每小题6分,共30分)
6、若等式e d c b a e
d c b a ,,,,111111中的=++++都是自然数且互不相等。
则
a= ,b= ,c= ,d= ,e= 。
7、当m 取遍0至5的所有实数值,满足)83(3-=m m n 的整数n 的个数是 。
8、如图,△ABC 内三个三角形的
面积分别为5,8,10,则四边形AEFD
的面积是 。
9、若凸4n+2边形2
421+n A A A (n 为自然数)的每个内角都是30°的整数倍,且︒=∠=∠=∠90321A A A ,则n 的所有可能值是 。
三、解答题(每小题15分,共60分)
11、⑴n m mn n m R n m +=++∈,求,且设13,33的值
⑵求方程组⎪⎩⎪⎨⎧+==--)
(232333z y x xyz z y x 的正整数解。
12、半径为a 的半圆材料上,如图截两个正方形ABCD,BEFG ,D 、F 两点在半圆周上,C 、G 在半圆内,试求这样两块面积和,并可得出什么结论。
13、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,△ADC 和△CDB 的内心分别为2121,,I I I I 与CD 相交于K ,求证:
CK
BC AC 111=+
14、如图,在平行四边形ABCD 上,E 为AD 上一点,F 为AB 上一点,且BE=DF ,BE 与DF 交于G 。
求证∠BGC=
∠DGC。