大学物理 量子物理
- 格式:pptx
- 大小:8.52 MB
- 文档页数:92
大学物理量子力学基本概念量子力学是现代物理学的重要分支之一,它描述了微观粒子的行为和相互作用。
在大学物理学习中,量子力学是一个重要的课程内容,学习者需要理解和掌握其中的基本概念。
本文将介绍几个大学物理量子力学的基本概念,包括波粒二象性、不确定性原理、量子态和测量等。
一、波粒二象性波粒二象性是指微观粒子既可以表现出波动性质,又可以表现出粒子性质。
根据波动理论,微观粒子具有波动性质,可以用波函数来描述。
波函数可以表示微观粒子在空间中的概率分布,也可以通过波函数的叠加得到粒子的波动性质。
根据粒子理论,微观粒子具有局域性的位置和动量。
粒子的位置可以用位置算符表示,动量可以用动量算符表示。
根据波动-粒子二象性,微观粒子既可以表现为波函数的可观测性质,也可以表现为位置和动量的可观测性质。
二、不确定性原理不确定性原理是由海森堡提出的,它描述了在同一时间内无法同时准确测量微观粒子的位置和动量。
根据不确定性原理,位置和动量是一对互相制约的物理量,无法同时准确测量。
具体而言,不确定性原理可以表述为:对于一个微观粒子,如果我们准确测量其位置,那么对应的动量将变得不确定;反之亦然,如果我们准确测量其动量,那么对应的位置将变得不确定。
这个原理对于量子力学中的测量有重要的影响。
三、量子态量子态是描述微观粒子的状态的数学表示。
在量子力学中,一个微观粒子的量子态可以用波函数表示。
波函数是一个复数函数,它包含了微观粒子在不同状态下的概率分布信息。
量子态的演化可以通过薛定谔方程描述。
薛定谔方程是量子力学的基本方程之一,它描述了量子态随时间的演化规律。
通过薛定谔方程,我们可以推导微观粒子的波函数在时间上的变化,从而了解微观粒子在不同时刻的行为。
四、测量在量子力学中,测量是一个重要的概念。
测量可以理解为对量子系统进行观测,以获取关于该系统性质的信息。
在测量中,量子系统的波函数会发生塌缩,即从多个可能的状态中塌缩到一个确定的状态。
测量结果的不确定性是由量子力学的本质所决定的。
大学物理 量子物理基础知识点1.黑体辐射(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。
(2)斯特藩—玻尔兹曼定律:4o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2521M T ()1hckthc eλπλλ=-(,)3.光电效应和光的波粒二象性(1)遏止电压a U 和光电子最大初动能的关系为:212a mu eU = (2)光电效应方程: 212h mu A ν=+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K hν== (4)光的波粒二象性(爱因斯坦光子理论):2mc hεν==;hp mc λ==;00m =其中0m 为光子的静止质量,m 为光子的动质量。
4.康普顿效应: 00(1cos )hm cλλλθ∆=-=- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610hm m cλ-==⨯,0λ为康普顿波长。
5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()22111T T HR m n n m m nνλ==-=->()()(), (2)频率条件: k nkn E E hν-=(3) 角动量量子化条件:,1,2,3...e L m vr n n ===其中2hπ=,称为约化普朗克常量,n 为主量子数。
(4)氢原子能量量子化公式: 12213.6n E eVE n n=-=- 6.实物粒子的波粒二象性和不确定关系(1)德布罗意关系式: h h p u λμ== (2)不确定关系: 2x p ∆∆≥; 2E t ∆∆≥7.波函数和薛定谔方程(1)波函数ψ应满足的标准化条件:单值、有限、连续。
(2)波函数的归一化条件: (,)(,)1Vr t r t d ψψτ*=⎰(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)iiir t c r t c r t c r t ψψψψ=++=∑(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂=-∇+⎢⎥∂⎣⎦8.电子自旋和原子的壳层结构(1)电子自旋: 11),2S s ==;1,2z s s S m m ==±注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构①原子核外电子可用四个量子数(,,,l s n l m m )描述:主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。
15. 量子物理班级 学号 姓名 成绩一、选择题1.黑体辐射、光电效应及康普顿效应皆突出表明了光的(A)波动性; (B)粒子性; (C)单色性; (D)偏振性。
( B )解:黑体辐射、光电效应及康普顿效应皆突出表明了光的粒子性。
2.已知某金属中电子逸出功为eV 0,当用一种单色光照射该金属表面时,可产生光电效应。
则该光的波长应满足:(A))/(0eV hc λ≤; (B) )/(0eV hc λ≥; (C))/(0hc eV λ≤; (D) )/(0hc eV λ≥。
( A )解:某金属中电子逸出功 0000000eV c ch W h eV h eV ννλλ==⇒==⇒= 产生光电效应的条件是 000ch eV ννλλ≥⇒≤= 3.康普顿效应说明在光和微观粒子的相互作用过程中,以下定律严格适用(A)动量守恒、动能守恒; (B)牛顿定律、动能定律;(C)动能守恒、机械能守恒; (D)动量守恒、能量守恒。
( D )解:康普顿效应说明在光和微观粒子的相互作用过程中,动量守恒、能量守恒严格适用。
4.某可见光波长为550.0nm ,若电子的德布罗依波长为该值时,其非相对论动能为:(A)5.00×10-6eV; (B)7.98×10-25eV; (C)1.28×10-4eV; (D)6.63×10-5eV 。
( A ) 解:根据h p h pλλ=⇒=,c <<v 时, 234102631192(/)(6.6310/550010) 5.0010eV 2229.110 1.610k p h E m m λ-----⨯⨯====⨯⨯⨯⨯⨯ 5.已知光子的波长nm 0.300=λ,测量此波长的不确定量nm 100.32-⨯=∆λ,则该光子的位置不确定量为:(A) nm 0.300; (B) nm 100.329-⨯; (C) m 1031-⨯; (D) m 38.0。
大学物理量子物理量子力学是现代物理学中的一个重要分支,它研究微观世界中的物质和能量交互作用的规律。
量子物理理论的提出,对人们认识物质结构和微观世界的认识产生了深远影响。
本文将从量子物理的基本原理、波粒二象性、不确定性原理、量子态和测量等方面介绍量子物理的重要概念和理论。
一、基本原理量子物理的基本原理有两个,即波粒二象性和不确定性原理。
波粒二象性指的是微观粒子既可以表现出粒子性,也可以表现出波动性。
例如,电子和光子具有粒子性,但它们同样也具有波动性质,可以表现出干涉和衍射现象。
这个概念的提出打破了经典物理学中物质和能量的边界,揭示了微观世界的奇妙特性。
不确定性原理是由物理学家海森堡首先提出的,它指出在同一时刻无法准确测量微观粒子的位置和动量。
这意味着,我们无法同时确定粒子的位置和速度,只能获得一定的概率分布。
不确定性原理对于物理学的发展产生了重要的影响,推动了测量技术和观测方法的不断发展。
二、波粒二象性波粒二象性是量子物理的核心概念之一。
根据量子力学的理论,所有物质(如电子、质子、中子)和能量(如光子、声子)都具有波粒二象性。
这意味着微观粒子既可以像波一样传播,又可以像粒子一样进行相互作用。
作为波动粒子,微观粒子具有波长和频率的性质。
其波长与动量存在关系,即德布罗意波长公式λ=h/p,其中λ为波长,h为普朗克常数,p为动量。
这个公式揭示了粒子的波动性质。
作为粒子,微观粒子也具有质量和能量的性质。
粒子的能量以量子的形式存在,即能级跃迁的形式,能量差以光子的形式辐射出来。
三、不确定性原理不确定性原理是量子力学的核心原理之一,它指出在量子系统中,位置和动量的确定性无法同时达到最大。
也就是说,我们不能同时知道一个粒子的位置和动量的确切值,只能知道它们的概率分布。
根据不确定性原理,我们可以利用测量仪器获得一个粒子的位置的近似值,但同时粒子的动量将变得不确定。
反之亦然,如果我们通过测量仪器获得一个粒子的动量的近似值,那么粒子的位置将变得不确定。
大学物理易考知识点力学电磁学热学光学量子物理等大学物理是一门综合性的学科,涵盖了力学、电磁学、热学、光学、量子物理等多个领域。
在考试中,有些知识点相对来说相对容易掌握,而有些知识点可能比较难以理解和掌握。
本文将针对大学物理中比较容易考察的知识点进行介绍和讲解,力求帮助同学们在考试中取得好成绩。
一、力学力学是物理学的基础,也是大学物理考试中的重要内容。
力学研究物体运动的规律和原理,包括质点运动、刚体力学、流体力学等内容。
在考试中,经常考察的力学知识点包括牛顿定律、运动学公式、加速度、动量守恒定律等。
要掌握好力学知识,需要理解物体受力情况下的运动规律,能够运用相关公式进行计算和分析。
二、电磁学电磁学是物理学中的重要分支,研究电荷和电磁场的相互作用。
电磁学在现代科技中有着广泛的应用,也是大学物理考试中的重要内容。
在考试中,可能考察的电磁学知识点包括静电学、电场和电势、电流和电阻、磁场和电磁感应等。
要掌握好电磁学知识,需要理解电荷和电场的相互作用规律,能够运用相关公式进行计算和分析。
三、热学热学是物理学中研究热现象和能量转化的学科,也是大学物理考试中的一大考点。
热学研究热能、热力学等内容。
在考试中,常考察的热学知识点包括热力学第一定律、热力学第二定律、理想气体状态方程、热传导等。
要掌握好热学知识,需要理解热能和能量转化的基本原理,能够应用公式进行热力学计算和分析。
四、光学光学是研究光的传播和光现象的科学,也是大学物理考试中的考点之一。
光学涉及光的传播、反射、折射、干涉、衍射等内容。
在考试中,常考察的光学知识点包括光的传播速度、光的折射定律、镜面反射和折射等。
要掌握好光学知识,需要理解光的传播规律和光的反射、折射的基本原理,能够应用公式进行光学计算和分析。
五、量子物理量子物理是研究微观世界的物理学分支,也是大学物理考试中的考点之一。
量子物理研究微粒的行为和性质,包括波粒二象性、不确定性原理、波函数等内容。
2021年12期64大学物理课程中量子物理的有效教学丁汉芹(新疆大学 物理科学与技术学院,新疆维吾尔自治区 乌鲁木齐 830046)摘要:量子物理是大学物理教程中篇幅很少但内容重要的章节,难度大,学生不易理解。
本文从经典与量子、普朗克与能量子、爱因斯坦与光量子、玻尔与原子的量子态四个方面论述了量子物理的有效教学。
关键词:经典物理;量子物理;有效教学大学物理课程包含经典物理、狭义相对论和量子物理等内容,是学生进一步学习其他专业课程的基础。
多年来,本人一直从事大学物理的教学,谈谈自己对量子理论部分的有效教学,以便与同行们交流体会,共同提高教学水平和教学效果。
本人的体会是要做到两点:一是让学生明白事实——经典理论对一些实验现象不能作以解释;二是讲好量子理论中的四个典型故事——几位物理大师提出的划时代意义的新概念、新思想。
同时不要让学生投入更多的精力去做量子力学习题,最为关键的是量子物理与经典物理的区别,以及让学生理解何为“量子”。
一、经典与量子在教学过程中,首先让学生明白一个问题,任何一门科学理论都有产生的背景和适用范围,如我们熟悉的经典力学是伽利略、开普勒、笛卡尔、牛顿等一批物理学家长期努力创立起来的,无论是对地面上物体,还是宇宙中天体的运动规律,都能很好地描述。
长期以来,经典力学深刻影响着人们的思想和生活,为人类文明、科技进步和社会发展起着举足轻重的作用。
但是任何一门理论也有其适用范围,不能用于其研究领域之外的。
事实证明,牛顿经典力学只能适用于宏观物体的低速运动,对高速和微观不能做出正确描述。
经典统计物理正确描述了高温下物体的热学性质,但在低温下无法解释固体比热容与温度有关的现象,能量均分定理遇到了困难。
经典电磁理论是现代无线电工业产生的理论基础,在物理学史上具有重大意义,推动着人类社会的快速前进。
然而,经典电磁理论不能解释原子结构的稳定性以及分立光谱等现象,辐射能量取任意连续值的理论遇到了困难。
第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。
· 在任何温度下都能全部吸收照射到它表面上的各种波长的光(电磁波),则这种物体称为绝对黑体,简称黑体。
· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率,称为辐射出射度。
2. 维恩位移定律· 在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm ,维恩从热力学理论导出T 和λm 满足如下关系λm T b =其中b 是维恩常量。
3. 斯忒藩—玻尔兹曼定律· 斯忒藩—玻尔兹曼定律表明黑体的辐射出射度M 与温T 的关系4T M σ=其中s 为斯忒藩—玻尔兹曼常量。
对于一般的物体4T M εσ=e 称发射率。
4. 黑体辐射· 黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量E hv =被称为一个量子。
黑体辐射的能量为E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。
· 普朗克黑体辐射公式简称普朗克公式25/λ2πhc 1()λ1hc kT M T e l =-· 光是以光速运动的粒子流,这些粒子称为光量子,简称光子。
· 一个光子具有的能量为νh E =。
5. 粒子的波动性· 德布罗意认为实物粒子也具有波粒二象性,它的能量E 、动量p 跟和它相联系的波的频率ν、波长λ满足以下关系2E mc h ν==λh p m u == 这两个公式称为德布罗意公式或德布罗意假设。
与实物粒子相联系的波称为物质波或德布罗意波。
· x x p D D ?h 或者E t D D ?h 这一关系叫做不确定关系。
其中为位置不确定量、动量不确定量、能量不确定量、时间不确定量。
大学物理量子力学总结大学物理量子力学总结篇一:大学物理下必考15量子物理知识点总结15.1 量子物理学的诞生—普朗克量子假设一、黑体辐射物体由其温度所决定的电磁辐射称为热辐射。
物体辐射的本领越大,吸收的本领也越大,反之亦然。
能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为黑体。
二、普朗克的量子假设:1. 组成腔壁的原子、分子可视为带电的一维线性谐振子,谐振子能够与周围的电磁场交换能量。
2. 每个谐振子的能量不是任意的数值, 频率为ν的谐振子,其能量只能为hν, 2hν, …分立值,其中n = 1,2,3…,h =6.626×10 –。
3. 当谐振子从一个能量状态变化到另一个状态时,辐射和吸收的能量是hν的整数倍。
15.2 光电效应爱因斯坦光量子理论一、光电效应的实验规律金属及其化合物在光照射下发射电子的现象称为光电效应。
逸出的电子为光电子,所测电流为光电流。
截止频率:对一定金属,只有入射光的频率大于某一频率ν0时, 电子才能从该金属表面逸出,这个频率叫红限。
遏制电压:当外加电压为零时,光电流不为零。
因为从阴极发出的光电子具有一定的初动能,它可以克服减速电场而到达阳极。
当外加电压反向并达到一定值时,光电流为零,此时电压称为遏制电压。
1 mvm2?eU2二、爱因斯坦光子假说和光电效应方程1. 光子假说一束光是一束以光速运动的粒子流,这些粒子称为光子;频率为v 的每一个光子所具有的能量为??h?, 它不能再分割,只能整个地被吸收或产生出来。
2. 光电效应方程根据能量守恒定律, 当金属中一个电子从入射光中吸收一个光子后,获得能量hv,如果hv 大于该金属的电子逸出功A,这个电子就能从金属中逸出,并且有 1上式为爱因斯坦光电效应方程,式中mvm2为光电子的最大初动能。