数控伺服系统
- 格式:pptx
- 大小:403.42 KB
- 文档页数:56
数控机床进给伺服系统类故障诊断与处理数控机床进给伺服系统是数控机床中非常关键的一个组成部分,它直接影响机床加工的精度和效率。
然而,在使用过程中,由于各种原因,进给伺服系统可能会出现故障。
本文将介绍数控机床进给伺服系统的常见故障及其诊断与处理方法。
一、数控机床进给伺服系统常见故障1. 运动不平稳:机床在加工工件时,出现运动不平稳的情况,可能是由于进给伺服系统的故障引起的。
这种情况表现为运动过程中有明显的抖动或者不稳定的现象。
2. 运动失效:机床无法正常运动,不响应操作指令。
这种情况可能是由于进给伺服系统的电源故障、控制器故障或者连接线路故障引起的。
3. 位置误差过大:机床在加工过程中,位置误差超过了允许范围,导致加工工件的尺寸不准确。
这种情况可能是由于进给伺服系统的位置反馈元件(如编码器)故障引起的。
4. 加工速度过慢:机床在加工时,进给速度远低于预设值,导致加工效率低下。
这种情况可能是由于进给伺服系统的电机故障或者速度控制回路故障引起的。
二、故障诊断与处理方法1. 运动不平稳的诊断与处理:首先,检查机床的润滑系统,确保润滑油是否充足,并且清洁。
其次,检查机床的传动系统,确保螺杆和导轨的润滑良好。
如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。
2. 运动失效的诊断与处理:首先,检查进给伺服系统的电源供应情况,确保电源正常。
其次,检查进给伺服系统的连接线路,包括电源线、编码器连接线等,确保线路没有松动或者断裂。
如果问题还未解决,可以通过检查进给伺服系统的控制器和电机驱动器是否正常工作等方式进一步诊断。
3. 位置误差过大的诊断与处理:首先,检查进给伺服系统的位置反馈元件,如编码器是否损坏或者松动。
如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。
4. 加工速度过慢的诊断与处理:首先,检查进给伺服系统的电机是否正常工作,包括电机是否有异常声音或者发热等。
数控伺服系统介绍数控伺服系统介绍随着数字化和自动化技术的发展,数控伺服系统在机械加工、自动化控制、机器人等领域中越来越得到广泛的应用。
数控伺服系统是一种利用数控技术和伺服技术相结合的控制系统,具有高精度、高可靠性、高速度和高灵敏度等特点,被广泛应用于高科技领域中。
数控伺服系统由伺服控制器、伺服电机、传感器和负载等几个基本组成部分构成。
其中伺服控制器是数控伺服系统的核心部分,负责对伺服电机进行控制和调节;伺服电机则是负责将电能转化为机械能的核心部件,将电信号转化为运动控制信号;传感器则是利用位置、速度和力等物理量进行测量,并通过反馈控制实现系统的闭环控制;而负载则是指受到控制力的物理对象,例如机器人等自动化设备。
伺服控制器是数控伺服系统的最核心部分,是将机器加工的动作进行可编程化的设定和控制,实现对机器的可靠控制。
伺服控制器的工作原理是将伺服电机控制信号传输到控制器内的电路板上,通过内部电路板将电器信号转化为脉冲信号,再通过编程控制,使伺服马达根据编程指令进行动作控制。
传感器是数控伺服系统的重要组成部分,被广泛应用于过程监测、异常诊断、故障预测等领域中。
传感器主要分为原理性传感器和物理量传感器两种类型,通过测量物理量来实现对系统状态的检测和控制。
原理性传感器主要包括温度传感器、气敏传感器、压力传感器、水质传感器等,主要用于测量温度、湿度、压力、水质等参数。
而物理量传感器主要是用于测量力、速度、方向等物理量的传感器,例如力传感器、速度传感器、角度传感器等。
伺服电机是数控伺服系统的控制核心部分,通过将电器信号转化为运动控制信号,实现对机器的精定位和高速控制。
伺服电机具有重力偏差小、力矩大、稳定性好等特点,常被应用于精密加工、自动化控制、机器人等领域中。
伺服电机根据不同的工作环境情况,可以分为交流伺服电机和直流伺服电机两种类型,而正弦伺服电机、矩形伺服电机、齿轮箱电机等则是根据不同的工作特点和应用场合而设计出来的。
数控机床对伺服系统的要求(1) 精度高伺服系统的精度:输出量能复现输入量的精确程度。
伺服系统的位移精度:指令脉冲要求机床工作台进给的位移量和该指令脉冲经伺服系统转化为工作台实际位移量之间的符合程度。
两者误差愈小,位移精度愈高。
(2) 快速响应特性好快速响应是伺服系统动态品质的重要指标,它反映了系统跟踪精度。
机床进给伺服系统实际上就是一种高精度的位置随动系统,加工时为保证所要求的轮廓外形精度和的表面粗糙度,要求伺服系统跟踪指令信号的响应要快,跟随误差小。
(3) 调速范围要大调速范围:生产机械要求电机能供应的最高转速和最低转速之比。
在数控机床中,由于所用刀具、加工材料及零件加工要求的不同,为保证在各种状况下都能得到最佳切削条件,就要求伺服系统具有足够宽的调速范围。
既能满意高速加工要求,又能满意低速进给要求。
在低速切削时,还要求伺服系统能输出较大的转矩。
(4) 系统牢靠性要好系统的牢靠性常用发生故障时间间隔的长短的平均值作为依据,即平均无故障时间,这个时间越长牢靠性越好。
对主轴伺服系统,除上述要求外,还应满意如下要求:(1)主轴与进给驱动的同步掌握为使数控机床具有螺纹和螺旋槽加工的力量,要求主轴驱动与进给驱动实现同步掌握。
(2)准停掌握在加工中心上,为了实现自动换刀,要求主轴能进行高精确位置的停止。
(3)角度分度掌握角度分度掌握有两种类型:一是固定的等分角度掌握;二是连续的任意角度掌握。
任意角度掌握是带有角位移反馈的位置伺服系统,这种主轴坐标具有进给坐标的功能,称为“C”轴掌握。
“C”轴掌握可以用一般主轴掌握与“C”掌握切换的方法实现,也可以用大功率的进给伺服系统代替主轴系统。
数控系统伺服驱动器接线及参数设定数控系统是一种实现数控机床运动控制的系统,它通过数控程序控制伺服驱动器驱动电机实现机床各轴的精确定位和运动控制。
正确的接线和参数设定对于数控系统的稳定运行和良好性能至关重要。
一、数控系统伺服驱动器接线1.电源线接线:将电源线的两根火线分别接入伺服驱动器的AC1和AC2端口,将零线接入伺服驱动器的COM端口。
2.电动机线接线:将电动机的三根相线分别接入伺服驱动器的U、V、W端口,注意保持相序正确。
3.编码器线接线:将编码器的信号线分别接入伺服驱动器的A相、B相和Z相端口,注意保持对应关系。
4.I/O信号线接线:将数控系统的输入信号线分别接入伺服驱动器的I/O端口,将数控系统的输出信号线分别接入伺服驱动器的O/I端口。
二、数控系统伺服驱动器参数设定伺服驱动器的参数设定包括基本参数设定和运动参数设定。
1.基本参数设定:包括电源参数设定、电机参数设定和编码器参数设定。
-电源参数设定:设置电源电压和频率等基本参数,确保电源供电稳定。
-电机参数设定:设置电机类型、额定电流、极数等参数,确保驱动器与电机匹配。
-编码器参数设定:设置编码器型号、分辨率等参数,确保编码器信号精确反馈。
2.运动参数设定:包括速度参数设定、加速度参数设定和位置参数设定。
-速度参数设定:设置速度环的比例增益、积分增益和速度限制等参数,确保速度控制精度。
-加速度参数设定:设置加速度环的比例增益、积分增益和加速度限制等参数,确保加速度控制平稳。
-位置参数设定:设置位置环的比例增益、积分增益和位置限制等参数,确保位置控制准确。
3.其他参数设定:包括滤波参数设定、限位参数设定和插补参数设定等。
-滤波参数设定:设置滤波器的截止频率和衰减系数等参数,确保驱动器与电机的振动减小。
-限位参数设定:设置限位开关的触发逻辑和触发动作等参数,确保机床在限位时及时停止。
-插补参数设定:设置插补周期、插补梯度和插补速度等参数,确保插补运动的平滑与快速。
数控机床伺服系统的分类及其应用要求数控机床伺服系统又称为位置随动系统,简称为伺服系统。
数控机床伺服系统是把数控信息转化为机床进给运动的执行机构,在许多自动化控制领域广泛应用。
数控机床伺服系统的种类繁多、技术原理各具特色,这对其应用带来很大的困扰,本文就数控机床伺服系统的分类及其应用要求做简单介绍。
一、数控机床伺服系统的分类数控机床伺服系统按其用途和功能分为进给驱动系统和主轴驱动系统;按其控制原理和有无位置检测反馈环节分为开环系统和闭环系统;按驱动执行元件的动作原理分为电液伺服驱动系统和电气伺服驱动系统。
电气伺服驱动系统又分为直流伺服驱动系统和交流伺服驱动系统。
1.进给驱动与主轴驱动进给驱动是用于数控机床工作台或刀架坐标的控制系统,控制机床各坐标轴的切削进给运动,并提供切削过程所需的转矩。
主轴驱动控制机床主轴的旋转运动,为机床主轴提供驱动功率和所需的切削力。
一般地,对于进给驱动系统,主要关心它的转矩大小、调节范围的大小和调节精度的高低,以及动态响应速度的快慢。
对于主轴驱动系统,主要关心其是否具有足够的功率、宽的恒功率调节范围及速度调节范围。
2.开环控制和闭环控制数控机床伺服驱动系统按有无位置反馈分两种基本的控制结构,即开环控制和闭环控制,如图5--1所示。
由此形成位置开环控制系统和位置闭环控制系统。
闭环控制系统又可根据位置检测装置在机床上安装的位置不同,进一步分为半闭环伺服驱动控制系统和全闭环伺服驱动控制系统。
若位置检测装置安装在机床的工作台上,构成的伺服驱动控制系统为全闭环控制系统;若位置检测装置安装在机床丝杠上,构成的伺服驱动控制系统则为半闭环控制系统。
现代数控机床的伺服驱动多采用闭环控制系统。
开环控制系统常用于经济型数控或老设备的改造。
3.直流伺服驱动与交流伺服驱动70年代和80年代初,数控机床多采用直流伺服驱动。
直流大惯量伺服电机具有良好的宽调速性能,输出转矩大,过载能力强,而且,由于电机惯性与机床传动部件的惯量相当,构成闭环后易于调整。