红外光谱分析概述
- 格式:doc
- 大小:100.00 KB
- 文档页数:5
红外光谱图分析简介红外光谱图分析是一种常见的分析方法,广泛应用于化学、生物、材料等领域。
通过测量样品在红外光谱范围内的光吸收,可以获得关于样品中分子结构和化学键的信息。
本文将简要介绍红外光谱图的基本原理、数据处理和常见应用。
基本原理红外光谱图是由红外光谱仪测量得到的,其原理基于分子吸收特性。
在红外光谱范围内,分子会吸收特定波长的红外光,这些波长对应于分子振动和转动。
通常,红外光谱图的横坐标为波数(cm^-1),纵坐标为吸光度或透射率。
数据处理对于红外光谱图的数据处理,通常需要进行以下几个步骤:1.基线校正:红外光谱中可能存在噪声或基线漂移,需要通过基线校正来消除这些干扰。
一种常见的方法是使用多项式函数拟合基线。
import numpy as npimport matplotlib.pyplot as plt# 生成示例数据x = np.linspace(4000, 400, 1000)y = np.random.normal(0, 0.1, size=1000) + np.exp (-0.01 * x)# 多项式拟合coefficients = np.polyfit(x, y, 3)baseline = np.polyval(coefficients, x)# 绘制结果plt.plot(x, y, label='Original Spectrum')plt.plot(x, baseline, label='Baseline')plt.legend()plt.xlabel('Wavenumber (cm$^{-1}$)')plt.ylabel('Absorbance')plt.title('Baseline Correction')plt.show()2.峰提取:在光谱图中,各个峰代表了样品中不同的化学键和功能团。
通过峰提取可以定量分析样品中的各个成分。
红外光谱分析红外光谱分析是一种用于物质表征和分析的重要技术方法。
它利用红外光波与物质相互作用的特性,通过测量物质对不同波长红外光的吸收、散射或透射行为,来了解物质的结构、组成和特性。
红外光谱分析在化学、生物、医药、农业、环保等领域得到广泛应用。
红外光谱分析是一种非破坏性的分析技术,可以对样品进行快速、准确的分析,而无需对样品进行特殊处理。
这使得红外光谱分析在实际应用中非常方便,特别适用于对大多数无机和有机化合物的分析。
在红外光谱分析中,主要利用了物质与红外光的相互作用。
红外光的频率范围通常被分为近红外区、中红外区和远红外区。
这些不同区域的红外光与样品分子之间的相互作用方式也不相同,因而可以提供不同的信息。
近红外区主要用于有机物的结构表征和定性分析,中红外区则用于有机物和无机物的定性和定量分析,而远红外区则常用于无机物的分析。
红外光谱仪是进行红外光谱分析的主要工具。
红外光谱仪的核心部分是一个光学系统,用于将红外光进行分光和检测。
光谱仪通过扫描不同波长的红外光,得到样品在不同波长下的吸收、散射或透射光强度的变化。
这些光谱数据可以表示为一个光谱图,通常是以波数(cm-1)作为横坐标,吸光度或透射率作为纵坐标。
红外光谱图是红外光谱分析的结果,它可以提供有关样品组成和结构的信息。
根据不同波数下的吸收峰位置和强度,可以推断样品中的官能团、键合情况、分子构型等信息。
通过与已知物质的红外光谱进行比对,还可以对未知物质进行鉴定和定性分析。
红外光谱分析在化学研究和工业实践中具有广泛的应用。
它可以用于药物开发中的药物结构表征和质量控制,可用于环境监测中的水质和空气质量分析,也可以用于食品和农产品的质量安全检测。
此外,红外光谱分析还可以用于病理学、生物学和生物医药等领域的研究。
红外光谱分析作为一种重要的分析方法,不仅可以为科学研究提供强有力的技术支持,也为工业生产和品质管理提供了有效的工具。
它不仅具有分析速度快、结果准确、操作简便的特点,还能够将样品准备工作降到最低,减少了对环境和样品的破坏。
红外光谱分析序言二十世纪初叶,Coblentz发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。
到四十年代红外光谱技术得到了广泛的研究和应用。
当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。
红外光谱提供的*些信息简捷可靠,检测样品中有无羰基及属于哪一类〔酸酐、酯、酮或醛〕是其他光谱技术难以替代的。
因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。
一、根本原理1、根本知识光是一种电磁波。
可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。
表1列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。
红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。
通常红外光谱系指2-25μ之间的吸收光谱,常用的为中红外区4000-650cm-1μ)或4000-400cm-1。
这段波长范围反映出分子中原子间的振动和变角振动,分子在振动运动的同时还存在转动运动。
在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。
每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。
红外光谱所用的单位波长μ,波数cm-1。
光学中的一个根本公式是λυ= C,式中λ为波长,υ为频率,C为光速(3×1010cm/s)。
设υ为波数,其含义是单位长度(1cm)中所含的波的个数,并应具有以下关系:波数(cm-1)=104/波长(μ)波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。
目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。
红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%)表示。
2、红外光谱的几种振动形式主要的根本可以分为两大类:伸缩振动和弯曲振动。
(1)伸缩振动(υ)沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。
红外光谱分析序言二十世纪初叶,Coblentz发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。
到四十年代红外光谱技术得到了广泛的研究和应用。
当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。
红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。
因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。
一、基本原理1、基本知识光是一种电磁波。
可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。
表1列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。
红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。
通常红外光谱系指2-25μ之间的吸收光谱,常用的为中红外区4000-650cm-1或4000-400cm-1。
这段波长范围反映出分子中原子间的振动和变角振动,分子在振动运动的同时还存在转动运动。
在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。
每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。
红外光谱所用的单位波长μ,波数cm-1。
光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C为光速(3×1010cm/s)。
设υ为波数,其含义是单位长度(1cm)中所含的波的个数,并应具有以下关系:波数(cm-1)=104/波长(μ)波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。
目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。
红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%)表示。
2、红外光谱的几种振动形式主要的基本可以分为两大类:伸缩振动和弯曲振动。
(1)伸缩振动(υ)沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。
红外光谱测试分析引言:红外光谱测试是一种常用的实验技术,用于分析样品的化学结构、官能团及其化学环境。
它是通过观察和记录样品在红外区域(4000至400 cm^-1)的吸收、散射或透射红外辐射而得到的。
红外光谱测试广泛应用于有机、无机、生物、聚合物等领域。
本文将介绍红外光谱测试的原理、仪器、样品制备以及数据分析等内容。
一、红外光谱测试原理红外光谱测试基于物质与红外辐射的相互作用。
红外光谱仪将红外辐射通过样品,然后测量样品吸收、散射或透射的光强。
红外辐射包含许多波长,在红外区域中的每种波长都与特定的分子振动模式相对应。
当样品中的分子振动发生时,它们会吸收特定波长的红外光,从而产生特征峰。
根据这些特征峰的位置和强度可以推断样品的化学组成和结构。
二、红外光谱测试仪器红外光谱测试仪器主要由光源、样品盒、分光器和探测器等组成。
常见的红外光谱仪有傅里叶变换红外光谱仪(FTIR)和色散红外光谱仪(dispersive IR)。
其中,FTIR光谱仪具有高分辨率、高灵敏度和快速测量的优点,被广泛应用于科研和工业领域。
三、样品制备样品制备是红外光谱测试的关键步骤之一、样品可以是固体、液体或气体。
对于固体样品,常用的方法是将样品与适合的红外吸收剂混合,然后挤压成适当的片状样品。
对于液体样品,可以使用液态电池夹持装置保持样品在红外光束中。
对于气体样品,需要将气体置于透明的气室中,并对室内气体进行红外光谱的测量。
四、红外光谱数据分析红外光谱数据分析是针对测得的吸收谱进行的。
常见的红外光谱数据分析包括鉴定功能性团、质谱相关性分析和量子化学计算等。
鉴定功能性团是通过对比样品的吸收峰位置和精确峰位表进行的。
质谱相关性分析是利用红外光谱和质谱数据之间的相关性,为红外光谱的解释提供重要信息。
量子化学计算是通过计算得到的理论红外光谱与实际测量的红外光谱进行比对,以验证实验结果的准确性。
结论:红外光谱测试是一种重要的化学分析技术,广泛应用于化学、材料、药物和环境等领域。
红外光谱分析一.基本原理红外吸收光谱(Infrared Absorption Spectrum,IR)是利用物质的分子吸收了红外辐射后,并由其振动或转动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,得到分子振动能级和转动能级变化产生的振动-转动光谱,因为出现在红外区,所以称之为红外光谱。
利用红外光谱进行定性、定量分析及测定分子结构的方法称为红外吸收光谱法。
当分子受到红外光的辐射,产生振动能级的跃迁,在振动时伴有偶极矩改变者就吸收红外光子,形成红外吸收光谱。
若用单色的可见光照射(今采用激光,能量介于紫外光和红外光之间),入射光被样品散射,在入射光垂直面方向测到的散射光,构成拉曼光谱。
通常将红外光谱区按波长分为3个区域,即近红外区、中红外区、远红外区,如下表所示:1. 分子振动类型有机分子中诸原子通过各类化学键联结为一个整体,当它受到光的辐射时,发生转动和振动能级的跃迁。
简单的双原子化合物如A-B 的振动方式是A 和B 两个原子沿着键的方向作节奏性伸和缩的运动,可以形象地比作连着A、B 两个球的弹簧的谐振运动。
为此A-B 键伸缩振动的基频可用胡克定律推导的公式计算其近似值式中,f 是键的振动基频,单位为cm-1;c 是光速;k 是化学键力常数,相当于胡克弹簧常数,是各种化学键的属性,代表键伸缩和张合的难易程度,与原子质量无关;m 是原子的折合质量,即m=m1·m2/(m1+m2)。
上式表明键的振动基频与力常数成正比,力常数越大,振动的频率越高。
振动的基频与原子质量成反比,原子质量越轻,连接的键振动频率越高。
上述是双原子化合物。
多原子组成的非线型分子的振动方式就更多。
含有n 个原子就得用3n 个坐标描述分子的自由度,其中3 个为转动、3 个为平动、剩下3n-6 个为振动自由度。
每一种振动按理在红外光谱中都应该有其吸收峰,但是事实上只有在分子振动时有偶极矩的改变才会产生明显的吸收峰。
红外光谱分析简介红外光谱分析(Infrared Spectroscopy)是一种常用的分析技术,用于研究物质的结构和组成。
通过测量物质对红外辐射的吸收和散射情况,可以获取有关分子振动和结构的信息。
红外光谱分析广泛应用于有机化合物的鉴定和定量分析、材料分析、环境和食品安全监测等领域。
原理红外光谱分析基于物质分子的振动和转动产生的谱线。
大部分物质的振动频率位于红外光谱范围内,因此该技术可以用来研究物质的结构和组成。
红外光谱分析的原理可概括为以下几个方面:1.吸收谱线:物质分子在特定波长的红外辐射下,会吸收特定频率的红外光,产生吸收谱线。
不同官能团或结构单位的振动频率不同,因此吸收谱线可以用来识别物质的组成和结构。
2.波数:红外光谱中使用波数来表示振动频率。
波数与波长的倒数成正比,常用的单位是cm-1。
波数越大,振动频率越高。
3.力常数:物质分子中的振动频率受到分子内力的限制,可以通过量化力常数来描述。
力常数与振动能量相关,可以通过红外光谱数据计算得到。
4.傅里叶变换红外光谱(FTIR):FTIR是一种常用的红外光谱仪器,利用傅里叶变换原理将红外辐射的吸收信号转换为频率谱线。
FTIR具有快速、高分辨率和高灵敏度的特点,适用于各种物质的分析。
实验步骤进行红外光谱分析通常需要以下步骤:1.样品制备:将待分析的样品制备成适当形式,如固体样品可以通过压片或混合胶制备成薄片,液体样品可以直接放置在红外吸收盒中。
在制备过程中需要注意去除杂质和保持样品的均匀性。
2.仪器校准:使用已知物质进行仪器校准,确保红外光谱仪的准确性和灵敏度。
校准样品通常是有明确红外光谱特征的化合物,如苯环等。
3.获取红外光谱:将样品放置在红外光谱仪中,启动仪器进行红外辐射的扫描。
扫描过程中,红外光谱仪会记录样品对吸收红外辐射的响应。
得到光谱数据后,可以进行后续的数据处理和分析。
4.数据处理和分析:利用软件工具对得到的光谱数据进行处理和分析。
红外光谱的介绍一、红外光谱技术概述红外光谱是一种重要的光谱分析技术,通过测量物质对红外光的吸收特性,可以揭示物质内部的分子结构和化学组成。
红外光谱技术具有无损、快速、准确的特点,广泛应用于化学、生物学、医学、环境科学等领域。
二、红外光谱的基本原理红外光谱的原理基于分子振动和转动能级跃迁。
当一束特定波长的红外光照射到样品上时,如果光子的能量与分子振动或转动能级差相匹配,就会发生能级跃迁,分子吸收光子能量并转化为振动或转动能量。
通过测量光子被吸收的波长和强度,可以推导出样品的分子结构和组成。
三、红外光谱的类型根据测量的波长范围,红外光谱可以分为近红外光谱、中红外光谱和远红外光谱。
中红外光谱是研究最多和应用最广泛的红外光谱类型,其波长范围在2.5~25μm之间。
中红外光谱主要由分子振动能级跃迁产生,可以提供丰富的分子结构信息。
四、红外光谱的应用1. 化学分析:红外光谱可以用于鉴定未知化合物的结构和组成,通过比对标准谱图数据库可以确定化合物类型。
2. 药物分析:红外光谱可以用于药物质量控制和药品真伪鉴别,有助于确保药物的有效性和安全性。
3. 食品分析:红外光谱可以用于食品成分分析和质量检测,如检测食品中的添加剂、营养成分和污染物。
4. 环境监测:红外光谱可以用于检测环境中的有害物质,如污染物、有毒气体等,有助于环境监测和治理。
5. 生物医学研究:红外光谱可以用于生物医学研究,如蛋白质结构分析、细胞代谢研究等,有助于深入了解生物分子结构和功能。
6. 工业生产:红外光谱可以用于工业生产中原材料、中间产物和最终产品的质量控制,提高生产效率和产品质量。
7. 考古学研究:红外光谱可以用于文物鉴定和保护,如鉴定文物材料的成分和年代,为文物保护提供科学依据。
五、红外光谱技术的发展趋势随着科技的不断发展,红外光谱技术也在不断进步和完善。
未来,红外光谱技术的发展将主要集中在以下几个方面:1. 高分辨率光谱仪的开发:提高光谱仪的分辨率和灵敏度,能够更准确地分析复杂样品中的微量组分。
红外光谱分析红外光谱分析是一种重要的分析技术,广泛应用于化学、生物、材料等领域。
通过测量物质在红外光谱范围内的吸收和发射特性,可以得到物质分子的结构信息,实现物质的鉴定、定量分析和质量控制等目的。
本文将从红外光谱的基本原理、仪器设备、样品制备和数据解析等方面介绍红外光谱分析的相关知识。
一、基本原理红外光谱分析基于物质对红外辐射的吸收特性。
红外辐射是电磁波谱中的一部分,波长范围在0.78μm至1000μm之间,对应的频率范围在3000GHz至0.3THz之间。
物质分子由原子组成,原子核围绕电子运动,当受到外界的电磁波激发时,分子内部的键振动和转动将发生改变,导致物质吸收特定波长的红外辐射。
不同物质的分子结构和化学键在红外光谱图上表现出特征性的吸收峰,通过观察这些吸收峰的位置和强度可以确定物质的成分和结构。
二、仪器设备进行红外光谱分析需要使用红外光谱仪。
常见的红外光谱仪包括傅立叶变换红外光谱仪(FTIR)和光散射式红外光谱仪(IR)。
FTIR光谱仪通过傅立叶变换技术将红外辐射转换为光谱图,具有高灵敏度和快速测量的优点,适用于定性和定量分析。
光散射式红外光谱仪则通过散射光信号进行检测,适用于固态样品和表面分析。
三、样品制备在进行红外光谱分析前,需要对样品进行适当的制备处理。
液态样品可以直接涂覆在透明吸收的样品基底上进行测试,固态样品通常需要将样品捣碎并与适当的载体混合后进行测试。
在取样和制备过程中需要避免空气和水分的干扰,避免发生氧化和水解反应,影响测试结果的准确性。
四、数据解析红外光谱分析得到的数据通常以吸收光谱图的形式呈现。
吸收光谱图的横轴表示波数或波长,纵轴表示吸收强度,吸收峰的位置和形状反映了物质的分子结构。
数据解析是红外光谱分析的关键步骤,需要借助专业的光谱库和软件进行分析和比对,以确定样品的成分和结构信息。
在实际应用中,红外光谱分析可用于鉴定有机化合物、无机物质、生物大分子等多种样品,广泛应用于医药、食品、环境、材料科学等领域。
红外光谱分析概述(上)1.红外光谱红外光谱是反映红外辐射强度或其他与之相关性质随波长(波数)变化的谱图。
目前,它是一种被广泛应用于研究表征物质的化学组成,在分子层次上的结构及分子间相互作用的有力手段。
红外射线发现于1800年,在用普通温度计测量可见光谱的温度效应时,在红光一端的外侧观察到有较强的热效应。
后来,实验证实了这是由一种肉眼看不见、波长比红光更长的电磁辐射所造成的,这种电磁辐射被称为红外光。
通常将红外辐射的波长范围定为0.8~1000微米,并可粗略地分为三个波段:(1)近红外的波段为0.8~2.5微米,波数为12500~4000厘米-1;(2)中红外的波段为2.5~25微米,波数为4000~400厘米-1;(3)远红外的波段为25~1000微米,波数为400~10厘米,目前,实验上已能测定到2500微米,波数为4厘米-1。
相应地有近红外光谱、中红外光谱和远红外光谱。
红外光谱的形式虽然多种多样,从本质上可分为发射光谱和吸收光谱两大类。
物体的红外发射光谱是指样品在通过受激或自发辐射的条件下,所发射的红外光的强度随波长(波数)变化的光谱图,红外发射光谱主要决定于物体的温度和化学组成。
吸收光谱是指样品对红外辐射的吸收能力随波长(波数)变化的光谱图,在实验上,使红外光与样品发生相互作用,测定红外光与物质相互作用前后光强的变化与波长(波数)之间的关系, 称红外吸收光谱。
2.分子的振动和转动光谱对于分子体系而言,其振动和转动是量子化的,其能级差所对应的光子的波长落在红外光范围,因此是红外光谱(拉曼光谱)的主要研究对象。
研究指出,红外光谱的研究范围不仅仅局限于分子的振动、转动跃迁,某些特殊体系的电子能级跃迁亦可能落在红外光谱波段范围内,例如,超大规模共轭体系的电子跃迁、某些稀土离子的f-f能级跃迁等等。
不过目前绝大多数的红外光谱研究工作仍集中于分子的振动能级跃迁上,以最简单的双原子为例,其振动吸收Eν可近似地表示为:式中h为普朗克常数;ν为振动量子数(取正整数);n0为简谐振动频率。
当ν=0时,分子的能量最低,称为基态。
处于基态的分子受到频率为n0的红外射线照射时,分子吸收了能量为n0的光量子,跃迁到第一激发态,得到频率为n0的红外吸收带, 它称为分子振动的基频。
反之,处于该激发态的分子也可发射频率为n0的红外射线而恢复到基态。
n0的数值决定于分子的约化质量μ和力常数κ:κ决定于原子的核间距离、原子的特性和化学键及键级等。
在多原子分子体系中,各原子在平衡位置附近作相对运动。
这些振动方式可以被分解为各种简正振动的线性组合,所谓简正振动就是指分子中各原子以同一频率、同一相位在平衡位置附近作简揩振动。
含N个原子的非线分子有3N-6个简正振动方式;线性分子有3N-5种简正振动方式。
对于分子的转动而言,往往可以假定分子为刚性转子,则其转动能量Er为:红外光谱分析概述(中)式中J为转动量子数(取正整数);I为刚性转子的转动惯量。
分子转动能级间跃迁所产生的转动光谱发生在远红外区段。
另外,在远红外和中红外区段,在分子的振动跃迁过程中也常常伴随转动跃迁,使红外光谱不是线状光谱而是带状光谱。
分子简正振动基频跃迁出现在中红外和远红外区,分子的纯转动谱带往往出现在远红外区,另外分子的转动通过与其振动谱带形成振转光谱从而覆盖较宽的光谱范围。
虽然,分子简正振动的合频、倍频谱带亦可在中远红外区内出现,但由于其强度较弱,一般情况下不如基频谱带重要。
近红外光谱是由分子简正振动基频的合频、倍频振动所产生, 由于分子的合频、倍频振动是跃迁禁阻的,谱带强度较弱。
另外,并不是每一种振动模式的合频、倍频谱带都可以在近红外区观察到,在近红外光谱中出现的谱带往往是有氢原子参与的伸缩振动的合频,倍频产生的。
3.红外光谱仪(infrared spectrometer)红外光谱仪是观测物质的红外发射光谱和吸收光谱的仪器。
所得到的谱图,称为红外光谱图。
20世纪40年代中期,出现双光束红外光谱仪。
它们大都采用棱镜作为色散元件,称为棱镜式红外光谱仪。
50年代末期,用光栅作为色散元件的光栅式红外光谱仪问世。
棱镜和光栅光谱仪都属于色散型光谱仪,它的单色器为棱镜或光栅,属单通道测量,即每次只测量一个窄波段的光谱元。
转动棱镜或光栅,逐点改变其方位后,可测得光源的光谱分布。
由于这类红外光谱仪无论在扫描速度、波长精确度、光谱分辨率以及信噪比等诸多方面远低于傅里叶变换红外光谱仪,它基本上已被傅里叶变换红外光谱仪(特别在中红外和远红外区)取代。
傅里叶变换红外光谱仪主要由光学探测部分和计算机部分组成(图)。
光学探测部分由干涉仪、光源和探测器三部份组成。
与传统色散型光谱仪相比,傅里叶变换红外光谱仪的核心部分是一台干涉仪(如迈克尔逊干涉仪)。
干涉仪由分束器、定镜和动镜组成(图)。
分束器将红外光分成两束,一束到达定镜,另一束到达动镜,两者再回到分束器。
当动镜移动时,经过干涉仪的两束相干光间的光程差(x)就改变,探测器所测得的光强也随之变化,从而得到干涉图(I(x))。
可以证明,入射光的功率谱B(n)与干涉图信号I(x)之间是一个傅里叶变换对。
因此,通过傅里叶变换,就可以从干涉图导出样品的红外光谱,式中I(x)为干涉信号, B(v)为功率谱, n为波数;x为两束光的光程差。
这种方法可以理解为以某种数学方式对光谱信息进行编码的摄谱仪,它能同时测量、记录所有光谱元的信号,并以更高的效率采集来自光源的辐射能量,从而使其具有比传统光谱仪高得多的信噪比和分辨率。
干涉仪将来自光源的信号以干涉图的形式送经计算机进行傅里叶变换的数学处理,将干涉图还原成光谱图。
干涉图包含着光源的全部频率和强度按频率分布的信息。
因此,如将一个有红外吸收的样品放在干涉仪后面的光路中,由于样品吸收掉某些频率的能量,所得到的干涉图曲线就相应地产生某些变化,相应的光谱图也发生变化。
六十年代以来,由于快速傅里叶变换算法的出现和计算机技术的日益完善,使得通过对干涉图进行傅里叶变换从而求取样品的红外光谱的技术成为可能,第一台商品化傅里叶变换红外光谱仪在七十年代中期出现。
目前已发展了各种类型的中红外、近红外和远红外光谱仪,并已生产了如半导体、燃油、遥控测量、工业过程控制等专用仪器。
傅里叶变换红外光谱仪的主要优点是:(1)同时测量所有光谱元信号,测量速度快,可多次叠加,信噪比高;(2)没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度;(3)以氦、氖激光波长为标准,波数值的精确度可达0.01厘米-1;(4)动镜移动的距离增加就可提高光谱分辨率(最佳已达0.0008厘米-1);(5)工作波段可从可见区延伸到毫米区(已达50000–4厘米-1),使远红外光谱的测定得以实现。
(6)使用调制音频测量,检测器仅对调制的音频信号有反应,杂散光(包括样品自身的红外辐射)不影响检测。
(7)样品置于分束器后测量,大量辐射由分束器阻挡,样品仅接受调制波,热效应极小。
(8)扫描速度最快已达117张光谱图/秒,可用于动力学研究;并可实现与气相、液相等色谱仪等联机检测。
上述各种红外光谱仪既可测量发射光谱,又可测量吸收光谱。
当测量发射光谱时,以样品本身为光源。
测量吸收光谱时,用卤钨灯(近红外)、陶瓷光源(中、远红外)、高压汞灯(远红外)等为光源。
所用探测器主要有热探测器和光电探测器;前者有硫酸三甘肽、氘代硫酸三甘肽等;后者有汞镉碲、硫化铅、锑化铟等。
其中许多检测器需在低温条件下工作,它们具有很高的灵敏度和极快的响应速度,高性能检测器的使用一方面有效地提高了光谱的质量,同时极大地改进了红外光谱的检测限,例如现有的显微红外技术已能检测出纳克数量级的样品。
红外光谱的时间分辨率已达到纳秒量级。
为了简化光路、提高能量利用率、提高光谱分辨率、增加仪器的稳定性和干涉仪的自动调整等目的,已发展和改进了不同类型的、性能更好的干涉仪。
常用的红外窗片材料有溴化钾、氯化钠、氟化钡、氟化钙、硒化锌、溴化铊和碘化铊的复合物、锗片等,远红外用聚乙烯片,近红外用石英片等。
分束器在中红外区用涂锗的溴化钾分束器等,远红外区用迈拉(Malar)膜和固体分束器等,近红外区用石英分束器等。
为适应微量样品、混合物和化合物分解过程的分析测试,发展了红外显微镜、不同色谱仪和热重分析仪与红外光谱仪的联用技术。
镜反射(包括掠角反射)、衰减全反射、漫反射、光声光谱和各种液体池及气体池等附件用于不同状态(固、液、气)、各种形状和类型样品的分析。
红外偏振器、振动圆二色(VCD)和振动线性二色(VLD)等附件用于分子取向及构型和构象的研究。
近红外和中红外光导纤维及其探头可对样品进行原位(与仪器有一定距离)测量。
高压金刚石砧型池、变温光谱附件(低温、高温)等可用于极端条件下物质性质变化的研究。
红外光谱分析概述(下)4.红外光谱分析红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。
在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。
红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。
根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。
分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团(例如甲基、亚甲基、羰基,氰基,羟基,胺基等等)在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。
由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。
分子在低波数区(通常为1300-900厘米-1)的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。
利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。
人们只需把测得未知物的红外光谱与标准谱图库中的光谱进行比对,就可以迅速判定未知化合物的成份。
近红外光谱的谱带宽度大,谱带重叠现象严重。
由于上述原因,近红外光谱不是一种很好的反映分子结构特征的方法。
目前,结合化学计量学方法,用近红外光谱法定量测定混合体系中某一种或多种组份的含量,并已广泛应用于农业、食品、燃油等的分析。
当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。