基于MATLAB的数值计算_插值及曲线拟合
- 格式:pdf
- 大小:119.81 KB
- 文档页数:4
湖南大学电气与信息工程学院 《数值计算》课程 上机实验报告姓名: 班级: 学号: 日期:指导老师:本次实验题号:第 3 次实验1) 实验目的:1) 用MATLAB 实现拉格朗日插值和分段线性插值。
2) 了解matlab 实现曲线拟合方法的实际应用。
二. 实验内容:1) 插值算法的应用:题目:用拉格朗日插值程序,分段线形插值函数分别研究f (X )的数据表,计算f(0.472) X 0.46 0.47 0.48 0.49 Y0.48465550.49375420.50274980.51166832) 曲线拟合方法的实际应用用电压V=10V 的电池给电容器充电,电容器上t 时刻的电压v(t)=V-(V-V0)e^(-t/T),其中V0是电容器的初始电压,T 是充电常数。
实验测量了一组数据如下,请根据数据表确定V0和T 的大小。
t 0.5 1 2 3 4 5 7 9 V(t) 6.366.487.268.228.668.999.439.63三. 算法介绍或方法基础1.1 拉格朗日插值法对于已给定的点 00(,),...,(,)k k x y x y 和待估计的点的横坐标x ,如上述理论,将其值代入1100,011()()()()():......()()()()kj j i k j i i j j i j j j j j j kx x x x x x x x x x l x x x x x x x x x x x -+=≠-+-----==-----∏计算出插值基函数的值,然后根据公式:():()ki i j L x y l x ==∑计算出纵坐标的估计值,由此完成对该点的插值过程,其中k 为该点插值的阶数。
1.2 线性分段插值利用已给定的点 00(,),...,(,)k k x y x y 对插值区间分为1k -段,将每段的端点(,)i i x y 与 11(,)i i x y ++作为数据点利用公式100010()()()()()f x f x p x f x x x x x -=+--在所构成的区间进行线性插值。
Matlab中数据处理和多项式插值与曲线拟合⼀、基本统计处理1、查取最⼤值MAX函数的命令格式有:[Y,I]= max (X):将max(X)返回矩阵X的各列中的最⼤元素值及其该元素的位置赋予⾏向量Y与I;当X为向量时,则Y与I为单变量。
[Y,I]=max(X,[],DIM):当DIM=1时按数组X的各列查取其最⼤的元素值及其该元素的位置赋予向量Y与I;当DIM=2时按数组X的各⾏查取其最⼤的元素值及其该元素的位置赋予向量Y与I.max(A,B):返回⼀个与A,B同维的数组,其每⼀个元素是由A,B同位置上的元素的最⼤值组成。
【例1】查找下⾯数列x的最⼤值。
x=[3 5 9 6 1 8] % 产⽣数列xx = 3 5 9 6 1 8y=max(x) % 查出数列x中的最⼤值赋予yy = 9[y,l]=max(x) % 查出数列x中的最⼤值及其该元素的位置赋予y,ly = 9l = 3【例2】分别查找下⾯3×4的⼆维数组x中各列和各⾏元素中的最⼤值。
x=[1 8 4 2;9 6 2 5;3 6 7 1] % 产⽣⼆维数组xx = 1 8 4 29 6 2 53 6 7 1y=max(x) % 查出⼆维数组x中各列元素的最⼤值产⽣赋予⾏向量yy = 9 8 7 5[y,l]=max(x) % 查出⼆维数组x中各列元素的最⼤值及其这些% 元素的⾏下标赋予y,ly = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],1) % 本命令的执⾏结果与上⾯命令完全相同y = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],2) % 由于本命令中DIM=2,故查找操作在各⾏中进⾏y = 897l = 213[y,l]=max(x) % 查出⼆维数组x中各列元素的最⼤值及其这些% 元素的⾏下标赋予y,ly = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],1) % 本命令的执⾏结果与上⾯命令完全相同y = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],2) % 由于本命令中DIM=2,故查找操作在各⾏中进⾏y = 897l = 2132、查取最⼩值MIN函数⽤来查取数据序列的最⼩值。
插值法和曲线拟合电子科技大学摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab 编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟合,用不同曲线拟合数据。
关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合引言:在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。
正文:一、插值法和分段线性插值 1拉格朗日多项式原理对某个多项式函数,已知有给定的k + 1个取值点:其中对应着自变量的位置,而对应着函数在这个位置的取值。
假设任意两个不同的x j 都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为:[3]拉格朗日基本多项式的特点是在 上取值为1,在其它的点 上取值为0.2分段线性插值原理给定区间[a ,b ], 将其分割成a=x 0 <x 1 〈…〈x n =b, 已知函数y= f(x ) 在这些插值结点的函数值为 y k =f(x k )(k=0,1,…,n)求一个分段函数I h (x), 使其满足:(1) I h (x k )=y k ,(k=0,1,…,n) ;(2) 在每个区间[x k ,x k+1 ] 上,I h (x )是个一次函数。
易知,I h (x)是个折线函数, 在每个区间[x k ,x k+1 ]上,(k=0,1,…,n)k 1k k1k 1k k 1k k k ,1)()()(x x x x x f x x x x x f x L --+--=++++,于是, I h (x )在[a,b ]上是连续的,但其一阶导数是不连续的.3拉格朗日插值多项式算法 ○1输入,(0,1,2,,)i i x y i n =,令0)(=x L n .错误!对0,1,2,,i n =,计算0,()()/()ni j i j j j il x x x x x -≠=--∏()()()n n i i L x L x l x y ←−−+4分段线性插值算法错误!输入(x k ,y k ),k=0,1,…,n;○2计算k 1k k1k 1k k 1k k k ,1)()()(x x x x x f x x x x x f x L --+--=++++5插值法和分段线性插值程序按下列数据分别作五次插值和分段线性插值,画出两条插值曲线以及给定数据点。
Matlab中的数值计算方法简介引言:Matlab是一种强大的数值计算软件,广泛应用于工程、科学、金融等领域。
它拥有丰富的数值计算方法库,可以帮助研究者和工程师解决各种数值计算问题。
本文将简要介绍几种常见的数值计算方法,并说明它们在Matlab中的实现和应用。
一、插值法插值法是一种通过已知数据点之间的插值,估计未知数据点的数值的方法。
常见的插值方法包括线性插值、拉格朗日插值和样条插值。
在Matlab中,我们可以使用interp1函数进行插值计算。
该函数可以根据给定的数据点,计算出在指定位置的插值结果。
我们可以通过设置插值的方法和插值节点的数目来调整插值的精度与计算效率。
二、数值积分数值积分是一种通过近似求解定积分的方法。
在Matlab中,我们可以使用quad和quadl函数进行数值积分。
这些函数可以自动选择合适的数值积分方法,并提供了较高的精度和计算效率。
我们只需提供被积函数和积分区间,即可获得近似的积分结果。
对于一些特殊形式的积分,如复杂函数或无穷积分,Matlab还提供了相应的函数供我们使用。
三、线性方程组求解线性方程组的求解是数值计算中的一个重要问题。
在实际应用中,我们经常会遇到大规模线性方程组的求解问题。
在Matlab中,我们可以使用矩阵运算功能和线性方程组求解函数来解决这类问题。
Matlab提供了一系列的求解函数,包括直接法和迭代法。
其中,直接法适用于小规模线性方程组,迭代法则适用于大规模线性方程组。
我们可以根据具体情况选择合适的方法和函数来求解线性方程组。
四、微分方程求解微分方程是许多科学和工程问题的数学模型,求解微分方程是数值计算中的常见任务。
在Matlab中,我们可以使用ode45函数来求解常微分方程的初值问题。
该函数采用龙格-库塔方法,对微分方程进行数值积分,并给出近似的解析结果。
对于偏微分方程和其他更复杂的微分方程问题,Matlab还提供了更多的求解函数和工具箱供我们使用。
五、最优化问题求解最优化问题是指在特定约束条件下,求解给定目标函数的最大值或最小值的问题。
Matlab中的数据拟合与曲线拟合技巧在科学研究和工程应用中,数据拟合和曲线拟合是常见的任务。
Matlab作为一种强大的数值计算和数据分析工具,提供了丰富的函数和工具箱来进行数据拟合和曲线拟合。
本文将介绍一些常用的数据拟合和曲线拟合技巧,让读者能够更好地利用Matlab来处理自己的数据。
首先,我们来看一下最常用的数据拟合技术之一——多项式拟合。
Matlab提供了polyfit函数来进行多项式拟合。
这个函数接受两个输入参数:x和y,分别为要拟合的数据点的横坐标和纵坐标。
我们可以根据实际需求选择合适的多项式阶数,然后调用polyfit函数,即可得到拟合后的多项式系数。
可以使用polyval函数来根据多项式系数计算拟合后的y值。
这样,我们就可以在Matlab中方便地进行数据拟合和预测了。
除了多项式拟合,Matlab还提供了其他常见的数据拟合方法,如指数拟合、对数拟合和幂函数拟合等。
这些方法在Matlab中的实现也非常简单,大部分都可以通过调用相关函数实现。
对于指数拟合,可以使用fit函数和exp2fit函数来进行拟合。
对于对数拟合,可以使用fit函数和log2fit函数来进行拟合。
对于幂函数拟合,可以使用fit函数和powerfit函数来进行拟合。
这些函数的使用方法大体相同,都需要提供拟合的数据点x和y,然后调用相应的函数即可得到拟合后的结果。
另外,Matlab还提供了一些高级的数据拟合和曲线拟合方法,如非线性最小二乘拟合和样条插值拟合。
非线性最小二乘拟合是一种非常灵活的拟合方法,可以拟合各种非线性函数。
Matlab提供了lsqcurvefit函数来实现非线性最小二乘拟合。
这个函数需要提供一个函数句柄,表示要拟合的函数模型,然后根据拟合的数据点进行拟合。
通过修改函数模型和参数的初始值,可以得到不同的拟合结果。
样条插值拟合是一种光滑曲线的拟合方法,可以更好地拟合离散数据点。
Matlab提供了spline函数来进行样条插值拟合。
在Matlab中进行数据拟合和曲线拟合的方法在科学研究或工程应用中,数据拟合和曲线拟合是常见的计算任务之一。
Matlab作为一种强大的数值计算软件,提供了丰富的工具和函数,方便我们进行数据拟合和曲线拟合的操作。
本文将介绍在Matlab中进行数据拟合和曲线拟合的几种方法。
一、线性回归线性回归是最简单的数据拟合方法之一,常用于建立变量之间的线性关系模型。
在Matlab中,可以使用polyfit函数进行线性回归拟合。
该函数可以根据输入数据点的横纵坐标,拟合出一条直线,并返回直线的斜率和截距。
例如,以下代码演示了如何使用polyfit函数进行线性回归拟合:```matlabx = [1, 2, 3, 4, 5];y = [2, 3, 4, 5, 6];coefficients = polyfit(x, y, 1);slope = coefficients(1);intercept = coefficients(2);```在上述代码中,数组x和y分别表示数据点的横纵坐标。
polyfit函数的第三个参数1表示拟合的直线为一阶多项式。
函数返回的coefficients是一个包含斜率和截距的数组,可以通过coefficients(1)和coefficients(2)获取。
二、多项式拟合在实际应用中,线性模型并不适用于所有情况。
有时,数据点之间的关系可能更复杂,需要使用更高阶的多项式模型来拟合。
Matlab中的polyfit函数同样支持多项式拟合。
我们可以通过调整多项式的阶数来拟合不同次数的曲线。
以下代码展示了如何使用polyfit函数进行二次多项式拟合:```matlabx = [1, 2, 3, 4, 5];y = [2, 6, 10, 16, 24];coefficients = polyfit(x, y, 2);a = coefficients(1);b = coefficients(2);c = coefficients(3);```在上述代码中,polyfit的第三个参数2表示拟合的多项式为二阶。
MATLAB 中的曲线拟合和插值在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。
对这个问题有两种方法。
在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。
这种方法在下一节讨论。
这里讨论的方法是曲线拟合或回归。
人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。
图11.1说明了这两种方法。
标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。
11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。
所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。
数学上,称为多项式的最小二乘曲线拟合。
如果这种描述使你混淆,再研究图11.1。
虚线和标志的数据点之间的垂直距离是在该点的误差。
对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。
这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。
最小二乘这个术语仅仅是使误差平方和最小00.20.40.60.81-2024681012xy =f (x )Second O rder C urv e Fitting图11.1 2阶曲线拟合在MATLAB 中,函数polyfit 求解最小二乘曲线拟合问题。
为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。
» x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; » y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];为了用polyfit ,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。
如果我们选择n=1作为阶次,得到最简单的线性近似。
在Matlab中如何进行数据插值与拟合引言:数据处理是科学研究与工程开发中不可或缺的环节之一。
而数据插值和拟合则是数据处理中常用的技术手段。
在Matlab这一强大的数值分析工具中,提供了丰富的函数与工具箱,使得数据插值与拟合变得更加便捷高效。
本文将详细阐述在Matlab中如何进行数据插值与拟合,并介绍几个常用的插值与拟合方法。
一、数据插值数据插值是通过已知的有限个数据点,推导出数据点之间未知位置上的数值。
在Matlab中,可以利用interp1函数进行数据插值。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据插值:1. 调用interp1函数,并传入x和y作为输入参数。
```matlabxi = linspace(min(x), max(x), n);yi = interp1(x, y, xi, '方法');```其中,xi是插值点的位置,min和max分别是x向量的最小值和最大值,n是插值点的数量。
'方法'是要使用的插值方法,可以选择线性插值(method='linear')、样条插值(method='spline')等。
2. 绘制插值结果曲线。
```matlabplot(x, y, 'o', xi, yi)legend('原始数据','插值结果')```使用plot函数可以绘制原始数据点和插值结果的曲线。
通过设置不同的插值方法和插值点的数量,可以探索不同的插值效果。
二、数据拟合数据拟合是通过已知的一组数据点,找到一个符合数据趋势的函数模型。
在Matlab中,可以利用polyfit函数进行多项式拟合。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据拟合:1. 调用polyfit函数,并传入x和y作为输入参数。
```matlabp = polyfit(x, y, n);```其中,n是多项式的次数,p是拟合多项式的系数。
Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。
在Matlab 中,有许多工具和函数可用于处理这些技术。
本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。
一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。
在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。
1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。
它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。
例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。
可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。
polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。
2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。
与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。
例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。
基于MATLAB的数值计算一插值及曲线拟合摘 要:本文基于MATLA的数值计算功能,重点介绍了插值及曲线拟合的应用及特点.
关键词:MATLAB;数值计算;插值及曲线拟合本文从MATLAB的功能特点出发,阐述了它在数值计算中的基本要素和相关函数,以工程计算中常用到的数据插值和曲线拟合为主旨,通过三个实例,验证、分析了用MATLAB进行数据的插值和曲线拟合的合理性、可靠性和
准确性。
1插值及曲线拟合
插值与拟合是来源于实际、又广泛应用于实际的两种重要方法.随着计算机的不断发展及计算水平的提高,它们在国民经济和科学研究等方面扮演着越来越重要的角色。
1 .1插 值
插值计算在数据拟合和数据平滑等方面应用普遍。
插值计算的目的是通过离散的数据点来获得更为丰富的信息,它可以细分为一维插值和二维插值。
一维插值是在线的方向上对数值点进行插值:二维插值则可以理解为在面的方向上进行插值。
比较典型的例子就是在绘图过程中,当绘制二维曲线时,利用一维插值从少量数据中获得足够的信息进行描点;在绘制三维曲线时,则必须对两个方向的数据进行插值来获得其他点的信息。
1.2曲线拟合
很多的时候,在工程研究与计算中得到的原始数据往往只是在某些点上的离散值,它们所代表的函数关系不易得出一个容易表示的数学表达式;或者所得出的数据的函数表达式比较复杂,不易计算,这样在计算这些函数其他所需要的数值方面就带来了诸多不便.解决这个难题的方法之一就是利用一些性质相对“好”的简单函数,在某种规定和标准之下,去拟合或逼近这些“困难”函数,然后通过这些简单函数去获得所希望得到的结果。
曲线拟合根据拟合方法的不同,有参数拟合和非参数拟合。
参数拟合,曲线不通过所有点,采用最小二乘法:非参数拟合,曲线通过所有点,采用插值法。
2插值及曲线拟合应用实例
2. 1一维插值与拟合应用
一维插值是进行数据分析和曲线拟合的重要手段,interp 1函数使用多项式技术,用多项式函数拟合所提供的数据,计算目标插值点上的
插值函数值.它提供四种插值方法,即线性插值、三次样条插值、三次插值和最近邻点插值。
例如,将x定义为初识量=0,终止量0.5,数组元素为以10为底的对数分布的10个数,y=sin(x),对x,Y分别进行二阶和十二阶拟合,执行如下命令(程序)操作:
>> x=logspace(0,0.5,10);
>> y=sin(x);
>> f2=polyfit(x,y,2);
>> f12=polyfit(x,y,12);
>> y2=polyval(f2,x);
>> y12=polyval(f12,x);
>> plot(x,y,'o',x,y2,':*',x,y12,':x')
图1:拟合函数示意图
由图1可以看出,对上述函数,在自变量3取值范围内,12阶拟合较2阶拟合准确可靠,较高次数的拟合在数据点上得到相当准确的拟合点.事实上,并不是拟合的阶次越高越好,一方面,提高阶次必然会增加计算量,另一方面,与数据点吻合得很好也不能说明拟合得结果好,下例就是一个很好的佐证。
>>x=0:0.1:1;
>>y=
[0.232,0.3456,0.890,0.756,1.23,1.45,0.56,0.34,0.07,-0.02,0.67]; >>f2=polyfit(x,y,2);%2阶拟合
>>f4=polyfit(x,y,4);%4阶拟合
>>f12=polyfit(x,y,12); %12阶拟合
>>y2=polyval(f2,x);
>>y4=polyval(f4,x);
>>y12=polyval(f12,x);
>>plot(x,y,'o',x,y2,':*',x,y4,':x',x,y12,':p')
%显示拟合图结果如图所示
由图2可以看到,高阶拟合的确保证了数据点与曲线的吻合,但是其线型已近似为线性,也就是说,拟合曲线的数值特性不好,甚至从该曲线上已经难以得到数据点本身所具有的趋势.
2. 2二维插值与拟合应用
二维插值在三维图像处理和可视化方面有着很重要的应用。
MATLAB 用函数interp2进行二维插值.二维插值常见的可分为网格节点插值和散
乱数据插值,前者主要适用于数据点比较规范,即数据点落在由一些平
行直线组成的矩形网格的每个顶点上;后者多用于数据点不太规范的情
况。
下面就前者举例如下:
>>x=1:5;
>>y=1:5;
>>t=
[100,100,100,100,100;105,120,122,125,122;110,130,155,157,130;115,133,157 t =
100 100 100 100 100
105 120 122 125 122
110 130 155 157 130
115 133 157 160 140
113 132 149 154 128
>>mesh(x,y,t)
%数据值网格图结果如图4-3所示。
>>xx=1:0.1:5;
>> yy=1:0.1:5;
>>tt=interp2(x,y,t,xx,yy','cubic')
>>mesh(xx,yy,tt)
通过比较原数据(图4)和二维插值后的数据(图4)可以看出,插值
后拟合曲面的数值特性相当不错,数据点与曲面基本吻合.
3结束语
上述的实例只是从两个方面进一步佐证了MATLAB功能强大的数值计
算和数据能力,实际上,MATLAB除了上述内容外,它还求微分方程的数
值解、数据统计、数值分析和傅立叶分析等数值计算中有着广泛的应
用.利用MATLAB丰富的函数资源,使编程人员从繁琐的程序代码中解脱
出来.因此,学习和掌握它对科研工作者和工程技术人员来讲是十分重
要的。
[参考文献]
[1]苏金明,阮沈勇.MATLAB实用教程[M].北京:电子工业出版社
[2]幻王沫然. MATLAH与科学计算(第2版)仁[M].北京:电子工业出版社
[3]何光渝.计算机常用数值算法渝程序(C ++版)[M].北京:人民邮电出版社
[4]何光渝.VISUAL BASIC常用数值算法集[M].北京:科学出版社。