沪科版七年级数学上册课后训练{3.2一元一次方程的应用}.docx
- 格式:docx
- 大小:2.19 MB
- 文档页数:3
沪科版七上数学一元一次方程的应用(第3课时)(30分钟50分)一、选择题(每小题4分,共12分)1.李宽同学需买一副羽毛球拍和若干个羽毛球,正赶上甲、乙两家超市搞促销,甲超市的方案是全部商品一律打九折.乙超市的方案是买一副球拍赠3个羽毛球,李宽在心里算了算,在两家超市花钱一样多,已知羽毛球拍20元/副,羽毛球1元/个,则李宽计划买羽毛球的个数为( )A.8B.9C.10D.11【解析】选C.设李宽计划买x个羽毛球,则(20+x)×0.9=20+(x-3)×1,解得x=10.2.(2014·温州模拟)张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),可知李明上次所买书籍的原价为( )A.148元B.160元C.172元D.180元【解析】选B.设书的原价为x元,根据题意得x-12=20+0.8x,解得x=160,即李明上次所买书籍的原价为160元.【变式训练】某服装店出售一种优惠卡,花200元买这种卡后,凭卡可以在这家商店按8折购物,下列情况买购物卡合算的是( )A.购物高于800元B.购物低于800元C.购物高于1 000元D.购物低于1 000元【解析】选C.设购物x元,列方程为0.8x+200=x,解得x=1000,即当购物1000元时,买卡与不买卡花钱同样多,所以当购物高于1000元时,买卡更合算.3.某超市对顾客实行优惠购物,规定如下:(1)若一次性购物不超过100元,则不予优惠.(2)若一次性购物超过100元,但不超过300元,按标价给予九折优惠.(3)若一次性购物超过300元,其中300元以下部分(包括300元)给予九折优惠;超过300元部分给予八折优惠.小李两次去该超市购物,分别付款99元和252元.现在小张决定一次性购买小李分两次购买的物品,他需付款( )A.343元B.333元C.333元或342元D.342元或333.2元【解析】选D.因为小李两次去该超市购物,分别付款99元和252元.所以有两种情况:①第一次付款99元没有享受优惠,即没有打折,第二次享受优惠,所以设第二次实际购物的款数为x,而300×0.9=270>252,所以0.9x=252,所以x=280,所以小李两次去该超市购物实际购物的款数为99+280=379,所以现在小张决定一次性购买小李分两次购买的物品,他需付款300×0.9+79×0.8=333.2(元);②第一次付款99元享受了优惠,即打九折,那么第一次实际购物的款数为99÷0.9=110元,第二次享受优惠,设第二次实际购物的款数为x,而300×0.9=270>252,所以0.9x=252,所以x=280,所以小李两次去该超市购物实际购物的款数为110+280=390,所以现在小张决定一次性购买小李分两次购买的物品,他需付款300×0.9+90×0.8=342(元).所以现在小张决定一次性购买小李分两次购买的物品,他需付款342元或333.2元.二、填空题(每小题4分,共12分)4.(2014·滨州质检)某同学花了30元钱购买了图书馆会员证,只限本人使用,凭证购买入场券每张1元,不凭证购买入场券每张4元,要想使得购会员证比不购会员证合算,该同学去图书馆阅览应超过次.【解析】设该同学去图书馆阅览x次使得购会员证与不购会员证花费相同,列方程为4x=30+x,解得x=10,所以要想使得购会员证比不购会员证合算,该同学去图书馆阅览应超过10次.答案:105.一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网所用时间计费;方式B除收月基费20元外,再以每分0.05元的价格按上网所用时间计费.当上网所用时间为分时,两种上网方式的费用一样.【解析】设当上网所用时间为x分时,两种上网方式的费用一样.根据题意,得0.1x=20+0.05x,解得x=400.答案:4006.某学生要购买一种学习用品,该用品在甲、乙两商店的最初标价同为a元,这位学生发现该用品在甲商店现在的标价还是a元,但乙商店现在的标价是在原价a元九折的基础上涨10%得到的价格,则这位学生选择去商店购买该学习用品为好(不考虑其他因素).【解析】乙商店现在的售价为a×90%×(1+10%)=0.99a<a,故去乙商店.答案:乙三、解答题(共26分)7.(12分)(2014·宁夏模拟)某校为激励优秀学生,进行励学活动,如果单独租用45座客车若干辆,恰好坐满;如果单独租用60座客车,则少租一辆,并且余下30个座位.(1)求外出励学的学生人数是多少,单租45座客车需多少辆.(2)已知45座客车租金是250元,60座客车租金是300元,为节省租金,并且保证每个学生有座位,决定同时租用两种客车,使得租车总数比单租45座客车少一辆,问45座客车和60座客车分别租多少辆才能使得租金最少?【解析】(1)设单租45座客车需x辆,则45x=60(x-1)-30,解得x=6,45×6=270(人).答:外出励学的学生人数是270人,单租45座客车需6辆.(2)根据(1)知,两种客车共租5辆,方案有:①45座车1辆,60座车4辆:共有1×45+4×60=285(座),租金1×250+4×300=1450(元).②45座车2辆,60座车3辆:共有2×45+3×60=270(座),租金2×250+3×300=1400(元).③45座车3辆,60座车2辆:共有3×45+2×60=255(座),不满足每人都有座.④45座车4辆,60座车1辆:共有4×45+1×60=240(座),不满足每人都有座.所以,应选择方案②,即租45座车2辆,60座车3辆,租金最少.【变式训练】公园门票价格规定如表:某校初二(1),(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少学生?(3)如果初二(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【解析】(1)1240-104×9=304(元),即可省304元.(2)设(1)班人数x人,则13×x+11×(104-x)=1240,解得x=48,104-48=56,所以(1)班48人,(2)班56人.(3)48×13=624,51×11=561,所以按每张11元的价格买51张最省钱.【培优训练】8.(14分)某果品公司急需将一批不易存放的水果从A市运到B市销售,现有三家运输公司可供选择,这三家运输公司提供的信息如下:根据表格提供的信息回答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A,B两市间的距离(精确到个位).(2)在(1)的条件下,如果这批水果在包装与装卸以及运输过程中的损耗为300元/h,那么要使果品公司支付的总费用(包装与装卸费用、运输费及损耗三项之和)最少,应选择哪家运输公司?【解析】(1)设A,B两市间的距离为xkm,则三家运输公司包装与装卸及运输的费用分别为:甲公司:(6x+1500)元;乙公司:(8x+1000)元;丙公司:(10x+700)元.根据题意,得(8x+1000)+(10x+700)=2(6x+1500),18x+1700=12x+3000,6x=1300,x≈217.答:A,B两市间的距离约为217km.(2)甲公司所需总费用为:6×217+1500+×300=5087(元).乙公司所需总费用为:8×217+1000+×300=4638(元).丙公司所需总费用为:10×217+700+×300=4421(元).因为5087>4638>4421,所以丙公司所需总费用最少. 答:应选择丙运输公司.。
课后训练基础巩固1.下列四个方程中,一元一次方程是( ).A .1x =1B .x =0C .x 2-1=0D .x +y =1 2.已知a =b ,下列变形中不一定正确的是( ).A .a -5=b -5B .-3a =-3bC .ma =mbD .22a b c c = 3.如果x =2是方程12x +a =-1的根,那么a 的值是( ). A .0B .2C .-2D .-64.下列变形是移项的是( ).A .由3=52x ,得532x = B .由6x =3+5x ,得6x =5x +3C .由2x -3=x +5,得2x -x =5+3D .由2x =-1,得x =12-5.将方程213x -=1-522x +去分母,得( ). A .2(2x -1)=1-3(5x +2)B .4x -1=6-15x -2C .4x -2=6-15x +6D .4x -2=6-15x -6 6.解方程384x x -=时,第一步最合理的做法是( ). A .同乘以43 B .同除以xC .两边都加上8-xD .两边都除以-87.如果-2x n -1+1=0是关于x 的一元一次方程,那么n 应满足的条件是__________.8.已知3xy 2a -1与-9xy a +3是同类项,则a +1的值为__________.9.若整式12-3(9-y)与5(y -4)的值相等,则y =__________.10.解方程: (1)212511(25)4326x x x +-⎛⎫--=- ⎪⎝⎭; (2)1261220x x x x +++=; (3)24 3.90.1250.2x x -+-=; (4)(x +1)34%+0.1x =(x -1)60%.能力提升11.解答下列各题:(1)当a =2时,代数式3a 2-2a -4的值恰好是关于x 的方程3mx -2m +1=mx -6的解,求m 的值;(2)若整式213x +与516x -的差为1,求x 的值; (3)若关于x 的方程9324522m x x m -=+-的解是x =23-,求m 的值. 12.解方程|2x|=3时,可按照下面的方法进行:解:当2x ≥0时,原方程可化为2x =3,解得x =32; 当2x <0时,原方程可化为-2x =3,解得x =32-. 所以原方程的解是x =32或x =32-. 根据以上解法,解方程|x +3|=2.参考答案1答案:B2答案:D 点拨:由a =b 到22a b c c =,等式两边同除以c 2,当c ≠0时等式成立;当c =0时等式不成立.3答案:C 点拨:把x =2代入方程12x +a =-1中,得到一个关于a 的一元一次方程,解这个方程即可求得a 的值.4答案:C5答案:D 点拨:分母的最小公倍数是6,两边都乘以6,得4x -2=6-(15x +6),再把方程右边括号去掉,可知选项D 正确.6答案:C 点拨:变形后使左边只剩含x 的项,即左边去掉-8,右边去掉x.7答案:n =2 点拨:本题重在考查一元一次方程的概念,依据方程中所含未知数的次数为1这一限制条件,因为方程是关于x 的一元一次方程,从而可得n -1=1,解得n =2.8答案:5 点拨:由同类项的概念中相同字母的次数相同这一限制条件,可得一元一次方程2a -1=a +3,解得a =4,所以a +1=5.9答案:52点拨:由两个整式的值相等,暗示我们可建立等式,从而得到一元一次方程12-3(9-y)=5(y -4),解得y =52. 10解:(1)原方程变形,得21251(25)4366x x x +--+=-, 即21043x +-=.解得x =23-. (2)原方程化为12233445x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.整理,得5x x -=1.解得x =54. (3)小数化为整数(2)8(4)50.12580.25x x -⨯+⨯-⨯⨯=3.9,得 8(x -2)-5(x +4)=3.9.化简,得x =13.3.(4)去百分号,得34(x +1)+10x =60(x -1).方程两边同除以2,得17(x +1)+5x =30(x -1).去括号,得17x +17+5x =30x -30.移项,合并同类项,得-8x =-47.系数化为1,得x =478. 点拨:(1)注意到方程左右两边都有1(25)6x -,故可把1(25)6x -看成一个整体进行合并,从而使运算简化;(2)22x x x =-,623x x x =-,1234x x x =-,2045x x x =-,因此,把方程的左边每一项拆项分解后再合并就很简便;(3)注意到0.125×8=1,0.2×5=1,可打破常规的方法巧妙地化小数为整数;(4)去百分号时,把方程两边同乘以100,要防止0.1x 漏乘100.11解:(1)当a =2时,3a 2-2a -4=3×22-2×2-4=4.由题意,得x =4.把x =4代入方程3mx -2m +1=mx -6中,得3×4m -2m +1=4m -6.所以6m =-7.解得m =76-.即所求m 的值是76-.(2)由题意得215136x x +--=1. 去分母,得2(2x +1)-(5x -1)=6.去括号,得4x +2-5x +1=6.移项,得4x -5x =6-2-1.合并同类项,得-x =3.两边同除以-1,得x =-3.(3)因为x =23-是方程9324522m x x m -=+-的解,把x =23-代入原方程得 92232452332m m ⎛⎫⎛⎫-⨯-=⨯-+- ⎪ ⎪⎝⎭⎝⎭, 即948352332m m ⎛⎫⎛⎫--=-+- ⎪ ⎪⎝⎭⎝⎭. 移项,得938452233m m ⎛⎫⎛⎫-=-+-- ⎪ ⎪⎝⎭⎝⎭. 合并同类项,得3m =-9.两边同除以3,得m =-3.12解:当x +3≥0时,原方程可化为一元一次方程x +3=2,它的解是x =-1;当x +3<0时,原方程可化为一元一次方程-(x +3)=2,它的解是x =-5.所以原方程的解是x =-1或x =-5.。
一、单选题1. 某超市将两件商品都以84元售出,一件提价,一件降价,则最后是()A.无法确定B.亏本3元C.盈利3元D.不赢不亏2. 某学校有间男生宿舍和个男生,若每间宿舍住8个人,则还多4个人无法安置;若每间宿舍安排10个人,则还多6张空床位,据此信息列出方程,下列4个方程中正确的是().①②③④A.①③B.②④C.①②D.③④3. 如图,甲、乙两人同时沿着边长为30 m的等边三角形按逆时针的方向行走,甲从A以65 m/min的速度,乙从B以71 m/min的速度行走,当乙第一次追上甲时,在等边三角形的( )A.边AB上B.点B处C.边BC上D.边AC上4. 把一个用铁丝围成的长方形改制成一个正方形,则这个正方形与原来的长方形比较( )A.面积与周长都不变化B.面积相等但周长发生变化C.周长相等但面积发生变化D.面积与周长都发生变化5. 一件羽绒服降价10%后售出价是270元,设原价x元,得方程()A.x(1-10%)=270-x B.x(1+10%)=270C.x(1+10%)=x-270 D.x(1-10%)=270二、填空题6. 甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲、乙、丙分别为________________________.7. 某款服装,一件的进价为200元,若按标价的八折销售,仍可获利20%,设这款服装每件的标价为x元,则可列方程为______.8. 一架飞机在两个城市之间飞行,顺风飞行需h,逆风飞行需3h,若风速是24km/h,求两城市间的距离,若设两城市间的距离为x(km),根据题意,所列正确方程是__________________.三、解答题9. 小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x的式子表示厨房的面积 m2,卧室的面积 m2.(2)此经济适用房的总面积为 m2.(3)已知厨房面积比卫生间面积多2m2,且铺1m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?10. 已知在数轴上对应的数分别用表示,并且满足方程.(1)求线段的长;(2)动点分别从两点同时出发沿数轴向左运动,点的运动速度分别为3个单位长度/秒和2个单位长度/秒.设运动的时间为秒,请用含的式子表示线段的长;(3)在(2)的条件下,点是线段中点,当时,求的值.11. A、B两地果园分别有苹果30吨和40吨,C、D两地分别需要苹果20吨和50吨.已知从A地、B地到C地、D地的运价如下表:到C地到D地从A地果园运出每吨15元每吨12元从B地果园运出每吨10元每吨9元(1)若从A地果园运到C地的苹果为x吨,则从A地果园运到D地的苹果为______吨,从B地果园运到C地的苹果为______吨,从B地果园运到D地的苹果为______吨.(2)A,B两地果园分别将苹果运往C、D两地的总运输费用为多少元?(3)若总运输费为750元,请你求出具体的运输方案?。
3.2 第3课时 工程与比例分配问题知识点 1 工作总量看成单位“1”的应用题1. 某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙共同完成此项工作,设甲一共做了x 天,所列方程为( )A .x +14+x 6=1B .x 4+x +16=1 C .x 4+x -16=1 D .x 4+14+x +16=1 2.某地修一条公路,若甲工程队单独承包要80天完成,乙工程队单独承包要120天完成.现在由甲、乙工程队合作承包,完成任务需要( )A .48天B .60天C .80天D .100天3.某单位开展植树活动,由一人植树要80 h 完成,现由一部分人先植树5 h ,由于单位有紧急事情,再增加2人,且必须在4 h 之内完成剩余的植树任务,若这些人的工作效率相同,则应先安排________人植树.4.[2016·某某校级月考] 一件工作甲单干用20小时,乙单干用的时间比甲多4小时,丙单干用的时间是甲的12还多2小时.若甲、乙合作先干10小时,丙再单干几小时可以完成?知识点 2 有具体工作总量的应用题5.某工程队修一条公路,第一天修了全程的13,第二天修了余下的40%,还剩下480米没修,这条公路长( )A .900米B .1200米C .1000米D .1300米6.某车间接到x 件零件的加工任务,计划每天加工120件,可以如期完成,而实际每天多加工40件,结果提前6天完成,列方程得________________________________________________________________________.7.某地为了打造风光带,将一段长为360 m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m ,乙工程队每天整治16 m .求甲、乙两个工程队分别整治了多长的河道.知识点 3 比例分配问题8.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26-x )=800xB.1000(13-x)=800xC.1000(26-x)=2×800xD.1000(26-x)=800x9.教材例5变式某人将2600元工资做了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1∶3∶5∶4,则此人打算休闲娱乐花去多少元?10.甲、乙两人去商店买东西,他们所带钱数的比是7∶6,甲用掉50元,乙用掉60元,两人余下的钱数之比是3∶2,则甲、乙两人余下的钱数分别是( ) A.140元、120元 B.60元、40元C.80元、80元 D.90元、60元11.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是________.12.甲、乙两队共有480人,如果从乙队调出10%的人到甲队,那么现在甲、乙两队人数比是5∶3.乙队原来有多少人?13.一个水池有两个管可注水,若单开甲管,36小时注满;若单开乙管,24小时注满.(1)由甲管先开若干小时,再由乙管接替甲管工作,甲、乙两管共用32小时注满水池,问乙管开了几小时?(2)若水池下面安装一个排水管丙,单独开丙管18小时可以将一水池的水放完,现三管齐开,几小时可将一空池注满?14.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成的时间是甲队的2倍;甲、乙两队合作完成需要20天;甲队每天的工作费用为1000元,乙队每天的工作费用为550元.若这个项目交给一个工程队独做,根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队,应付工程队的费用为多少元?15.若干名工人装卸一批货物,各工人的装卸速度相同.若这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,刚开始一个人干,以后每隔t(整数)小时增加一个人,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的14.求按改变后的装卸方式,自始至终需多少小时.3.2 第3课时 工程与比例分配问题1.C2.A .3.8 .4.解:设丙再单干x 小时可以完成.根据题意,得10×⎝ ⎛⎭⎪⎫120+124+112×20+2x =1,解得x =1. 答:丙再单干1小时可以完成.5.B .6.x 120-x 40+120=6 .7.解:设甲队整治了x 天,则乙队整治了(20-x)天.由题意,得24x +16(20-x)=360,解得x =5,∴乙队整治了20-5=15(天),∴甲队整治的河道长为24×5=120(m );乙队整治的河道长为16×15=240(m ).答:甲、乙两个工程队分别整治了120 m ,240 m .8.C .9.解:设购书费用、休闲娱乐费用、家庭开支、存款分别为x 元、3x 元、5x 元、4x 元,则x +3x +5x +4x =2600,解得x =200,则3x =600.答:此人打算休闲娱乐花去600元.10.D .11.7 .12.解:设乙队原来有x 人,则甲队有(480-x)人,根据题意可得5×(1-10%)x =3[(480-x)+10%x],解得x =200.答:乙队原来有200人.13.解:(1)设乙管开了x 小时,由题意可得32-x 36+x 24=1, 解得x =8.答:乙管开了8小时.(2)1÷⎝ ⎛⎭⎪⎫136+124-118=72(时).答:72小时可将一空池注满.14.解:设乙队的工作效率为x ,则甲队的工作效率为2x.根据题意,可得x +2x =120, 解得x =160,2x =130. 所以甲、乙单独完成这项工程分别需要30天和60天.若要让这两个工程队单独做,则应付甲队30×1000=30000(元),应付乙队60×550=33000(元),所以公司应选择甲工程队,应付工程队的总费用为30000元.15.解:设按改变后的装卸方式,自始至终需x 小时,则第一个人干了x 小时,最后一个人干了x 4小时,两人共干活⎝ ⎛⎭⎪⎫x +x 4小时,平均每人干活12⎝ ⎛⎭⎪⎫x +x 4小时,由题意知,第二人与倒数第二人,第三人与倒数第三人……平均每人干活的时间也是12⎝ ⎛⎭⎪⎫x +x 4小时, 根据题意,得12⎝ ⎛⎭⎪⎫x +x 4=10, 解得x =16.答:按改变后的装卸方式,自始至终需要16小时.。
沪科版数学七年级上册《3.2 一元一次方程的应用》教学设计1一. 教材分析《3.2 一元一次方程的应用》是沪科版数学七年级上册的一个重要章节。
本章主要通过实际问题引导学生学习一元一次方程的解法和应用。
教材内容主要包括:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。
本节课的重点是一元一次方程的应用,难点是如何将实际问题转化为方程。
二. 学情分析七年级的学生已经具备了一定的数学基础,对代数知识有一定的了解。
但是,对于如何将实际问题转化为方程,以及如何运用方程解决实际问题,学生可能还比较陌生。
因此,在教学过程中,教师需要通过具体的例子,引导学生理解方程在实际问题中的应用。
三. 教学目标1.理解一元一次方程的定义,掌握一元一次方程的解法。
2.能够将实际问题转化为方程,运用方程解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:一元一次方程的应用。
2.难点:如何将实际问题转化为方程。
五. 教学方法1.讲授法:教师通过讲解,引导学生理解一元一次方程的定义和解法。
2.案例分析法:教师通过具体的例子,引导学生将实际问题转化为方程。
3.练习法:学生通过做练习题,巩固所学知识。
六. 教学准备1.教材:沪科版数学七年级上册。
2.教案:详细的教学设计。
3.课件:用于辅助教学的课件。
4.练习题:用于巩固所学知识的练习题。
七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生思考如何将问题转化为方程。
例如:小明买了一本书,价格为x元,他给了售货员10元,找回的钱为5元,请计算这本书的价格。
2.呈现(10分钟)教师引导学生分析问题,将问题转化为方程。
例如:小明买书的问题可以转化为方程 x + 5 = 10。
3.操练(15分钟)教师给出几个类似的实际问题,让学生独立解决。
例如:小红买了一支笔,价格为y元,她给了售货员15元,找回的钱为10元,请计算这支笔的价格。
4.巩固(10分钟)教师引导学生总结解题规律,巩固所学知识。
一元一次方程的应用(经典题型汇总附详细答案过程)题型1增长率问题例1 某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.题型2配套问题例2 某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?题型3销售问题例3 某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?题型4储蓄问题例4 李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱.题型5等积变形问题例5 用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.题型6工程问题例6 一项工作,甲单独做需要8天完成,乙单独做需要12天完成,丙单独做需要24天完成,现甲、乙合做3天后,甲因事离去,由乙、丙合做,则乙、丙还要几天オ能完成这项工作?题型7和、差、倍、分问题例7 某所中学现有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校在校生将增加10%,求这所学校现在的初中在校生和高中在校生人数分别是多少.题型8数字问题例8 一个四位整数,其个位数字为2,若把末位数字移到首位,所得新数比原数小108,求这个四位数.题型9比例分配问题例9 某种中药含有甲、乙、丙、丁四种草药成分,其质量比是0.7:1:2:4.7,现要配制这种中药2100克,四种草药分别需要多少克?题型10比赛积分问题例10 某地“奥博园丁杯”篮球赛前四强积分榜如下:(1)观察积分表,你能获得哪些信息?(2)观察积分表,请你用式子将积分与胜、负场数之间的数量关系表示出来.(3)小明问:“在这次比赛中,一个队的胜场总积分能不能等于它的负场总积分?”你能帮助他解答吗?题型11日历问题例11在一本挂历上,圈住四个数,这四个数恰好构成一个正方形,且它们的和为48,则这四个数为_.题型12行程问题例12一辆卡车从甲地匀速开往乙地,出发2h后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度快30km/h,但轿车行驶1h后突然出现故障,修理15min 后,继续追这辆卡车,此时的速度比原来的速度减小了1/3,结果又用了2h才追上这辆卡车,求这辆卡车的速度.易错点1未检验方程的解是否符合实际意义例1商家为了促销,对购买大件商品实行分期付款,明明的爸爸买了一台8000元的电脑,第一次付款40%,以后每月付750元,需要几个月付完?易错点2相同量的单位不统一例2甲、乙两人都从A地去B地,甲步行,每小时走5km,先走1.5h;乙骑自行车,乙骑了50min,两人同时到达目的地.求乙每小时骑车多少千米.答案:例1:解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%例2:解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条.因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m) 答:应用360m布料做上衣,240m布料做裤子.例3:解:设利润率为5%时售价为x元.根据题意,(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.例4:解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元. 根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.例5:解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。
课后训练
基础巩固
1.甲厂的年产值为7 450万元,比乙厂的年产值的5倍还多420万元,若设乙厂的年产值为x 万元,下列所列方程中错误的是( ).
A .5x +420=7 450
B .7 450-5x =420
C .7 450-(5x +420)=0
D .5x -420=7 450
2.某人以8折的优惠价买了一套服装省了25元,那么买这套服装实际用了( ).
A .31.25元
B .60元
C .125元
D .100元
3.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( ).
A .2(x -1)+3x =13
B .2(x +1)+3x =13
C .2x +3(x +1)=13
D .2x +3(x -1)=13
4.用一根长为24 cm 的铁丝围成一个长与宽的比是2∶1的长方形,则长方形的面积是( ).
A .32 cm 2
B .36 cm 2
C .144 cm 2
D .以上都不对
5.根据图中给出的信息,下列方程正确的是( ).
A .22
86(5)22x x ππ⎛⎫
⎛⎫⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭ B .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯- ⎪ ⎪⎝⎭⎝⎭
C .π×82x =π×62×(x +5)
D .π×82x =π×62×5
6.为了准备小颖3年后上大学的学费,她妈妈现将5 000元钱存入银行,已知此种储蓄的年利率为
2.7%,3年后小颖能从银行取出的本息和是__________元.
7.某水果公司以2元/千克的单价新进了10 000千克柑橘,为了合理定出销售价格,水果公司需将运输中损坏的水果成本折算到没有损坏的水果售价中.销售人员从柑橘中随机抽取若干柑橘统计柑橘损坏情况,结果如下表.如果公司希望全部售完这批柑橘能够获得5 000元利润,那么在出售柑橘时,每千克大约定价__________元.
8.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?
能力提升
9.甲、乙两列火车从A ,B 两地相向而行,乙车比甲车早发车1 h ,甲车比乙车速度每小时快30 km ,甲车发车两小时恰好与乙车相遇,相遇后为了错车,甲车放慢了速度,以它原来速度的
23行驶;而乙车加快了速度,以它原来速度的53倍飞速行驶,结果12h 4
后,两车距离又等于A ,B 两地之间的距离,求两车相遇前速度及A ,B 两地之间的距离.
10.如图,剃须刀由刀片和刀架组成.某时期,甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和
新式剃须刀(刀片可更换).有关销售策略与售价等信息如下表所示:
50倍,乙厂家获得的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少把刀架?多少片刀片?
11.先观察,再解答.
如图(1)是生活中常见的月历,你对它了解吗?
(1)图(2)是另一个月的月历,a表示该月中某一天,b,c,d是该月中其他3天,b,c,d与a有什么关系?b=__________;c=__________;d=__________.(用含a的式子填空).
(2)用一个长方形框圈出月历中的三个数字(如图(2)中的阴影),如果这三个数字之和等于51,这三个数字各是多少?
(3)这样圈出的三个数字的和可能是64吗?为什么?
分析:此题利用日历表中的数据特点,上下相邻日期相差7,左右相邻日期相差1进行解答:
(1)b在a的上面,因此b=a-7;c在a的右面,因此c=a+1;a向前数两个即a-2,再向下便是d,即d=a-2+7=a-5;
(2)设中间数字为x,上面的数字为x-7,下面的数字为x+7,列方程解答即可;
(3)利用是否被3整除就可以判定.
参考答案
1答案:D 点拨:等量关系为:乙厂的年产值的5倍+420万元=甲厂的年产值.
2答案:D 点拨:设这套服装原价为x元,则x-0.8x=25,解得x=125.所以实际用了125-25=100(元).
3答案:A 点拨:等量关系为:B种饮料单价-A种饮料单价=1元,2瓶A种饮料钱数+3瓶B种饮料的钱数=13元.
4答案:A 点拨:设长方形的宽为x cm,则长为2x cm,根据题意,得2(2x+x)=24,解得x=4.则2x=8,长方形的面积是4×8=32(cm2).
5答案:A 点拨:本题的相等关系是大量筒中的水量=小量筒中的水量.
6答案:5 405 点拨:小颖的这5 000元钱在3年后的本息和为5 000+5 000×2.7%×3=5 405(元).
7答案:2.8 点拨:由题意知这批柑橘平均损坏的百分率是5.5019.4251.54
50200500
++
++
×100%≈10.2%,据
此得这批柑橘损坏1 020千克,设余下8 980千克卖价为x元才能获利5 000元,据题意得方程8 980x =20 000+5 000,解得x≈2.8.即余下的柑橘售价定为2.8元时才能获利5 000元.8答案:解:设用x张白铁皮制盒身,(36-x)张制盒底,则共制盒身25x个,共制盒底40(36-x)个,根据题意,得2×25x=40(36-x),
解得x=16,36-x=20.
所以用16张制盒身,20张制盒底正好使盒身与盒底配套.
9解:设相遇前乙车的速度为x km/h,依题意得
3x+2(x+30)=
259
(30)
334
x x
⎡⎤
++⨯
⎢⎥
⎣⎦
,
解得x=60.
则x+30=90(km/h),3x+2(x+30)=3×60+2×90=360(km).
答:两车相遇前速度为90 km/h,A,B两地之间的距离为360 km.
10解:设这段时间内乙厂家销售了x把刀架,50x片刀片.
(10-5)x+(0.55-0.05)×50x=2×8 400×(2.5-2),即30x=8 400,解得x=280,∴50x=14 000.
答:这段时间内乙厂家销售了280把刀架,14 000片刀片.
点拨:等量关系为:乙销售的刀片数量=50×刀架数量;乙的总利润=2×甲的总利润.11解:(1)a-7 a+1 a+5
(2)设中间的数字为x,上面的数字为x-7,下面的数字为x+7,根据题意列方程得,(x-7)+x+(x+7)=51,解得x=17,
所以三个数字分别是10,17,24.
(3)不可能.
理由是:这样圈出的三个数字的和是中间数字的3倍,64不能被3整除.
初中数学试卷
桑水出品。