(完整版)数学培优竞赛新方法(九年级)-第25讲抛物线与直线形(1)——由动点生成的特殊三角形问题
- 格式:doc
- 大小:421.01 KB
- 文档页数:10
【例1】(荆州)下列根式中属最简二次根式的是()A. a 2 1B. 12C. 8D. 27初中数学九年级培优目录第1 讲二次根式的性质和运算(P2 --- 7)第2 讲二次根式的化简与求值(P7 --- 12)第3 讲一元二次方程的解法(P13 --- 16)第4 讲根的判别式及根与系数的关系(P16 --- 22)第5 讲一元二次方程的应用(P23 --- 26)第6 讲一元二次方程的整数根(P27 --- 30)第7 讲旋转和旋转变换(一)(P30 --- 38)第8 讲旋转和旋转变换(二)(P38 --- 46)第9 讲圆的基本性质(P47--- 51)第10 讲圆心角和圆周角(P52 --- 61)第11 讲直线与圆的位置关系(P62 --- 69)第12 讲圆内等积证明及变换((P70 --- 76)第13 讲弧长和扇形面积(P76 --- 78)第14 讲概率初步(P78 --- 85)第15 讲二次函数的图像和性质(P85 --- 91)第16 讲二次函数的解析式和综合应用(P92 --- 98)第17 讲二次函数的应用(P99 --- 108)第18 讲相似三角形的性质(P109 --- 117)第19 讲相似三角形的判定(P118---- 124)第20 讲相似三角形的综合应用(P124 ---- 130)考点·方法·破译第1 讲二次根式的性质和运算1. 了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2. 掌握二次根式有关性质,并能熟练运用性质进行化简;3. 会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏析【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B 中含分母,C、D 含开方数4、9,故选 A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是()A. 10B. 8C. 6D. 2⑵①a2b2 ;②x;③5x2 xy ;④27 abc ,最简二次根式是()A .①,②B .③,④C.①,③ D .①,④【例2】( 黔东南) 方程4x 8x y m 0 ,当y>0 时,m 的取值范围是()A .0<m<1 B.m≥2 C.m<2 D.m≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0 的结论. 由题意得4x-8=0,x-y-m=0.化为y =2-m,则2-m>0,故选 C.【变式题组】2.(宁波)若实数x、y 满足x 2 ( y 3) 20 ,则xy 的值是.3.(荆门)若x 1 1 x (x y)2 ,则x-y 的值为()A .- 1B .1 C.2 D.34.(鄂州)使代数式x 3有意义的x 的取值范围是()x 4A .x>3 B.x≥3 C.x>4 D.x≥3 且x≠45. (怀化) a 2 b 3 (c 4) 0 ,则a-b-c=.【例3】下列二次根式中,与24 是同类二次根式的是()A .18 B.30 C.48 D.54【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一样.A .18 3 2 ;B .30 不能化简; C. 48 4 3 ;D.54 3 6 ,而24 2 6 .故本题应选 D.【变式题组】6. 如果最简二次根式3a 8 与17 2a 是同类二次根式,则a=.7. 在下列各组根式中,是同类二次根式的是()A . 3 和18B . 3 和13C.a2 b和ab2 D . a 1 和 a 18. 已知最简二次根式 b a 3b 和2b a 2 是同类二次根式,则a=,b=. 【例4】下列计算正确的是()A . 5 3 2B .8 2 4C.27 3 3 D.(1 2)(1 2) 122 a(a>0)【解法指导】正确运用二次根式的性质①( a) 2a(a≥0) ;② a 2 a0(a 0) ;③ab a b( a≥0, b≥0) ;④b b(b≥0, a>0)a aa(a<0)进行化简计算,并能运用乘法公式进行计算. A 、 B 中的项不能合并.D.(1 2)(1 2) 1 ( 2) 2【变式题组】1..故本题应选 C.9. (聊城)下列计算正确的是()A .2 3 4 2 6 5B .8 4 2C.27 3 3 D.( 3)2 310. 计算:( 15 4) 2007(4 15) 200711.(2 3 3 2) 2 (2 3 3 2) 212. ( 济宁) 已知 a 为实数,那么a2 =()A .aB .-a C.-1 D.013. 已知a>b>0,a+b=6 ab ,则a ba b的值为()2 1A .B .2 C. 2 D.2 2【例5】已知xy>0,化简二次根式xy的正确结果为()x2A .yB .y C.y D.y【解法指导】先要判断出y<0,再根据xy>0 知x<0. 故原式xyx【变式题组】y . 选D. 14. 已知a、b、c 为△ ABC三边的长,则化简 a b c ( a b c) 2的结果是.15. 观察下列分母有理化的计算:并利用这一规律计算:1 12 1 ,2 13 213 2 ,4 34 3 ,算果中找出规律,(1 1L1) ( 2006 1) .2 13 2 2006 200516.已知,则0<x<1,则( x 1)2 4 ( x1) 2 4 .x x1 1 b 5 1 5 1【例6】(辽宁)⑴先化简吗,再求值:,其中 a ,b .a b b a(a b) 2 22⑵已知 x3 2 , 32y3 2 ,那么代数式 32xy (x y)2 xy (x y)2值为 .【解法指导 】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x + y 的值,再代入求值 .ab a( a b) b 2(a b)2a b 5 1 5 1 【解】⑴原式=,当 a, b时, ab = 1,a + b = 5 ,原式= 5 .ab(a b)ab (a b)ab22⑵由题意得: xy = 1, x + y = 10, 原式= .【变式题组 】17.(威海)先化简,再求值:(a + b)2+ (a - b)(2a + b)- 3a 2,其中 a2 3 , b3 2 .a2a 2a 418.(黄石)已知 a 是 43 的小数部分,那么代数式 ( 22) (a ) 的值为 .a 4a 4 a2a a【例7 】已知实数 x 、y 满足 ( x x22008)( yy22008) 2008,则 3x 2-2y 2+ 3x - 3y - 2007 的值为( )A .- 2008B .2008C .- 1D . 1【解法指导 】对条件等式作类似于因式分解的变形,找出 a 、b 的关系,再代入求值 .解: ∵ ( x x 22008)( y y22008) 2008,∴ ( xx22008)2008 yy 2008 ,( yy22008)yy22008 xx220082008xx22008 ,由以上两式可得 x = y.选 D.∴ ( x x22008) 2008, 解得 x 2=2008,所以 3x 2- 2y 2+ 3x - 3y - 2007= 3x 2- 2x 2+ 3x - 3x - 2007=x 2- 2007= 1,故 【变式题组 】19.若 a >0, b > 0,且a( ab) 3 b( a5 b ) ,求 2a3bab的值 .演练巩固 · 反馈提高a b ab01. 若 m40 4 ,则估计 m 的值所在的范围是()A . 1< m < 2B . 2< m < 3C . 3<m < 4D . 4<m < 502.(绵阳)已知12 n 是正整数,则实数 n 的最大值为()A . 12B .11C . 8D . 303.(黄石)下列根式中,不是..最简二次根式的是()1 A.7 B. 3C.2D. 204.(贺州)下列根式中,不是最简二次根式的是( )1 100 101 1 100992 2A.2 B. 6 C. 8 D. 1005.下列二次根式中,是最简二次根式的是()A.12B.x233 C.D.2a 2b06.(常德)设 a = 20, b = (- 3)2, c 9 , d ( 1) 1 2, 则 a 、b 、 c 、d 、按由小到大的顺序排列正确的是()A .c < a < d <bB . b < d < a < cC . a < c < d <bD . b < c < a < d07.(十堰)下列运算正确的是() A . 32 5 B . 32 6C . ( 3 1)23 1D .52325 308.如果把式子 (1 a)1 根号外的因式移入根号内,化简的结果为()1 aA .1 a B . a 1C .a 1D .1 a09.(徐州)如果式子(x 1)2x 2 化简的结果为 2x - 3,则 x 的取值范围是()A . x ≤ 1B .x ≥ 2C . 1≤ x ≤ 2D . x > 010.(怀化)函数 yx 中自变量的取值范围是.x 211.(湘西)对于任意不相等的两个数a ,b ,定义一种运算 a ※ b =3 2 5 .那么 12※ 4= .3 2a21 a 112.(荆州)先化简,再求值:232,其中 a 3 .a2a 1 a a13.(广州)先化简,再求值:( a培优升级3)( a3) a(a 6) ,其中 a51 .201.(凉山州)已知一个正数的平方根是3x - 2 和 5x + 6,则这个数是 .02.已知 a 、b 是正整数,且满足 2(15 15 ) a b是整数,则这样的有序数对( a ,b )共有 对.03.(全国)设 a5 1 ,则aa42a 3a 2a 23.04.(全国)设 x2 aa1, a 是 x 的小数部分 , b 是 x 的小数部 , 则 a 3 +b 3+ 3ab = .2 105.(重庆)已知yx22 x222 ,则 x +y = .5x 4 4 5x06.(全国)已知 a2 1 , a 2 2 6 , a 6 2 ,那么 a 、b 、c 的大小关系是()A . a < b < cB .b < a < cC . c < b < aD .c < a < b35207.(武汉)已知 yx 1 4 x ( x , y 均为实数),则 y 的最大值与最小值的差为()A . 6 3B .3C . 5 3D . 6308.(全国)已知非零实数a 、b 满足 2a 4 b 2(a 3)b 24 2a ,则 a + b 等于()A .- 1B . 0C .1D . 209.(全国) 23 2 2 17 12 2 等于()A . 5 4 2B . 4 2 1C . 5D . 110. 已知 x2 xy y 0( x 0, y0) ,则3x xy y的值为( )1 1 A .B .325x 2 3 C .D .343 xy4 y11.已知 a b 2 a 1 4 b 2 3 c 3 1c 5 ,求 a + b + c 的值 . 212. 已知 913 与 913 的小数部分分别是 a 和 b ,求 ab - 3a + 4b + 8 的值 .考点·方法·破译第 2 讲 二次根式的化简与求值1. 会灵活运用二次根式的运算性质化简求值.2. 会进行二次根式的有理化计算,会整体代入求值及变形求值 .3. 会化简复合二次根式,会在根式范围内分解因式.经典· 考题· 赏析【例1 】(河北)已知x1 2 ,那么x x 的值等于xx3x 12x9 x 1【解法指导 】通过平方或运用分式性质,把已知条件和待求式的被开方数都用 1x表示或化简变形 .x解:两边平方得,x1 2 4 , xx1 2 ,两边同乘以 x 得, xx21 2 x ,∵ x 23x 1 5 x , x29 x 1 11x ,22∴原式 = 1 1 511【变式题组 】5 11 =5111. 若 a1 14 (0< a <1),则 a a a2. 设x1aa ,则 4x x 2的值为()A. a1aB.1 aaC. a1 aD .不能确定【例2 】(全国)满足等式x y y x2003x2003y 2003xy= 2003 的正整数对( x, y )的个数是() A . 1B . 2C . 3D .4【解法指导 】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解 .解:可化为xy( x y) 2003( x y) 2003( xy 2003) 0 ,∴ (xy 2003)( x y2003) 0∵xy2003 0 ,∴ xy2003 0,则 xy =2003,且 2003 是质数,∴正整数对( x, y )的个数有 2 对,应选 B. 【变式题组 】3.若 a > 0, b > 0,且 a( a 4 b ) 3 b( a 2 b ) ,求 2a 3b ab 的值 .【例3 】(四川)已知:xa1 (0 aa 1) ,求代数式a b abx2x 6 x 3 x 2 2x 2 4x 的值 . xx2 x x 2x24x【解法指导 】视 x - 2,x 2-4 x 为整体,把xa约.1 平方,移项用含 a 的代数式表示 x - 2,x 2-4 x ,注意 0<a <1 的制 a解:平方得,x a1 2 ,∴ x 2 aa 1 , x2a4x 4 a21 2 ,a2x4x a1 2 ,a( x 3)(x 2)x( x 2) x 2x 24x∴化简原式=g x x 3 x 2 x 24xa 1 ( 1 a)= (a 1 )2 a a a 2 2 a a 1 ( 1 a) a a【变式题组 】2, 4.(武汉)已知 xx 31 232 1,求代数式x 3 ( 52 x 4 x 2x 2) 的值.5.(五羊杯)已知 m 12 , n 12 ,且 (7 m 2 14m a)(3n 26n 7) 8 ,则 a 的值等于()A .- 5B . 5C .- 9D .9【例4 】(全国)如图,点 A 、C 都在函数 y等边三角形,则点 D 的坐标为.3 3 ( xx0) 的图像上,点 B 、D 都在 x 轴上,且使得△ OAB 、△ BCD 都是 【解法指导 】解:如图,分别过点 A 、C 作 x 轴的垂线,垂足分别为E 、F. 设OE=a ,BF=b ,则 AE= 3 a ,CF = 3 b ,所以,点 A 、C 的坐标为( a, 3 a )、( 2a + b, 3 b ),所以3a23 3ya 3 ,解得,3b (2 a b) 3 3因此,点 D 的坐标为( 2 6 ,0) 【变式题组 】6.(邵阳)阅读下列材料,然后回答问题.b63ACOE BF Dx在进行二次根式化简时,我们有时会碰上如52 2 ,3 3 3一样的式子,其实我们还可以将其进一步化简: 15 5 3 3 33 5 3 ; (一)3 2 2 3 33 36 ; (二)3223 13 3 11 3 13 1 ;(三)以上这种化简的步骤叫做分母有理化,2还可以用以下方法化简:2 3 1 3 13 123 13 3 13 1 1 3 13 13 1;(四)( 1)请你用不同的方法化简2;53①参照(三)试得:2=;(要有简化过程) 5 3②参照(四)试得: 2 =;(要有简化过程)53 ( 2)化简:1 1 1L1 3 153752n 12 n 1【例5 】(五羊杯)设 a 、b 、c 、d 为正实数, a < b , c < d ,bc > ad ,有一个三角形的三边长分别为a2c 2 , b2d 2,(b a)2(d c)2,求此三角形的面积 .【解法指导 】虽然不能用面积公式求三角形面积 ( 为什么 ?) ,a2边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.c 2的几何意义是以 a 、c 为直角边的直角三角形的斜解:如图,作长方形 ABCD ,使 AB = b - a , AD =c ,延长 DA 至 E ,使 DE =d ,延长 DC 至 F ,使 DF = b ,连结 EF 、FB 、EB , 则BF =a2c2, EF =b2d2,BE=(b a)2(d c)2,从而D知△ BEF 就是题设的三角形, 而 S △ BEF =S 长方形 ABCD + S △ BCF + S △ ABE baCF - S △ DEF = ( b - a) c + 1 2( d -1 1c)( b - a) - bd = ( bc -ad)d 22A cE【变式题组 】7. ( 北京 ) 已知 a 、b 均为正数,且 a +b = 2,求 U =a24b21演练巩固 · 反馈提高3 2 3 2xy x 2y2 01. 已知 x, y32,那么代数式32xy x2值为y202. 设 a7 1,则 3a312a26a 12 =()A . 24B . 25C . 4 7 10D . 4 7 1203.(天津)计算 ( 3 1)20012( 3 1)20002( 3 1)1999200104.(北京)若有理数 x 、 y 、z 满足xy 11 z 2( x y z) ,则 2( x yz)205.(北京)正数 m 、 n 满足 m 4 mn 2 m 4 n4n 3 0 ,则m 2 m 2 n n 8200206.(河南)若 x3 1 ,则 x3(2 3) x2(1 2 3) x 3 5 的值是()A . 2B . 4C . 6D . 807. 已知实数 a 满足 2000a a 2001 a ,那么 a 20002的值是()A . 1999B . 2000C . 2001D . 200208. 设 a1003 997 , b 1001 999 , c 2 1000 ,则 a 、b 、c 之间的大小关系是()A . a < b < cB . c < b < aC . c < a < bD . a < c < b09. 已知 1 ( x 1)2x ,化简 x21 x x21 x44B3 32003培优升级01.(信利)已知 x1 3 ,那么1x 21 1 x 24 x 202.已知 a 4a 1 5 ,则 6 2 a03.(江苏)已知( xx22002)( yy22002) 2002 ,则 x 23xy 4 y26 x 6 y 5804.(全国)7x 29x 13 7x 25x 13 7x ,则 x =05.已知 x3 2 , y3 2 ,那么 yx32 3 2 x2y206.(武汉)如果a b20022 , ab2002 2 , b3c3b3c ,那么 a 3b3c 的值为()A . 2002 2002B . 2001C . 1D . 007.(绍兴)当 x12002 2时,代数式 (4 x32005 x2001)的值是( )A . 0B .- 1C . 1D . 2200308.(全国)设 a 、b 、c 为有理数,且等式a b 2 c 35 26 成立,则 2a 999b 1001c 的值是()A . 1999B . 2000C . 2001D .不能确定09.计算:( 1)6 4 3 3 2( 63)( 32)( 2)10 14 15 21 10141521( 3)1 1 1L13 35 3 3 5 7 5 5 749 47 47 49( 4)3 2 2 5 2 6 7 2 12 9 2 20 11 2 30 13 2 4215 2 5617 2 722210.已知实数 a 、 b 满足条件a bb1 ,化简代数式a (1 1)g a b( a b 1)2,将结果表示成不含 b 的形式 .11.已知 x1 a 2(a a0) ,化简:x 2 x 2x 2 x 212.已知自然数 x 、y 、z 满足等式x 2 6 y z 0 ,求 x + y +z 的值 .考点·方法·破译第 3 讲 一元二次方程的解法1. 掌握一元二次方程根的定义并能应用根的定义解题;2. 掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3. 会应用一元二次方程解实际应用题。
人教版九年级数学章节培优训练试卷班级姓名第二十二章二次函数22.3 实际问题与二次函数第3课时实物抛物线问题一、选择题1. 北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线型钢拱的函数表达式为( )A.y=26675x2 B.y=-26675x2 C.y=131350x2 D.y=-131350x22. 如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD为14的奖杯,杯体轴截面ABC是抛物线y=49x2+5的一部分,则杯口的口径AC=( )A.7B.8C.9D.103. 如图,从某建筑物10 m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M离墙1 m,离地面40m,则水流落地点B离墙的距离OB是( )3A.2 mB.3 mC.4 mD.5 m4. 如图,抛物线型的拱门的地面宽度为20米,两侧离地面15米处各有一个观光窗,两窗的水平距离为10米,则拱门的最大高度为( )A.10米B.15米C.20米D.30米5.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB上离中点M 5米的地方,桥的高度是( )A.12米B.13米C.14米D.15米6.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0 m/s;④小球的高度h=30 m 时,t=1.5 s.其中正确的是( )A.①④B.①②C.②③④D.②③7.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2 m 的A 处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-k)2+h.已知球与O 点的水平距离为6 m 时,达到最高2.6 m ,球网与O 点的水平距离为9 m ,高度为2.43 m ,球场的边界距O 点的水平距离为18 m ,则下列判断正确的是( )A.球不会过球网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定球能否过球网 二、填空题8.如图,高腾同学在校运会跳高比赛中采用背跃式,跳跃路线是一条抛物线,他跳跃的高度y(单位:m)与跳跃时间x(单位:s)之间具有函数关系y=-35x 2+65x+45,那么他能跳过的最大高度为 m.9.如图是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状的,抛物线两端点与水面的距离都是1米,拱桥的跨度为10米,桥洞与水面的最大距离是5米,桥洞两侧壁上各有一盏距离水面4米的景观灯.两盏景观灯之间的水平距离为米.10.如图所示,从O点正上方2 m的点A处向右上方抛一个小球P,小球运动的路线呈抛物线形状,该抛物线为L,小球与O点的水平距离为2 m时达到最大高度6 m,然后落在下方台阶上弹起,已知MN=4 m,FM=DE=BC=1.2 m,ON=CD=EF=1 m,若小球弹起后的运动路线是一条与L形状相同的抛物线,且落点Q与B,D在同一直线上,则小球弹起后的最大高度是m.三、解答题11.如图,一名垒球运动员进行投球训练,站在点O处开始投球,球出手的高度是2米,球运动的轨迹是抛物线,当球达到最高点E时,水平距离EG=20米,与地面的高度EF=6米,掷出的球恰好落在训练墙AB上B点的位置,AB=3米.(1)求抛物线的函数关系式;(2)求点O到训练墙AB的距离(OA的长度).12.有一个抛物线形的桥洞,桥洞离水面的最大高度为4 m,跨度为12 m.现将它放在如图所示的直角坐标系中.(1)求这条抛物线的解析式;(2)一艘宽为4米,高出水面3米的货船能否从此桥洞通过?13.某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度y(单位:m)与行进的水平距离x(单位:m)之间关系的图象如图所示.已知篮球出手位置A与篮筐的水平距离为4.5 m,篮筐距地面的高度为3.05 m,当篮球行进的水平距离为3 m时,篮球距地面的高度达到最大,为3.3 m.(1)图中点B表示篮筐,其坐标为,篮球行进的最高点C的坐标为;(2)求篮球出手时距地面的高度.答案全解全析一、选择题1.答案 B 设抛物线的表达式为y=ax 2(a≠0),将B(45,-78)代入得-78=a×452,解得a=-26675,故此抛物线型钢拱的函数表达式为y=-26675x 2.故选B.2.答案 C 由题意得14=49x 2+5,解得x=±92,∴A (-92,14),C (92,14),∴AC=92-(-92)=9,故选C.3.答案 B 如图,建立平面直角坐标系,则抛物线的顶点M 的坐标为(1,403),A 点坐标为(0,10).设抛物线的解析式为y=a(x-1)2+403,将A(0,10)代入得10=a+403,解得a=-103.∴抛物线的解析式为y=-103(x-1)2+403.当y=0时,0=-103(x-1)2+403,解得x 1=-1(舍去),x 2=3.∴OB=3 m.故选B.4.答案 C 如图所示,以线段CD 所在直线为x 轴,线段CD 的垂直平分线为y 轴建立平面直角坐标系,此时,抛物线与 x 轴的交点为 C(-10,0),D(10,0),设这条抛物线的解析式为 y=a(x-10)·(x+10),∵抛物线经过点 B(5,15),∴15=a(5-10)×(5+10),解得a=-15,∴y=-15(x-10)(x+10)=-15x 2+20,∴当x=0时,y 取得最大值,此时y=20,即拱门的最大高度是20米.故选C.5. 答案 D 如图,以M 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系,∵桥的最大高度是16米,跨度是40米,∴C(0,16),A(-20,0),B(20,0),设抛物线解析式为y=ax 2+16,将A(-20,0)代入得0=400a+16,解得a=-125,∴抛物线解析式为y=-125x 2+16,当x=5时,y=-125×52+16=-1+16=15,∴在线段AB 上离中点M 5米的地方,桥的高度是15米.6. 答案 D ①由图象知小球在空中达到的最大高度是40 m ,经过的路程是40×2=80(m),故①错误;②小球抛出3秒后开始下降,速度越来越快,故②正确;③小球抛出3秒时达到最高点,速度为0 m/s ,故③正确;④设函数解析式为h=a(t-3)2+40,把O(0,0)代入得0=a(0-3)2+40,解得a=-409,∴函数解析式为h=-409(t-3)2+40,把h=30代入解析式,得30=-409(t-3)2+40,解得t=4.5或t=1.5,∴小球的高度h=30 m 时,t=1.5 s 或4.5 s ,故④错误.故选D.7. 答案 C ∵球与O 点的水平距离为6 m 时,达到最高2.6 m , ∴抛物线为y=a(x-6)2+2.6.∵抛物线y=a(x-6)2+2.6过点(0,2),∴2=a(0-6)2+2.6,解得a=-160,故y 与x 的关系式为y=-160(x-6)2+2.6,当x=9时,y=-160×(9-6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,-160(x-6)2+2.6=0,解得x 1=6+2√39>18,x 2=6-2√39(舍去),故会出界. 二、填空题 8.答案 75解析 ∵y=-35x 2+65x+45=-35(x-1)2+75,∴他能跳过的最大高度为75m.9.答案 5解析 建立平面直角坐标系如图所示,则抛物线的顶点坐标为(5,5),且经过点(0,1),设抛物线的解析式为y=a(x-5)2+5(a≠0),把点(0,1)代入得1=a(0-5)2+5,解得a=-425,∴抛物线的解析式为y=-425(x-5)2+5.令y=4,可解得x 1=152,x 2=52,∴两盏景观灯之间的水平距离是152-52=5米.10.答案12136解析 建立平面直角坐标系如图所示,则A(0,2),B(4.6,2),C(3.4,2),D(3.4,3),抛物线L 的顶点为(2,6).设抛物线L 的解析式为y=a(x-2)2+6, 把点A(0,2)代入得,4a+6=2,解得a=-1. ∵抛物线L 的对称轴为直线x=2, ∴点A 关于该对称轴的对称点为(4,2), ∴小球落在BC 上.设直线BD 的解析式为y=kx+b ,∴{4.6k +b =2,3.4k +b =3,解得{k =-56,b =356,∴直线BD 的解析式为y=-56x+356,令y=0,则x=7,∴Q(7,0).∵小球弹起后的运动路线是一条与L 形状相同的抛物线, ∴设弹起后的抛物线的解析式为y=-x 2+mx+n ,把(4,2),(7,0)代入得{-16+4m +n =2,-49+7m +n =0,解得{m =313,n =-703,∴弹起后的抛物线的解析式为y=-x 2+313x-703=-(x -316)2+12136,∴小球弹起后的最大高度为12136m.三、解答题11.解析 (1)由题意得,E(20,6)和C(0,2), 设抛物线的函数关系式为y=a(x-20)2+6, ∴2=a(0-20)2+6, 解得a=-0.01,∴抛物线的函数关系式为y=-0.01(x-20)2+6. (2)当y=3时,3=-0.01(x-20)2+6, 解得x 1=20+10√3,x 2=20-10√3(舍去).答:点O 到训练墙AB 的距离(OA 的长度)为(20+10√3)米.12.解析 (1)由图象可知抛物线的顶点坐标为(6,4),过点(12,0), 设抛物线的解析式为y=a(x-6)2+4,则0=a(12-6)2+4,解得a=-19, 即这条抛物线的解析式为y=-19(x-6)2+4. (2)当x=12×(12-4)=4时,y=-19×(4-6)2+4=329>3,∴货船能通过此桥洞.13.解析 (1)(4.5,3.05);(3,3.3).(2)设抛物线的解析式为y=a(x-3)2+3.3,把B(4.5,3.05)代入得,3.05=a(4.5-3)2+3.3,解得a=-19, ∴抛物线的解析式为y=-19(x-3)2+3.3, 当x=0时,y=2.3.答:篮球出手时距地面的高度为2.3米.。
九年级奥数:抛物线与直线形阅读思考抛物线与直线形(三角形、四边形)的结合是抛物线与平面几何结合生成综合性问题的一种重要形式,这类问题以抛物线为背景,探讨是否存在一些点,使其能构成某些特殊图形,有以下常见的形式:(1)抛物线上的点能否构成特殊的线段;(2)抛物线上的点能否构成特殊的角;(3)抛物线上的点能否构成特殊三角形、特殊四边形;(4)抛物线上的点能否构成全等三角形、相似三角形.这类问题把抛物线性质和平面图形性质有机结合,需综合运用待定系数法、数形结合、分类讨论等思想方法.问题解决例1 已知抛物线与x 轴交于不同的两点A (x ,,0)和B (x 2,0),与y 轴的正半轴交于点C .如果x 1、x 2是方程x 2-x -6=0的两个根(x 1<x 2),且△ABC 的面积为. (1)求此抛物线的解析式;(2)求直线AC 和BC 的方程;(3)如果P 是线段AC 上的一个动点(不与点A 、C 重合),过点P 作直线y =m (m 为常数),与直线BC 交于点Q ,则在x 轴上是否存在点R ,使得以PQ 为一腰的△PQR 为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.例2 如图,已知二次函数图象的顶点坐标为C (1,0),直线y =x +m 与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在y 轴上.(1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在一点P ,使得四边形DCEP 是平行四边形?若存在,请求出此时P 点的坐标;若不存在,请说明理由.例3 已知抛物线交x 轴于A 、B 两点(A 在B 的左边),交y 轴于C 点,)0(2=/++=a c bx ax y 215k kx kx y 322-+=且y 有最大值4.(1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使△PBC 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.例4 如图,在直角坐标系中,O 为坐标原点,平行四边形OABC 的边OA 在x 轴上,∠B =60°,OA =6,OC =4,D 是BC 的中点,延长AD 交OC 的延长线于点E .(1)画出△ECD 关于边CD 所在直线为对称轴的对称图形△E 1CD ,并求出点E 1的坐标; (2)求经过C 、E 1、B 三点的抛物线的解析式;(3)请探求经过C 、E 1、B 三点的抛物线上是否存在点P ,使以点P 、B 、C 为顶点的三角形与△ECD 相似.若存在这样的点P ,请求出P 点的坐标;若不存在这样的点P ,请说明理由.数学冲浪1.在平面直角坐标系中,已知二次函数的图象与x 轴相交于点A 、B ,顶点为C ,点D 在这个二次函数图象的对称轴上.若四边形ACBD 是一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式.2.如图,抛物线与x 轴相交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角,且恰使△OCA ∽△OBC . , (1)求线段OC 的长;(2)求该抛物线的函数关系式;(3)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.3.二次函数的图象如图所示,过y 轴上一点M (0,2)的直线与抛物线交于A 、B 两点,过点A 、B 分别作y 轴的垂线,垂足分别为C 、D .(1)当点A 的横坐标为-2时,求点B 的坐标;k x a y +-=2)1()0(1282<+-=a a ax axy 281x y =(2)在(1)的情况下,分别过点A 、B 作AE ⊥x 轴于E ,BF ⊥x 轴于F ,在EF 上是否存在点P ,使∠APB 为直角?若存在,求点P 的坐标;若不存在,请说明理由;(3)当点A 在抛物线上运动时(点A 与点O 不重合),求AC ⋅BD 的值.4.如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OC =3.(1)求抛物线的解析式;(2)作Rt △OBC 的高OD ,延长OD 与抛物线在第一象限内交于点E ,求点E 的坐标; (3)在x 轴上方的抛物线上,是否存在一点P ,使得四边形OBEP 是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由;(4)在抛物线的对称轴上,是否存在一点Q ,使△BEQ 的周长最小?若存在,请求出点Q 的坐标;若不存在,请说明理由.5.如图,抛物线过点A (4,0),正方形OABC 的边BC 与抛物线的一个交点为D ,点D 的横坐标为3,点M 在y 轴负半轴上,直线l 过D 、M 两点且与抛物线的对称轴交于点. (1)写出a 、b 的值:a =__________、b =__________,并写出点H 的坐标(______,_______);(2)如果点Q 是抛物线对称轴上的一个动点,那么是否存在点Q ,使得以点O 、M 、Q 、H 为顶点的四边形是平行四边形?若存在,求出点Q 的坐标;若不存在,请说明理由. 6.矩形OABC 在直角坐标系中的位置如图,A 、C 两点的坐标分别为A (6,0)、C (0,3),直线与BC 边相交于点D . (1)求点D 的坐标;(2)若抛物线经过D 、A 两点,试确定此抛物线的解析式;c bx x y ++-=221bx ax y +=231tan ,=∠OMD H x y 43=bx ax y +=2(3)若P为x轴上方(2)中抛物线上一点,求△POA面积的最大值;(4)设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标.。
第9讲 二次函数的应用知识纵横设二次函数)0(2≠++=a c bx ax y ,自变量在没有限制条件时:当a bx a 2,0-=>时,a b ac y 442-=最小值,无最大值;当abx a 2,0-=<时,a b ac y 442-=最大值,无最小值;二次函数的最值应用主要体现在一下方面:(1) 解决实际问题中的最值问题; (2) 探讨几何图形中相关元素的最值。
例题求解【例1】 如图,已知边长为4的正方形截取一个角后成为五边形A B CDE ,其中1,2==BF AF 。
试在AB 上求一点P ,使矩形有最大面积。
思路点拨 设x PM DN ==,矩形的面积有y ,建立y 与x 的函数关系式,阶梯的关键是:最值点不一定是抛物线的顶点,应注意自变量的取值范围。
(辽宁省中考题)【例2】 某宾馆有5个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满,当每个房间每天的房价每增加10元时,就会有一个房间空闲,宾馆需对游客居住的每个房间每天支出20元的各种费用,根据规定,每个房间每天的房价不得高于340元,设每个房间的房价每天增加x 元(x 为10的整数倍)。
(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为W 元,求W 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?(武汉市中考题)思路点拨 对于(3),(1)是基础,并注意“x 为10的整数倍”的制约。
【例3】 当21≤≤-x 时,函数224222+++-=a a ax x y 有最小值2,求a 所有可能取的值。
(太原市竞赛题)思路点拨22)(222++--=a a a x y ,图像的对称轴为a x =,函数在何处去的最小值?应分2121>-<≤≤-a a a 、、三种情况讨论【例4】红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如下表:未来40天内,前20天每天的价格y1(元/件)与时间t (天)的函数关系式为25411+=t y (1≤t ≤20且t 为整数),后20天每天的价格y2(元/件)与时间t (天)的函数关系式为40212+-=t y (21≤t ≤40且t 为整数). 下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(a <4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.(扬州市中考题)分析 对于(3),引入参数a 后改变了已有函数关系和对称轴。
初三数学抛物线知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!初三数学抛物线知识点关于初三数学抛物线知识点同学们!平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。
抛物线与直线形(1)
——由动点生成的特殊三角形问题
在科学研究中,首先要能够发现好的、重大的问题,只有找对了方向,才能不断发现、解决一系列重要的问题,而要找到好的问题,不仅需要丰富的学识,更关系到一个人的观念和文化的品味。
——丘成桐
知识纵横
抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能够成某些特殊三角形,有以下常见的基本形式:
(1)抛物线上的点能否构成等腰三角形;
(2)抛物线上的点能否构成直角三角形;
(3)抛物线上的点能否构成相似三角形;
解这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。
例题求解
【例1】如图,抛物线452
+-=ax ax y 经过ABC ∆的三个顶点,已知BC ∥x 轴,点A 在
x 轴上,点C 在y 轴上,且BC AC =.
(1)求抛物线的对称轴;
(2)写出C B A ,,三点的坐标并求抛物线的解析式;
(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB ∆是等腰三角形?若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.
(龙岩市中考题)
思路点拨 对于(3)只需求出P 点纵坐标,将问题转化为相关线段长。
解题的关键是分情况讨论并正确画图。
【例2】已知抛物线k kx kx y 322
-+=,交x 轴于B A ,两点(A 在B 的左边),交y 轴于
C 点,且y 有最大值4.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P ,使PBC ∆是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.
(包头市中考题)
思路点拨 对于(2),设P 点坐标为()b a ,,寻找相似三角形,建立b a 、的另一关系式,解联立而得到的方程组,可求出b a 、的值。
【例3】抛物线()314
1
2+--
=x y 与y 轴交于点A ,顶点为B ,对称轴BC 与x 轴交于点C .
(1)如图1.求点A 的坐标及线段OC 的长;
(2)点P 在抛物线上,直线PQ ∥BC 交x 轴于点Q ,连接BQ .
①若含︒45角的直角三角板如图2所示放置.其中,一个顶点与点C 重合,直角顶点D 在
BQ 上,另一个顶点E 在PQ 上.求直线BQ 的函数解析式;
②若含︒30角的直角三角板一个顶点与点C 重合,直角顶点D 在直线BQ 上,另一个顶点E 在PQ 上,求点P 的坐标.
(2011年绍兴市中考题)
思路点拨 对于(2),解题的关键是求出CQ 的长。
由条件出发,构造全等三角形或相似三角形,而能发现E Q D C 、、、四点共圆,可使问题获得简解。
【例4】如图1,抛物线()02
≠++=a c bx ax y 的顶点为()4,1C ,交x 轴于B A ,两点,交
y 轴于点D ,其中点B 的坐标为()0,3.
(1)求抛物线的解析式;
(2)如图2,过点A 的直线与抛物线交于点E ,交y 轴于点F ,其中点E 的横坐标为2,若直线PQ 为抛物线的对称轴,点G 为直线PQ 上的一动点,则x 轴上是否存在一点H ,使F H G D ,,,四点所围成的四边形周长最小?若存在,求出这个最小值及点H G ,的坐标;若不存在,请说明理由;
(3)如图3,在抛物线上是否存在一点T ,过点T 作x 轴的垂线,垂足为点M ,过点M 作
MN ∥BD ,交线段AD 于点N ,连接MD ,使BMD DNM ∆∆∽?若存在,求出点T 的
坐标;若不存在,请说明理由.
(2011深圳市中考题)
思路点拨 对于(2),因DF 是一个定值,故需使HF GH DG ++最小即可,从轴对称入手;对于(3)由题意知BDM NMD ∠=∠,要使BMD DNM ∆∆∽,只要使BD
MD
MD NM =,即BD NM MD ⋅=2
;或从角入手得到隐含的相似三角形。
学力训练
1. 如图1,已知抛物线的顶点为()1,2A ,且经过原点O ,与x 轴的另一个交点为B . (1)求抛物线的解析式;
(2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以B D C O ,,,四点为顶点的四边形为平行四边形,求D 点的坐标;
(3)连接AB OA ,,如图2,在x 轴下方的抛物线上是否存在点P ,使得OBP ∆与OAB ∆相似?若存在,求出P 点的坐标;若不存在,说明理由.
(临沂市中考题)
2. 如图,已知抛物线与x 轴交于()()0.3,0,1B A -两点,与y 轴交于点()3,0C . (1)求抛物线的解析式;
(2)设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得PDC ∆是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由;
(3)点M 是抛物线上一点,以M D C B ,,,为顶点的四边形是直角梯形,试求出点M 的坐标.
(临沂市中考题)
3. 在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点()0,1-C .如图所示,B 点在抛物线22
1
212-+=x x y 图象上,过点B 作x BD ⊥轴,垂足为D ,且B 点横坐标为3-. (1)求证:COA BDC ∆≅∆; (2)求BC 所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P ,使ACP ∆是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.
(2011年西宁市中考题)
4. 已知抛物线c bx ax y ++=2
的对称轴为直线2=x ,且与x 轴交于B A ,两点,与y 轴
交于点C ,其中()()3,0,0,1-C A . (1)求抛物线的解析式;
(2)若点P 在抛物线上运动(点P 异于点A ).
①如图1.当PBC ∆面积与ABC ∆面积相等时.求点P 的坐标; ②如图2.当BCA PCB ∠=∠时,求直线CP 的解析式.
(2011年莆田市中考题)
5. 在平面直角坐标系中,抛物线32
++=bx ax y 与x 轴的两个交点分别为
()()0,1,0,3B A -,过顶点C 作x CH ⊥轴于点H .
(1)直接填写:=a ,=b ,顶点C 的坐标为 ;
(2)在y 轴上是否存在点D ,使得ACD ∆是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;
(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),AC PQ ⊥于点Q ,当PCQ ∆与ACH ∆相似时,求点P 的坐标.
(2011年潜江市中考题)。