第三章-数字影像的特征提取与定位(1)
- 格式:ppt
- 大小:943.00 KB
- 文档页数:10
遥感影像处理中的特征提取方法和应用遥感影像是通过无人机、卫星等载体获取的地球表面的影像数据。
特征提取是遥感影像处理中的一项重要任务,旨在从遥感影像中提取出地物的特定特征,以实现对地物的分类、识别和监测等应用。
本文将介绍遥感影像处理中常用的特征提取方法及其应用。
一、特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是从单个像素点的信息中提取特征。
常用的方法包括:(1)颜色特征提取:利用遥感影像中的颜色信息进行特征提取。
常用的方法包括二值化、RGB分量、HSV、归一化差异植被指数(NDVI)等。
(2)纹理特征提取:利用遥感影像中的纹理信息进行特征提取。
常用的方法包括灰度共生矩阵(GLCM)、灰度值标准差、平均灰度值等。
(3)形状特征提取:利用遥感影像中的形状信息进行特征提取。
常用的方法包括链码、Hu不变矩、区域面积等。
2. 基于目标的特征提取方法基于目标的特征提取方法是在已知地物目标的前提下,根据地物目标的特定特征进行特征提取。
常用的方法包括:(1)形状特征提取:利用地物目标的形状信息进行特征提取。
常用的方法包括面积、周长、伸长率等。
(2)纹理特征提取:利用地物目标的纹理信息进行特征提取。
常用的方法包括纹理能量、纹理熵、纹理对比度等。
(3)上下文特征提取:利用地物目标的上下文信息进行特征提取。
常用的方法包括边界连接、邻居分析、局部空间关系等。
二、特征提取应用1. 地物分类特征提取在地物分类中起到了关键作用。
通过提取不同地物的特定特征,可以将遥感影像中的地物进行分类,如水体、森林、建筑等。
特征提取方法可以通过训练分类器来实现自动分类。
2. 土地利用监测特征提取可以应用于土地利用监测。
通过提取遥感影像中地物的特定特征,可以实现对土地的类型和变化进行监测,如农田的扩张、森林的退化等,为土地规划和资源管理提供支持。
3. 城市规划特征提取在城市规划中具有重要意义。
通过提取遥感影像中的建筑、道路等特定特征,可以分析城市的发展趋势和扩张方向,为城市规划和交通规划提供数据支持。
《摄影测量学》教学大纲一、课程基本信息1.课程代码:211288002.课程中文名称:摄影测量学课程英文名称:Photography Surveying A3.面向对象:测绘工程专业的学生4.开课学院(课部)、系(中心、室):信息工程学院测绘工程系5.总学时数:56讲课学时数:48,实验学时数:86.学分数:3.57.授课语种:汉语,考试语种:汉语8.教材:王佩军,徐亚明编著,《摄影测量学》,武汉大学出版社二、课程内容简介本课程主要内容可划分为基础知识即解析摄影测量、数字摄影测量及外业三部分。
其中解析部分主要包括摄影基本知识、单张航摄像片解析、像片立体观察与量测、双像解析摄影测量以及解析空中三角测量几个方面,学生学习本部分内容应达到以下要求:1、摄影测量学的定义与分类(1)掌握摄影测量的定义、分类、平台、特点和任务;(2)掌握摄影测量三个发展阶段的基本特点;2、摄影基本知识(1)了解摄影原理与摄影机类型、基本构造;(2)了解摄影处理与像片的晒印过程;(3)了解航空摄影与摄影测量对摄影的基本要求;(4)掌握像片影像的系统误差类型及处理;(5)了解彩色摄影与其它摄影方式。
3、单张航摄像片解析(1)了解中心投影的基本知识;(2)掌握摄影测量中常用坐标系的三轴定义及用途;(3)掌握航摄像片的内、外方位元素;(4)掌握像点在空间直角坐标系中的变换过程;(5)掌握中心投影的构像方程的推导,了解其应用;(6)掌握像点位移的类型及其规律;(7)掌握单张像片空间后方交会的基本原理与解算步骤。
4、像片立体观察与量测(1)了解人眼的立体视觉原理;(2)了解人造立体视觉原理及产生的条件;(3)掌握像对的立体观察方法;(4)掌握像对的立体量测步骤;(5)了解像点坐标量测仪器。
5、双像解析摄影测量(1)了解双像解析摄影测量的方法;(2)掌握立体像对空间前方交会的原理与过程;(3)掌握空间后方交会与前方交会求解地面点坐标的计算方法;(4)掌握连续法解析相对定向及模型坐标计算过程;(5)掌握立体模型的绝对定向过程;(6)掌握光束法整体解求的原理。
图像处理中的特征提取与分类算法图像处理是指通过计算机技术对图像进行分析、处理和识别,是一种辅助人类视觉系统的数字化技术。
在图像处理中,特征提取与分类算法是非常重要的一个环节,它能够从图像中提取出不同的特征,并对这些特征进行分类,从而实现图像的自动化处理和识别。
本文将对图像处理中的特征提取与分类算法进行详细介绍,主要包括特征提取的方法、特征分类的算法、以及在图像处理中的应用。
一、特征提取的方法1.1颜色特征提取颜色是图像中最直观的特征之一,它能够有效地描述图像的内容。
颜色特征提取是通过对图像中的像素点进行颜色分析,从而得到图像的颜色分布信息。
常用的颜色特征提取方法有直方图统计法、颜色矩法和颜色空间转换法等。
直方图统计法是通过统计图像中每种颜色的像素点数量,从而得到图像的颜色直方图。
颜色矩法则是通过对图像的颜色分布进行矩运算,从而得到图像的颜色特征。
颜色空间转换法是将图像从RGB颜色空间转换到其他颜色空间,比如HSV颜色空间,从而得到图像的颜色特征。
1.2纹理特征提取纹理是图像中的一种重要特征,它能够描述图像中不同区域的物体表面特性。
纹理特征提取是通过对图像中的像素点进行纹理分析,从而得到图像的纹理信息。
常用的纹理特征提取方法有灰度共生矩阵法、小波变换法和局部二值模式法等。
灰度共生矩阵法是通过统计图像中不同像素点的灰度级别分布,从而得到图像的灰度共生矩阵,进而得到图像的纹理特征。
小波变换法是通过对图像进行小波变换,从而得到图像的频域信息,进而得到图像的纹理特征。
局部二值模式法是采用局部像素间差异信息作为纹理特征,从而得到图像的纹理特征。
1.3形状特征提取形状是图像中的一种重要特征,它能够描述图像中物体的外形和结构。
形状特征提取是通过对图像中的像素点进行形状分析,从而得到图像的形状信息。
常用的形状特征提取方法有轮廓分析法、边缘检测法和骨架提取法等。
轮廓分析法是通过对图像中物体的外轮廓进行分析,从而得到图像的形状特征。
数字图像处理中的特征提取技术数字图像处理是一种涉及数字计算机与图像处理的技术。
它能够对图像进行一系列的处理,包括图像增强、特征提取、图像分割等。
其中,特征提取是数字图像处理中非常重要的一环,通过对图像中的关键特征进行提取和分析,可以实现图像分类、目标识别和图像检索等多种应用。
本文将介绍数字图像处理中的特征提取技术。
一、特征提取的概述特征提取是数字图像处理中的一项重要技术,其主要目的是从图像中提取出具有代表性的特征,这些特征可以被用于图像分类、目标检测和图像识别等应用中。
通常情况下,特征提取可以分为两种方式:1.直接提取图像的原始特征。
这种方式可以直接从图像中提取出像素点的信息,包括图像的颜色、灰度值等。
这些原始特征经过一些处理后可以发挥很大的作用。
2.间接提取图像的特征。
这种方法则需要将原始图像进行一些复杂的变换和处理,例如提取图像的边缘、纹理、形状等特征,再通过算法分析得出更加有价值的特征信息。
二、特征提取的算法1.边缘检测算法边缘检测是图像处理中的一项基本操作,其目的是提取出图像中的边缘信息。
实际上,边缘检测是一种间接的特征提取方法,通过提取出图像中的边缘信息,可以实现图像目标的检测和二值化操作。
常见的边缘检测算法包括Canny算法、Sobel算法、Laplacian算法等。
2.纹理特征提取算法纹理是图像中最基本、最重要的特征之一,其包含了图像中的细节信息,并能够有效地描述图像的表面纹理。
因此,通过提取纹理特征可以有效地用于图像分类和目标检测等应用中。
常见的纹理特征提取算法包括LBP算法、GLCM算法、Gabor算法等。
3.形状特征提取算法形状是图像中最基本、最重要的特征之一,其能够有效地描述图像中物体的大小和形态。
因此,通过提取形状特征可以用于目标检测和图像匹配等应用中。
常见的形状特征提取算法包括Hu不变矩算法、Zernike矩算法、Fourier描述子算法等。
三、特征提取的应用数字图像处理中的特征提取技术可以应用于多种应用领域中,例如:1.图像识别通过提取图像中的特征信息,可以建立有效的图像识别模型,实现对图像的分类和识别。
数字摄影测量学复习总结第一章绪论1.摄影测量的三个发展阶段及其特点是什么?答:P3的表1-12.什么是数字摄影测量?它的组成部分有哪些,各有什么特点?答:p4页组成部分:计算机辅助测图、影像数字化测图(混合数字摄影测量、全数字摄影测量(通用数字摄影测量、实时数字摄影测量))3.简述数字摄影测量的新进展与发展趋势。
答:p6的五点第二章数字影像获取的预处理基础1.什么是数字影像?其频域表达有什么用处?答:p12的定义频域表达的用处:(1)变换后的能量大部分都集中于低频谱段,有利于后续图像的压缩存储、快速传输,减少运算时间提高效率;(2)可对信号不同频率成分的能量的表达更直观,有利于影像分解和影像处理。
2.分析离散数字图像卷积的直观背景,并说明数字滤波的计算过程。
答:直观背景:p17数字滤波的计算过程:略3.如何确定数字影像的采样间隔?答:采样定理:(由频率域推导而来)当采样间隔能使在函数g(x)中存在的最高频率中每周期取有两个样本时,根据采样数据可完全恢复原函数g(x)。
4.采样函数有哪些性质?有哪些直观解释?答:略5.怎样对影像的灰度进行量化?答:影像的灰度概念p20怎样对影像的灰度量化p216.航空数字影像获取系统有哪些特点?叙述3种航空数字影像获取系统的结构与性质。
答:数字航摄仪的特点p22叙述3种航空数字影像获取系统的结构与性质:ADS\DMC\UCD\SWDC\VisionMap A37.什么是数字影像重采样?常用的数字影像重采样方法有哪些?各有哪些优缺点?答:(1)影像内插和重采样的概念p17(2)常用的采样方法p18(最近邻内插法、双线性内插法和双三次卷积法)(3)优缺点:p20表2-1第三章数字影像解析基础1.什么是数字影像内定向?为什么要数字影像内定向?答:概念及目的P383.什么是单像空间后方交会?计算过程主要有哪几步?答:概念:p394.什么是共面条件方程?利用它可以解决摄影测量中哪些问题?答:p43解决的问题有:像对的相对定向与解析空中三角测量。
知识点归纳计算机视觉中的特征提取与目标跟踪计算机视觉(Computer Vision)是人工智能领域的重要分支,旨在让计算机具备类似人类视觉的能力,从图像或者视频中提取并理解有用的信息。
在计算机视觉中,特征提取和目标跟踪是两个核心的知识点,本文将对它们进行归纳和总结。
一、特征提取特征提取是计算机视觉中的基础工作,它是从原始图像数据中提取出具有代表性和可区分性的特征的过程。
这些特征能够反映图像的结构、纹理、形状等信息,为后续的图像处理和分析提供基础。
1. 图像特征的种类在计算机视觉中,常见的图像特征包括颜色特征、纹理特征、形状特征和边缘特征等。
颜色特征可以通过提取图像中的颜色直方图或者颜色矩来表示;纹理特征可通过灰度共生矩阵、小波变换等方法来获取;形状特征则主要通过边缘检测和边缘提取得到;边缘特征通常可以通过Canny算子等方法获得。
2. 特征提取的方法为了获取图像的特征,计算机视觉领域提出了多种特征提取的方法。
其中,常用的方法有滤波器方法、兴趣点检测和描述子方法等。
滤波器方法基于图像上的像素点进行滤波操作,常用的滤波器包括高斯滤波器和边缘检测滤波器;兴趣点检测和描述子方法则通过检测图像上的关键点,并提取这些关键点的描述子来表示图像的特征。
二、目标跟踪目标跟踪是计算机视觉中的一个重要任务,其目标是在视频序列中追踪一个或多个感兴趣的目标。
目标跟踪在实际应用中有着广泛的应用,如视频监控、人脸识别等领域。
1. 目标跟踪的挑战目标跟踪面临着许多挑战,如目标的外观变化、遮挡、相似目标的干扰等。
为了应对这些挑战,计算机视觉领域提出了多种目标跟踪算法。
常用的算法有基于模板匹配的方法、基于关联滤波器的方法、基于学习的方法等。
2. 目标跟踪的算法模板匹配是一种简单却常用的目标跟踪算法,它通过将目标物体的模板与图像序列逐帧进行匹配,从而实现跟踪的目的。
关联滤波器是另一种常见的目标跟踪算法,它通过训练一个滤波器来表示目标物体的外观模型,然后在后续的帧中实时地进行目标跟踪。