2018年普通高等学校招生全国统一考试数学试题理(全国卷2,无答案)
- 格式:doc
- 大小:232.50 KB
- 文档页数:4
2018年普通高等学校招生全国统一考试理科综合能力测试(Ⅱ)二、选择题:本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
学科&网14.如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度,木箱获得的动能一定A .小于拉力所做的功B .等于拉力所做的功C .等于克服摩擦力所做的功D .大于克服摩擦力所做的功15.高空坠物极易对行人造成伤害。
若一个50 g 的鸡蛋从一居民楼的25层坠下,与地面的撞击时间约为2 ms ,则该鸡蛋对地面产生的冲击力约为 A .10 NB .102 NC .103 ND .104 N16.2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms ,假设星体为质量均匀分布的球体,已知万有引力常量为11226.6710N m /kg -⨯⋅。
以周期T 稳定自转的星体的密度最小值约为 A .93510kg /m ⨯ B .123510kg /m ⨯C .153510kg /m ⨯D .183510kg /m ⨯17.用波长为300 nm 的光照射锌板,电子逸出锌板表面的最大初动能为1.28⨯10-19 J 。
已知普朗克常量为6.63⨯10-34J·s ,真空中的光速为3.00⨯108 m·s -1,能使锌产生光电效应的单色光的最低频率约为A .1⨯1014 HzB .8⨯1014 HzC .2⨯1015 HzD .8⨯1015 Hz18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。
一边长为32l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是19.甲、乙两汽车同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。
2018年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A. 902cmB. 1292cmC. 1322cmD. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位 5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同一直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )。
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合)1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =( )A .{}0B .{}1C .{}12,D .{}012,,2.()()12i i +-=( ) A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.若1sin 3α=,则cos 2α=( )A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .D .⎡⎣7.函数422y x x =-++的图像大致为( )8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( ) A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2πB .3πC .4πD .6π10.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为三棱锥D ABC -体积的最大值为( )A .B .C .D .11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF OP ,则C 的离心率为( )AB .2CD12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1x y ax e =+在点()01,处的切线的斜率为2-,则a =________.15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~31题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C . 0D5.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为. 2A y x =± . 3B y x =± 2. 2C y x =± 3. 2D y x =±6.在ABC ∆中,5cos ,1,5,25C BC AC ===则AB = . 42A . 30B . 29C. 25D 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1. 15C 1. 18D 9.在长方体1111ABCD A B C D -中,11,3,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为1. 5A5. 6B 5. 5C 2.2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。
2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)一、选择题1.设,则()A.0 B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5 B.6 C.7 D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3 C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
2018年成人高等学校招生全国统一考试专升本高等数学(二)本试卷分第Ⅰ卷(选择题)和第卷(非选择题)两部分,满分150分,考试时间120分.第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. lim x→0xcosx =( )A. eB.2C. 1D. 02. 若y =1+cosx ,则dy = ( )A. (1+ sinx)dxB. (1−sinx)dxC. sinxdxD.−sinxdx3. 若函数f(x)=5x ,则f′(x)= ( )A. 5x−1B. x5x−1C. 5x ln5D.5x4. 曲线y =x 3+2x 在点(1,3)处的法线方程是 ( )A. 5x +y −8=0B. 5x −y −2=0C. x +5y −16=0D. x −5y +14=05. ∫12−xdx =( )A. ln |2−x|+CB. −ln |2−x|+CC.−1(2−x)2+C D. 1(2−x )2+C6. ∫f′(2x)dx = ( )A. 12f(2x)+CB. f(2x)+CC. 2f(2x)+CD. 12f(x)+C7. 若f(x)为连续的奇函数,则∫f(x)1−1dx = ( )A. 0B. 2C. 2f(−1)D. 2f(1)8. 若二元函数z =x 2y +3x +2y ,则ðz ðx=( )A. 2xy +3+2yB. xy +3+2yC. 2xy +3D. xy +39. 设区域D ={(x ,y)|0≤y ≤x 2,0≤x ≤1},则D 绕x 轴旋转一周所得旋转体的体积为 ( )A. π5B. π3C. π2D. π10. 设A ,B 为两个随机事件,且相互独立,P(A)=0.6,P(B)=0.4,则P(A −B )=( )A. 0.24B. 0.36C. 0.4D. 0.6第Ⅱ卷(非选择题,共110分)二、填空题(11~20小题,每小题4分,共40分)11. 曲线y =x 3−6x 2+3x +4的拐点为 . 12. lim x→0(1−3x )1x = .13.若函数f(x)=x −arctanx ,则f′(x)= . 14. 若y =e 2x 则dy = . 15. 设f(x)=x 2x ,则f′(x)= . 16. ∫(2x +3)dx = . 17. ∫(x 5+x 2)1−1dx = . 18. ∫sin x 2π0dx = . 19. ∫e−x +∞0dx = .20. 若二元函数:z =x 2y 2,则ð2z ðxðy= .三、解答题(21~28题,共70分。
理科数学a 2b 2 1 a2 x 2 x准确粘贴在条 __ 卷__ _ __ __ __ 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
考 上--------------------本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只7.为计算 S 1 1__ 答A. 4B.3C.3 4 D. 3 4__ 5 5 i55i 5 5 i 5 5 i __ __ __ -------------------- ee x 2的图象大致为A.1-------------绝密 ★ 启用前2018 年普通高等学校招生全国统一考试在--------------------本试卷共 23 题,共 150 分,共 5 页,考试结束后,将本试卷和答题卡一并交回。
4.已知向量 a,b 满足 a 1,a b 1 ,则 a 2a bA. 4B. 3C. 2D. 0x 2 y 25.双曲线 0,b 0 的离心率为 3 ,则其渐近线方程为注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码A. y 2xB. y 3xC.y 2D.y 3此--------------------形码区域内。
6.在 ABC 中, cos C 2 55 ,BC1,AC 5,则 AB =__3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效; 号 证 准__1 2i__名 A.9 B. 8 C. 5 D. 4姓 题2.选择题必须使用 2B 铅笔填涂;非选择题必须使用 0.5 毫米黑色字迹的签字笔书写, 字体工整、笔迹清楚。
--------------------在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
有一项是符合题目要求的.)__ 1. 1 2i-------------------- 3 42.已知集合 A x,y x 2 y 2 3,x Z ,y Z ,则 A 中元素的个数为x x3.函数 f(x)5B.4D.A .42B. 30 C . 29 D . 251 1 1 1234 99 100 ,设计了右侧的程序框图,则在空白框中应填入 A. i i 1B. i i 2C.i i 3D.i i 48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果 ,哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如 30=7+23 . 在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是1 1 112 B. 14 C. 15 D.18无--------------------9.在长方体 ABCD A B C D 中, AB BC 1,AA1 1 1 1成角的余弦值为1 3,则异面直线 AD 1 与 DB 1 所A. 15 6 C.5 5 D. 2210.若 f(x) cosx sinx 在 a,a 是减函数,则 a 的最大值是效----------------A.4 B.2 C.3理科数学试题 A 第 1 页(共 24 页)理科数学试题 A 第 2 页(共 24 页)6的直线上,PF F为等腰三角形,3B.8,SA与圆锥底面所成角为45.n 的通项公式;11.已知f(x)是定义域为,的奇函数,满足f(1x)f(1x).若f(1)2,则f(1)f(2)f(3)f(50)A.50B.0C.2D.50下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.12.已知F,F是椭圆C:12x2y2a2b21(a b0)的左、右焦点,A是C的左顶点,点P在过A且斜率为312F F P120,则C的离心率为12A.212C.113D.4二、填空题(本题共4小题,每小题5分,共20分)13.曲线y2ln(x1)在点0,0处的切线方程为_____________.x2y50,14.若x,y满足约束条件x2y30,则z x y的最大值为________.x50,15.已知sin cos1,cos sin0,则sin__________.16.已知圆锥的顶点为S,母线SA、SB所成角的余弦值为7若SAB的面积为515,则该圆锥的侧面积为__________.三、解答题(共70分。
2018年普通高等学校招生全国统一考试数学试题 理(全国卷2)
本试卷共23题,共150分,共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔记清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字表描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.
1212i
i
+=-( ) A.4355
i -
- B.4355i -
+ C.3455
i --
D.34
55
i -
+ 2.已知集合
.则中元素的个数为()
A .9
B .8
C .5
D .4
3.函数2
()x x
e e
f x x
--=的图像大致为
( )
4. 已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( )
A .4
B .3
C .2
D .0
5.双曲线22
221x y a b
-=(a>0,b>0
A.
y = B.
y = C.
y = D.
y x = 6.在ABC ∆
中,cos
1,52C BC AC ===则AB =
( ) A
C
D 7.为计算11111123499100
S =-
+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入( ) .1Ai i =+ .2B i i =+ .3C i i =+ .4D i i =+
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()
A.
112 B.114 C.115 D.118
9.在长方形ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1
则异面直线AD 1与DB 1所成角的余弦值为()
A .
15
10.若()cos sin f x x x =-在[]
,a a -是减函数,则a 的最大值是() A.
4π B.2π C.34
π D.π 11.已知()f x 是定义为(,)-∞+∞的奇函数,满足()(11)f f x x =+-。
若()21f =,则
()(2)(3)(50)1f f f f +++⋅⋅⋅+=
A .-50
B.0
C.2
D.50
12.已知1F 、2F 是椭圆C:2
2
221(0)x y
a b a b +=>>的左、右焦点,A 是C 的左顶点,点P 在过
A
12PF F ∆为等腰三角形,12120F F P ∠=
,则C 的离心率为
A.23
B.12
C.13
D.14
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线2ln(1)y x =+在点(0,0)处的切线方程为_____.
14.若x,y 满足约束条件25023050x y x y x +-≥⎧⎪
-+≥⎨⎪-≤⎩
,则z x y =+的最大值为_______.
15.已知sin α+cos β=1,cos α+sin β=0则sin (α+β)=______________。
16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为,SA 与圆锥底面所成角为,
若△SAB
的面积为__________。
三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
第17-21题为必考题,
每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
记S n 为等差数列(a n )的前n 项和,已知a 1=-7,S 1=-15.
(1) 求{a n }的通项公式;
(2) 求S n ,并求S n 的最小值。
18.下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折现图。
20002001200220032004200520062007200820092010201120122013201420152016年份200
406080
为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17 )建立模型①:
ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7 )建立模型②:ˆ9917.5y
t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
19.设抛物线2:4C y x =的焦点为F ,过F 点且斜率()0k k >的直线l 与C 交于,A B 两点,
8AB =.
(1) 求l 的直线方程。
(2)求过点,A B 且与C 的准线相切的圆的方程.
20.如图,在三角锥P ABC -
中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.
(1)证明:PO ⊥平面ABC ;
(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值
.
21.已知函数()2
x
f x e ax =-
(1)若a=1,证明:当0x ≥时,()1;f x ≥ (2)若()f x 在(0,)+∞只有一个零点,求a .
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计
分。
22.在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x y θ
θ
=⎧⎨
=⎩(θ为参数),直线l 的参数方程为
1cos 2sin x t y t α
α
=+⎧⎨
=+⎩(t 为参数) (1)求C 和l 的直角坐标方程
(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率
23、[选修4-5:不等式选讲] 设函数()52f x x a x =-+-- (1) 当1a =时,求不等式()0f x ≥的解集;
(2)若()1f x ≤,求a 的取值范围。