渗流力学2
- 格式:ppt
- 大小:3.02 MB
- 文档页数:70
渗流力学知识点总结一、渗流基本理论1.渗流的基本概念渗流是指流体在多孔介质中的流动现象。
多孔介质是由孔隙和固体颗粒组成的介质,流体可以通过孔隙和固体颗粒之间的空隙进行流动。
渗流现象在自然界和工程领域都有着广泛的应用,如地下水的运移、石油的开采、地下储层的注水等。
2.渗透性与渗透率渗透性是指单位压力下单位面积介质对流体的渗透能力,通常用渗透率来描述。
渗透率是介质内渗流速度与流体粘滞力之比。
一般来说,渗透性越大,渗透率越高,介质对流体的渗透能力越强。
3.渗透压力与渗透率渗透压力是指多孔介质内部由于孔隙中流体分布不均匀而产生的压力。
渗透压力的大小与介质的孔隙结构、流体的性质、地下水位等因素有关,它是影响渗流速度和方向的重要因素。
4.达西定律达西定律是描述渗透性与渗流速度之间关系的定律,它指出在流体粘滞力不考虑的条件下,渗透速度与渗透压力成正比,与渗透率成反比。
达西定律为渗流理论研究提供了重要的基础。
二、多孔介质渗流规律1.多孔介质的渗流特性多孔介质是由孔隙和固体颗粒组成的介质,它具有复杂的微观结构和介质性质。
渗流在多孔介质中受到许多因素的影响,如介质的孔隙度、渗透率、渗透性等,这些因素决定了渗流规律的复杂性和多样性。
2.渗流方程渗流方程是描述多孔介质中流体运移规律的方程,它通常由渗流方程和质量守恒方程两部分组成。
渗流方程描述了流体在多孔介质中的流动规律,它是渗流力学研究的核心内容。
3.多孔介质的稳定性多孔介质中的渗流现象可能受到介质本身的稳定性限制。
孔隙结构、流体的性质以及渗透压力等因素都会影响介质的稳定性,这对渗流速度和方向产生重要影响。
4.非均质多孔介质中的渗流非均质多孔介质中的渗流现象通常较为复杂,其渗透率、孔隙度、渗透性等参数都可能在空间上呈现非均匀性。
对非均质多孔介质中渗流规律的研究对于实际工程应用具有重要意义。
三、非线性渗流1.非线性渗流模型非线性渗流模型是描述介质非线性渗流现象的数学模型。
渗流力学课后习题答案渗流力学课后习题答案渗流力学是研究地下水流动规律的一门学科,它在地质工程、水利工程等领域有着广泛的应用。
在学习渗流力学的过程中,习题是检验理论掌握程度和提高解题能力的重要方式。
下面将为大家提供一些渗流力学课后习题的答案,希望能对大家的学习有所帮助。
一、渗透率和渗透系数计算1. 计算渗透率时,需要知道渗透系数和介质的孔隙度。
渗透系数的单位是什么?如何计算渗透率?答:渗透系数的单位是米/秒。
渗透率的计算公式为:渗透率 = 渗透系数× 孔隙度。
2. 若一个土层的渗透率为1×10^-4 cm/s,孔隙度为0.4,求该土层的渗透系数。
答:渗透率的单位为cm/s,而渗透系数的单位为m/s。
所以需要将渗透率的单位转换为m/s。
1 cm = 0.01 m,所以渗透率为1×10^-6 m/s。
渗透系数 = 渗透率 / 孔隙度= (1×10^-6 m/s) / 0.4 = 2.5×10^-6 m/s。
二、多孔介质中的渗流1. 一个矩形土层,长为10 m,宽为5 m,渗透系数为1×10^-4 cm/s,上表面水头为10 m,下表面水头为5 m,求该土层的渗流速度。
答:渗流速度的计算公式为:渗流速度 = (上表面水头 - 下表面水头) × 渗透系数 / (土层厚度× 孔隙度)。
土层厚度为10 m,孔隙度未知,无法计算准确的渗流速度。
2. 一块长方形土层,长度为20 m,宽度为10 m,渗透系数为1×10^-3 cm/s,上表面水头为10 m,下表面水头为5 m,求该土层的渗流速度。
答:渗透系数的单位为cm/s,需要将其转换为m/s。
1 cm = 0.01 m,所以渗透系数为1×10^-5 m/s。
渗流速度 = (上表面水头 - 下表面水头) × 渗透系数 / (土层厚度× 孔隙度) = (10 m - 5 m) × (1×10^-5 m/s) / (20 m × 孔隙度) = 5×10^-6 / (20 × 孔隙度) m/s。
第二章 单相不可压缩液体的稳定渗流【2-1】在圆形油藏中心有一口完善井,穿透四个K 、h 不同的小层(见表)。
各层的孔隙度0.2φ=,2000m e r =,10cm w r =,9MPa e p =,8MPa w p =,03mPa s μ=⋅, 求:(1) 油井总产量Q 。
(2) 平均地层渗透率p K 。
(3) 绘制地层压力分布曲线,求从供给边线到井距10m 处和1000m 处的压力损失。
(4) 求液体从供给边线处运动到井底所需的时间。
表2.1 不同厚度的渗透率厚度m 渗透率2m μ 1h1K 2h 2K 3h3K 4h4K【解】(1) 记四个小层的产量分别为1Q ,2Q ,3Q ,4Q ,则总产量为4123412()lne w i i ewp p Q Q Q Q Q K h r r πμ-=+++=∑ 612332(98)10(30.160.480.610 1.0)10319.6m /d 2000310ln0.1π---⨯=⨯+⨯+⨯+⨯⨯=⨯⨯(2) 令 Q Q =虚拟实际 则有112233442()2()()ln lnp e w e w e ew wK h p p p p K h K h K h K h r r r r ππμμ--=+++∴ 112233441()p K K h K h K h K h h=+++230.160.480.610 1.00.6536810μ⨯+⨯+⨯+⨯==+++m(3) 由达西公式有()12w w r p r r p Q dr dp Kh r μπ⋅=⎰⎰图2.6 压力分布曲线 epln ()2w wQ rp r p Kh r μπ=- ()ln ln e w w e w wp p rp r p r r r -=+110(10)8ln 8.47MPa 20000.1ln 0.1p =+= 10(10)98.470.53MPa e p p p ∆=-=-=同理 1000(1000)98.930.07MPa e p p p ∆=-=-= 压力分布曲线如图所示。
渗流力学概述摘要:论述了渗流力学学科的地位,总结了渗流力学三个不同阶段的发展.介绍了当前渗流力学学科的若干前沿研究并对渗流力学的下一步需要重点研究的工作进行了说明.关键词:渗流力学;发展;展望FLUID MECHANICS IN POROUS MEDIA SUMMARIZE Abstract:this paper describes the status of fluid mechanics in porous media, and summarizes it’s three different stages of the development. This article introduces the fluid mechanics in porous media some frontier research and subject to the next step in the fluid mechanics in porous media to research work are illustrated.Keywords: fluid mechanics in porous media; development; expectarion0 引言渗流力学是研究流体在多孔介质中运动规律的科学,渗流力学既是流体力学的一个独立的分支学科,又是一个与岩石力学、多孔介质物理、表面物理、物理化学、热力学等相互交叉的独立学科.渗流一词在我国出现于20世纪60年代初期.在此之前,人们将渗流称之为“滤流”、“滤”等.例如在阿列文的渗滤理论一书译文中称渗流理论为“渗滤理论”。
在卡佳霍夫的“油层物理基础”一书译文中也称渗流理论为“渗滤理论”。
20世纪60年代初中国科学院拟在兰州组建渗流力学方面的研究机构,初期设立在兰州地质所,曾称为“地下水动力学研究室”.1963年该室科研人员经过讨论建议改为“渗流力学室”,这样“渗流力学”一词就逐渐被国人所接受.渗流的英文对应词是flow through porous media,就是通过多孔介质的流动,有时简称为porous flow。
1.渗流:流体通过多孔介质的流动2.多孔介质:由毛细管或微毛细管组成的介质.3.折算压力P z :将油藏内各点的压力按静水力学内部压力分布规律折算到同一水平面上的压力,该压力即为折算压力.4.驱动方式:在油藏开采过程中主要依靠哪种能量来驱动,就称为何种驱动方式.5.渗流速度:流体通过单位面积的体积流量6.线性渗流:流速与压力差(或压力梯度)呈线性关系的渗流.7.非线性渗流:渗流速度 v 与压力梯度不成线性关系的渗流.分高速和低速两种。
8.透明度:在数值上与孔隙度 相等9.综合压缩系数:地层压力每产生单位压降时,单位岩石视体积中孔隙及液体的总体积变化量。
记为:Ct10.导压系数:单位时间内压力传播的地层面积,表明地层压力波 传导的速度。
单位为cm 2/s 或m 2/s 。
11.渗流场图:由一组等压线和一组流线按一定规则构成的图形。
等压线:渗流场中压力相同点的连线。
等压面:渗流场中压力相同的空间点组成的面。
(规则:各相邻两条等压线间的压差值相等;各相邻两条流线 间通过的流量相等。
)12.流度系数: 13.泄油面积:油井周围参与渗流的面积。
精确一点,指单井周围所波及的可动用油的面积范围,储层的性质,质量不同,则波及的范围不同, 因此布井开采的井距和开采方法也有所不同, 具体情况具体确定标准。
(网上查的)14.折算半径 r rw :把实际不完善井用一产量与之相等,但半径改变的假想完善井来代替,这一假想完善井的半径称为实际不完善井的折算半径。
表皮因子与折算半径的关系: 15. 水动力学完善井:井钻穿全部油层厚度,而且井壁是裸露的,即整个井壁都有流体通过,流线在井壁附近仍符合平面径向流,这种井就称为水动力学完善井。
16.水动力学不完善井:凡是井底结构和完善井的井底结构不同,或井底附近油层性质发生变化的井,称为水动力学不完善井。
《渗流力学》中英文课程简介英文名称:Fluid mechanics in porous medium of oil and gas 课程编号:适用专业:石油工程专业学时:54 学分: 3 实验学时: 8 课内上机学时:10一、预修课程开发地质学、流体力学、油藏物理二、中文内容提要《渗流力学》是油田开发和开采专业的主要专业基础课之一。
其任务是要使学生掌握水驱、弹性驱以及溶解气驱方式下地层流体的运动规律、产能的计算和通过不稳定试井方法确定地层参数。
为学生毕业后正确根据地层性质、流体性质和地质条件,选择合理的数学模型,研究流体运动规律并进行动态预测作准备。
为解决油田开发过程中的实际问题和从事科研工作准备必要的专业理论知识。
三、英文内容提要(5号黑体)‘Fluid mechanics in porous medium of oil and gas’ is one of the main basic courses of major oil and gas development and exploitation. The mission of the course is to guide students to master the kinematical law of formation fluid under circumstances of water flooding, elastic drive and depletion drive, master the deliverability calculation and determine formation parameters through method of non-stabilized well test. According to this course, students can set a good preparation for how to choose a reasonable model to study the laws of fluid motion and how to make a dynamic prediction using formation characteristics, fluid properties and geological conditions. The content of this course is the necessary speculative knowledge for solving practical problems and doing research work in process of oil-field development.四、教材:《油气渗流力学基础》,李璗主编,陕西科学技术出版社,2001.五、教材类别:自编制订者(签字):校对者(签字):审定者(签章):批准者(签章):。
渗流力学达西定律公式
【最新版】
目录
1.渗流力学简介
2.达西定律的概念
3.达西定律的公式
4.达西定律的应用
正文
1.渗流力学简介
渗流力学是研究流体在多孔介质中渗流规律的学科,它广泛应用于地下水文学、土壤力学、水利工程等领域。
渗流力学有助于我们更好地理解和预测地下水的运动和控制,为水资源管理和开发提供科学依据。
2.达西定律的概念
达西定律是渗流力学的基本定律之一,它描述了流体在多孔介质中的渗流速度与压力差之间的关系。
简单来说,达西定律表示为:渗流速度与压力差成正比,比例常数即为多孔介质的渗透率。
3.达西定律的公式
达西定律的数学表达式为:
Q = KiA
其中,Q 表示渗流量,K 表示渗透率,i 表示压力差,A 表示多孔介质的截面积。
4.达西定律的应用
达西定律在实际工程中有广泛的应用,例如:
(1)地下水资源勘查:通过测量地下水位和计算压力差,可以估算地下水的储量和水流速度。
(2)水利工程设计:在设计水坝、水库、渠道等水利工程时,需要根据达西定律计算渗流量,以确保工程的稳定性和安全性。
(3)土壤改良:根据达西定律,可以通过改变土壤的渗透率来改善土壤的水分状况,从而提高土壤的肥力和作物产量。
渗流力学有关概念2.3.1 渗流力学指专门研究流体通过各种多孔介质渗流时的运动形态和运动规律的科学。
它是现代流体力学的一个重要分支,是油藏工程、油藏数值模拟的理论基础。
2.3.2 不可压缩流体{刚性流体)又称为刚性流体,是指随着压力的变化,体积不发生弹性变'形的流体。
2.3.3 可压缩流体(弹性流体)又称弹性流体,是指随压力的变化,体积发生弹性膨胀或收缩的流体。
2 .3 . 4体相流体指分布在多孔介质孔道的中轴部分,其性质不受界面影响的流体。
2.3.5 边界流体指分布在孔道壁上形成一个边界层,其性质受界面影响的流体。
2.3.6 地下流体流场指地下流体与岩石相互作用所占据的、并能在其中流动的场所或空间。
2.3.7 变形介质当地层中的液体压力降低时,岩石发生变形而使孔隙空间减小,渗透率降低,这种孔隙空间发生变形的多孔介质称为变形介质。
2.3.8 可变渗透率地层变形多孔介质的渗透率不是常数,而是压力的函数,具有这种性质的油、气层称为可变渗透率地层。
2.3.9 多孔介质以固相介质为骨架,含有大量互相交错又互相分散的微小孔隙或微毛细管孔隙的介质叫多孔介质。
油气储层就是多孔介质的一种。
2.3.10 双重孔隙介质{裂缝孔隙介质}又称裂缝孔隙介质,是指由孔隙介质和裂缝介质两个水动力学系统构成,两个系统按一定规律进行流体交换。
2.3.11 渗流与地下渗流流体在多孔介质中的流动称为渗流。
流体在地层中流动叫做地下渗流。
2.3.12 单相渗流指在多孔介质中只有一种流体以一种状态参与流动。
如在地层压力高于饱和压力条件下,油藏中的原油流动,气藏中的气体流动等。
2.3.13 两相渗流与多相渗流指在多孔介质中有两种流体同时参与流动叫两相渗流,如油层中的油、水两相流动。
同时有两种以上互不混溶的流体参与流动叫多相渗流,如油层中的油、气、水三相流动。
2.3.14 多组分渗流指含有多种组分的烃质和非烃质混合的流体在多孔介质中的流动。