红外光谱-全
- 格式:ppt
- 大小:2.05 MB
- 文档页数:93
红外光谱反射模式和atr模式的区别
红外光谱反射模式和ATR(全反射衰减)模式是红外光谱中
两种常见的实验方法。
它们在样品准备和测量原理上有一些区别。
1. 样品准备:
- 反射模式:在反射模式下,样品通常是固态或液态,并直
接放置在反射表面上,如金属或晶体窗口。
- ATR模式:在ATR模式下,样品通常是固态或液态,并直接接触ATR晶体(通常是钠化钾晶体)的表面。
样品不需要
特殊的准备,因为ATR晶体可以直接接触样品。
2. 测量原理:
- 反射模式:在反射模式下,红外辐射从光源通过样品反射
回来,被探测器测量。
反射光谱可以提供关于样品表面的信息,如吸收强度和振动模式。
- ATR模式:在ATR模式下,红外辐射经由ATR晶体入射,在晶体与样品接触的区域发生全反射,并进一步与样品相互作用。
然后,红外辐射进入ATR晶体并被探测器测量。
ATR光
谱提供了有关样品表面和深层结构的信息,如吸收峰形状和宽度。
3. 优势和应用:
- 反射模式:反射模式可以用于对固态和液态样品进行非破
坏性的测量,适合于光谱库比对和表面分析。
- ATR模式:ATR模式适用于液态和固态样品的快速测量,
尤其对不透明、粘稠或小体积的样品有优势。
ATR光谱可以
在无需样品准备和预处理的情况下,提供更高的灵敏度和分辨率。
总的来说,红外光谱反射模式和ATR模式在样品准备和测量原理上有所不同,适用于不同类型的样品和分析需求。
选择适当的模式取决于样品类型、表面特性和分析目的。
红外光谱法一、红外光谱1.1 简介各种物质对不同波长(或波数)红外辐射的吸收程度是不同的,因此当不同波长(或波数)的红外辐射依次照射到样品物质时,由于某些波长的辐射能被样品选择吸收而减弱于是形成红外吸收光谱。
通常用透过(或吸收)与波长(或波数)所作的红外吸收光谱曲线来表征各种物质的红外吸收光谱,简称红外图谱或红外谱图。
1.2红外光谱分析原理将一束不同波长的红外射线照射到物质的分子上,分子发生振动能级迁移,某些特定波长的红外射线被吸收,从而形成这一分子的红外吸收光谱。
每种分子都有其组成和结构决定的独有的红外吸收光谱,红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。
红外光谱的范围很广,为0.75~1000μm(13300~10 cm-1)。
按应用波段不同,红外光谱划分为三个区域:a.近红外(NIR)区:0.75~2.5μm(13300~4000 cm-1),b.中红外(MIR)区:2.5~25μm(4000~400 cm-1).远红外(FIR)区25~1000 μm(400~10 cm-1)。
远红外光谱主要由小分子的转动能级跃迁产生的转动光谱。
此外还包括离子晶体、原子晶体和分子晶体产生的晶格振动光谱以及原子量较大或键力常数较小分子的振动光谱;中红外和近红外光谱是由分子振动能级跃迁产生的振动光谱。
在各类分子中只有简单的气体或气态分子才产生纯转动光谱,而对于大量复杂的气、液、固态物质分子主要产生振动光谱。
并且目前被广泛应用于化合物定性、定量和结构分析以及其他化学过程研究的红外吸收光谱,主要是波长处于中红外区的振动光谱。
在红外光谱分析中,2.5~15μm(4000~667 cm-1)的中红外区域是应用最广泛的光潜区。
其中2.5~7.5μm(4000~1330 cm-1)称为特征谱带区。
因为羟基、胺基、甲基、亚甲檗、各类羰基和羧酸盐基等官能团的特征吸收峰都出现在这区域,所以又称它为基团区;7.5~15μm(1330~667cm-1)称为指纹区,物质分子的红外吸收峰在这一区域特别多,像人的指纹一样稠密,又有一定的特征性,所以称它为指纹区。
化合物 基团 表15.1典型有机化合物的重要基团频率(岱/cm-1)X-H 伸缩振动区参键区 双键伸缩振动区 部分单键振动和指纹区 烷烧 -CH 3 "asCH 2962 土 10(s)尸 sCH 2872 土 10(s)-CH 2-”asCH 2926 土 10(s)F CH 3040 〜3010(m)u sCH 2853 土 10(s)尸 CH2890 土10(s)P C =C 1695 〜1540(m)闽asCH 1450 土 10(m)8 sCH 1375 土 5(s)& CH 1465 土 20(m)3 C H 〜1340(w)SCH 1310 〜1295(m)快烧 芳烧 VCH 3040 〜3010(m)u CH R 3300(m) • CH 3100 〜3000(变)弓 C =C 1695 〜1540(w)A AC :2270 〜2100(w)泛频:2000 〜1667(W ) 凹 C =C 1650 〜1430(m)2〜4个峰Y CH 770 〜665(S )Y CH 970 〜960(s)醇类 R-OHvOH3700 〜3200(变)a CH 1250 〜1000(w)V CH 910 〜665单取代:770〜730(vs)R 700(s)邻双取代:770〜735(vs) 间双取代:810〜750(vs)725 〜680(m) 900 〜860(m)〜对双取代:860〜790(vs)1OH 1410 〜1260(w)酚类 Ar-OH 吧 OH 3705 〜3125(S )CO 1250 〜1000(s)V OH 750 〜650(S )脂肪酰R-O-R 酮- I 1 —HC U QR — 醛-N o “CH: Q 2820, Q 2720(W )双峰“O H 3400〜2500(m)y C =C 1650 〜1430(m)P C =O Q 1715(vs)匕C =O Q 1725(vs)3 OH 1390 〜1315(m)VCO 1335 〜1165(S )VCO 1230 〜1010(S )fF酸 CN Q o 酯 |- "胺-NH 2泛频 vC=O Q 3450(W )vNH23500 〜3300(m)双峰酰胺 -NHVNH 3500 〜3300(m)VasNH Q 3350(S)V C=o1740 - -1690(m)5 OH 1450 〜1410(W )%C =O 1850 〜1880(s)VCO 1266 〜1205(m)VCO 1170 〜1050(S )C =O 1780 / < 1740(S )VC =O 1770 - -1720(S )VCOC 1300 〜1000(s)4H1650〜1590(s,m)vCN 脂肪):1220〜8r 4H1650 〜 1550(VW )1020(m,w)vCN 芳香):1340〜1250(S )vCN 脂肪):1220〜,C ;=O 1680 - -1650(S )1020(m,w)vCN 芳香):1350〜1280(S )vCN 1420 〜1400(m)卜sNH Q 3180(s) R—NHR 吧NH:* 3270(s) 0&NH1650 〜1250(s)v C=O1680 〜1630(s)8 NH^Y CN1750 〜1515(m)Y NH2750 〜600(m)v C N H Y N H 1310〜1200(m)—c—NRR rII□酰卤二—0 I睛-C^N硝基R-N02化合物Ar-NO2v C=O:1670 〜1630k C=O: 1810 〜1790(s)v AN :2260 〜2240(s)阳NO21565 〜1543(s)史NO21550 〜1510(s)丹NO21385 〜1360(s)v CN920 〜800(m)岭NO21365 〜1335(s) * CH Q 3030(w)v CH3060 〜3010(w)v CN860 〜840(s)不明:q750(s)*C=C及* C=N&CH1175 〜1000(w)1667 〜1430(m) 血〜…、'/ IJL CH910 〜665(s)V C=C及17C=N 0CH1000 〜960(m)1580〜1520(m) * ooc、' ' I CH825 〜775(m) *表中vs,s,m,w,vw用丁定性地表示吸收强度很强,强,中,弱,很弱。
红外光谱(ir、傅立叶)
红外光谱是一种常用的分析技术,主要用于确定物质的结构和
化学组成。
它基于物质与红外辐射的相互作用,通过测量物质在红
外区域的吸收或散射来获取信息。
红外光谱分为红外吸收光谱和红外散射光谱两种类型。
其中,
红外吸收光谱是最常见的应用形式,它通过测量样品对红外辐射的
吸收来分析样品的化学结构和成分。
而红外散射光谱则是通过测量
样品对红外辐射的散射来获取样品的结构和形态信息。
傅立叶变换红外光谱(FTIR)是一种常用的红外光谱测量技术。
它利用傅立叶变换的原理将时间域上的信号转换为频率域上的光谱
信息。
相比传统的红外光谱仪,FTIR具有高分辨率、高灵敏度和快
速测量的优势,可以提供更准确和详细的光谱数据。
红外光谱在化学、生物、材料科学等领域有广泛的应用。
它可
以用于分析有机化合物的结构和功能团,鉴定无机物质的晶体结构,检测和定量分析药物、食品和环境样品中的成分,研究材料的物理
性质和表征生物分子的结构等。
在红外光谱分析中,需要注意样品的制备和处理,选择合适的仪器和测量条件,以及正确解读和分析光谱数据。
此外,红外光谱还可以与其他分析技术如质谱、色谱等联用,提高分析的准确性和可靠性。
总而言之,红外光谱是一种重要的分析技术,通过测量物质对红外辐射的相互作用来获取样品的结构和成分信息。
傅立叶变换红外光谱是其中一种常用的测量方法,广泛应用于各个科学领域。
正确使用红外光谱技术可以为科学研究和工业应用提供有价值的数据和信息。
全反射红外光谱使用步骤1.准备样品:选择合适的样品,并将其准备好。
对于固体样品,通常需要制备成薄片或粉末形式;对于液体样品,可以直接使用。
确保样品表面干净、无尘和无油,以避免干扰谱图的生成。
2.准备ATR晶体:选择适合的ATR晶体,通常是钠化合物,如钠氯化物(NaCl)或钠氟化物(NaF)。
注意,不同的ATR晶体对不同的样品具有不同的适应性,因此在选择时要注意晶体的化学惰性和可适应性。
3.调整ATR晶体:将ATR晶体安装在红外光谱仪上,并进行调整。
一般来说,使用驱动系统调整晶体的角度和位置,以确保样品与ATR晶体之间有足够的接触面积和良好的接触。
4.校准红外光谱仪:校准红外光谱仪,确保对光谱测量的准确性。
这包括校准波数、样品的基线以及其他仪器参数。
5.放置样品:将所需样品放置在ATR晶体上。
对于固体样品,可以将其直接放置在ATR晶体上;对于液体样品,可以使用吸管或微量注射器将其放在ATR晶体的表面,并确保与晶体接触良好。
6.进行测量:使用红外光源照射样品,并采集样品的反射光谱。
通过调整ATR晶体的角度和位置来最大化反射光谱的信号强度,并确保测量过程中的稳定性。
7.数据处理:对测得的原始光谱进行数据处理。
这包括谱图的基线修正、光谱峰的寻峰和峰强度的积分等。
可以使用红外光谱数据处理软件进行数据分析。
8.结果分析:根据处理后的光谱数据,进行结果分析。
通过与红外光谱数据库的比对,可以确定样品中存在的化学官能团和化合物,并进行结构鉴定和定性分析。
总的来说,全反射红外光谱使用步骤包括准备样品、准备ATR晶体、调整ATR晶体、校准红外光谱仪、放置样品、进行测量、数据处理和结果分析。
这些步骤的严格执行可以确保获得准确可靠的红外光谱数据,并为样品的结构鉴定和化学分析提供有力支持。