香农三大定理
- 格式:doc
- 大小:23.50 KB
- 文档页数:1
香农第一定理:可变长无失真信源编码定理。
采用无失真最佳信源编码可使得用于每个信源符号的编码位数尽可能地小,但它的极限是原始信源的熵值。
超过了这一极限就不可能实现无失真的译码。
香农第二定理:有噪信道编码定理。
当信道的信息传输率不超过信道容量时,采用合适的信道编码方法可以实现任意高的传输可靠性,但若信息传输率超过了信道容量,就不可能实现可靠的传输。
香农第三定理:保真度准则下的信源编码定理,或称有损信源编码定理。
只要码长足够长,总可以找到一种信源编码,使编码后的信息传输率略大于率失真函数,而码的平均失真度不大于给定的允许失真度,即D'<=D.一:香农第一定理(可变长无失真信源编码定理)设信源S的熵[shāng]H(S),无噪离散信道的信道容量为C,于是,信源的输出可以进行这样的编码,使得信道上传输的平均速率为每秒(C/H(S)-a)个信源符号.其中a可以是任意小的正数, 要使传输的平均速率大于(C/H(S))是不可能的。
二:香农第二定理(有噪信道编码定理)设某信道有r个输入符号,s个输出符号,信道容量为C,当信道的信息传输率R<C,码长N足够长时,总可以在输入的集合中(含有r^N个长度为N的码符号序列),找到M (M<=2^(N(C-a))),a为任意小的正数)个码字,分别代表M个等可能性的消息,组成一个码以及相应的译码规则,使信道输出端的最小平均错误译码概率Pmin达到任意小。
公式:C=B*log2(1+S/N) 注:B为信道带宽;S/N为信噪比,通常用分贝(dB)表示。
三:香农第三定理(保失真度准则下的有失真信源编码定理)设R(D)为一离散无记忆信源的信息率失真函数,并且选定有限的失真函数,对于任意允许平均失真度D>=0,和任意小的a>0,以及任意足够长的码长N,则一定存在一种信源编码W,其码字个数为M<=EXP{N[R(D)+a]},而编码后码的平均失真度D'(W)<=D+a。
香农三大定理及应用香农三大定理是信息论的基石,提出者是美国通讯工程师克劳德·香农(Claude Shannon)。
这三大定理分别是:信源编码定理、信道编码定理和密码技术定理。
下面我将分别介绍这三个定理,并简要阐述它们的应用。
首先是信源编码定理。
信源编码定理也被称为数据压缩定理,它指出:对于一个离散的源,如果它的熵(信息平均量)是H,我们可以找到一种无损编码方法,将其数据量表示为n bits,使得n趋近于H。
也就是说,通过合适的编码方法,我们可以用更少的位数来表示信息,从而达到数据压缩的目的。
信源编码定理的应用非常广泛,例如在文件压缩、图像压缩和视频压缩中都有使用。
在文件压缩中,可以通过对文件进行编码,利用统计特性来减小文件的体积,从而节省存储空间和提高传输效率。
在图像压缩中,可以采用有损压缩的方式,通过去除图像中的冗余信息来减小图像文件的大小,但尽可能保持图像质量不受损失。
在视频压缩中,可以通过对视频的空间和时间冗余进行编码,从而减小视频文件的大小,实现高效传输与存储。
接下来是信道编码定理。
信道编码定理指出:在一个离散无噪声信道中,如果信息传输速率R小于信道容量C,那么存在一种编码方法,使得信息传输能够以任意小的错误率进行。
也就是说,只要我们将传输速率控制在信道容量之内,通过合适的编码和解码方法,可以实现可靠的信息传输。
信道编码定理在通信系统中具有重要的应用。
例如在无线通信中,由于受到信道噪声和干扰的影响,信号会发生失真,导致信息传输错误。
通过利用信道编码的方法,可以在发送端对信息进行编码,然后在接收端进行解码,从而减小信道噪声和干扰对信息传输的影响,提高信号的可靠性。
最后是密码技术定理。
密码技术定理指出:在保密通信中,只要密钥的长度足够长,使用适当的加密算法,加密信息的安全性可以通过计算机的计算力达到的限度。
也就是说,通过合理的加密方法和足够复杂的密钥,可以实现信息的保密性,并且在计算力有限的情况下,破解加密信息是非常困难的。
谈香农定理克劳德.香农,1916年4月30日出生于美国密歇根州的加洛德,他是信息时代的奠基人。
他这一生的两大贡献之一便就是信息论,信息熵的概念提出和香农公式。
信息传输给出基本数学模型的核心人物是香农。
1948年香农长达数十页的论文“通信的数学理论”成了信息论正式诞生的里程碑。
在他的通信数学模型中,清楚地提出信息的度量问题,他把哈特利的公式扩大到概率pi不同的情况,得到了著名的计算信息熵H的公式:H=∑-pi log pi如果计算中的对数log是以2为底的,那么计算出来的信息熵就以比特(bit)为单位。
今天在计算机和通信中广泛使用的字节 (Byte)、KB、MB、GB等词都是从比特演化而来。
“比特”的出现标志着人类知道了如何计量信息量。
香农的信息论为明确什么是信息量概念作出决定性的贡献。
香农在进行信息的定量计算的时候,明确地把信息量定义为随机不定性程度的减少。
这就表明了他对信息的理解:信息是用来减少随机不定性的东西。
或香农逆定义:信息是确定性的增加。
事实上,香农最初的动机是把电话中的噪音除掉,他给出通信速率的上限,这个结论首先用在电话上,后来用到光纤,现在又用在无线通信上。
我们今天能够清晰地打越洋电话或卫星电话,都与通信信道质量的改善密切相关。
香农定理:香农定理描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信号噪声功率比之间的关系.在有随机热噪声的信道上传输数据信号时,数据传输率Rmax与信道带宽B,信噪比S/N关系为: Rmax=B*Log2(1+S/N)。
在信号处理和信息理论的相关领域中,通过研究信号在经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,叫做香农(Shannon)定理。
它以比特每秒(bps)的形式给出一个链路速度的上限,表示为链路信噪比的一个函数,链路信噪比用分贝(dB)衡量。
因此我们可以用香农定理来检测电话线的数据速率。
香农定理由如下的公式给出: C=B*log2(1+S/N) 其中C是可得到的链路速度也就是信道容量,B是链路的带宽,S是平均信号功率,N是平均噪声功率,信噪比(S/N)通常用分贝(dB)表示,分贝数=10×log10(S/N)。
香农三大定理简答香农三大定理是指由数学家克劳德·香农提出的三个基本通信定理,分别是香农第一定理、香农第二定理和香农第三定理。
这三个定理是现代通信理论的基石,对于信息论和通信工程有重要的指导意义。
下面将对这三个定理进行详细的阐述。
1. 香农第一定理:香农第一定理是信息论的基石,提出了信息传输的最大速率。
根据香农第一定理,信息的传输速率受到带宽的限制。
具体而言,对于一个给定的通信信道,其最大的传输速率(即信息的最大传输率)是由信道的带宽和信噪比决定的。
信道的带宽是指能够有效传输信号的频率范围,而信噪比则是信号与噪声的比值。
这两个因素共同决定了信道的容量。
香农提出的公式表示了信道的容量:C = B * log2(1 + S/N)其中,C表示信道容量,B表示信道的带宽,S表示信号的平均功率,N表示噪声的平均功率。
2. 香农第二定理:香农第二定理是关于信源编码的定理。
根据香农第二定理,对于一个离散的信源,存在一种最优的编码方式,可以将信源的信息压缩到接近于香农熵的水平。
香农熵是对信源的输出进行概率分布描述的一个指标,表示了信源的不确定性。
具体而言,香农熵是信源输出所有可能码字的平均码长。
对于给定的离散信源,香农熵能够提供一个理论上的下限,表示信源的信息量。
通过对信源进行编码,可以有效地减少信源输出的冗余度,从而实现信息的高效传输。
香农第二定理指出,对于一个离散信源,其信源编码的最优平均码长与香农熵之间存在一个非常接近的关系。
3. 香农第三定理:香农第三定理是关于信道编码的定理。
根据香农第三定理,对于一个给定的信道,存在一种最优的编码方式,可以通过使用纠错码来抵消由信道噪声引起的错误。
信道编码的目标是在保持信息传输速率不变的情况下,通过增加冗余信息的方式,提高错误纠正能力。
纠错码可以在数据传输过程中检测和纠正一定数量的错误,从而保证数据的可靠性。
香农第三定理指出,对于一个给定的信道,其信道编码可以将信息传输的错误率减少到任意低的水平。
香农定理通俗解释
香农定理是由信息论的创始人克劳德·香农提出的,它包括三个部分:信息熵定理、信道容量定理和数据压缩定理。
通俗地讲,这三个定理主要研究信息的量化、存储和传播。
1. 信息熵定理:这是用来衡量信息量的一个概念。
香农提出了一个数学公式,可以计算出一个信息源的熵值。
2. 信道容量定理:这是关于信道容量的计算的一个经典定律,可以说是信息论的基础。
在高斯白噪声背景下的连续信道的容量= (b/s)。
其中B为信道带宽(Hz),S为信号功率(W),n0为噪声功率谱密度(W/Hz),N为噪声功率(W)。
这个定理告诉我们,信道容量受三要素B、S、no的限制,提高信噪比S/N可增大信道容量。
3. 数据压缩定理:这个定理与压缩理论有关,主要研究如何通过压缩数据来减少冗余信息,从而实现更高效的数据传输和存储。
香农定理为我们提供了一套完整的理论框架,用于研究和优化信息的传输、存储和处理过程。
简述香农公式。
c=wlog2(1+s/n)
香农定理:香农定理则描述了有限带宽;有随机热噪声信道的最大传输速率与信道带宽;信号噪声功率比之间的关系.
在有随机热噪声的信道上传输数据信号时,数据传输率Rmax与信道带宽B,信噪比S/N关系为: Rmax=B*LOG⒉(1+S/N)
在信号处理和信息理论的相关领域中,通过研究信号在经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,叫做香农(Shannon)定理。
它以比特每秒(bps)的形式给出一个链路速度的上限,表示为链路信噪比的一个函数,链路信噪比用分贝(dB)衡量。
因此我们可以用香农定理来检测电话线的数据速率。
香农定理由如下的公式给出: C=Blog2(1+S/N) 其中C是可得到的链路速度,B 是链路的带宽,S是平均信号功率,N是平均噪声功率,信噪比(S/N)通常用分贝(dB)表示,分贝数=10×log10(S/N)。
香农公式香农定理指出,如果信息源的信息速率R小于或者等于信道容量C,那么,在理论上存在一种方法可使信息源的输出能够以任意小的差错概率通过信道传输。
该定理还指出:如果R>C,则没有任何办法传递这样的信息,或者说传递这样的二进制信息的差错率为1/2。
可以严格地证明;在被高斯白噪声干扰的信道中,传送的最大信息速率C由下述公式确定:C=B*log2(1+S/N) (log2表示以2为底的对数)该式通常称为香农公式。
B是信道带宽(赫),S是信号功率(瓦),N是噪声功率(瓦)。
香农公式中的S/N为无量纲单位。
如:S/N=1000(即,信号功率是噪声功率的1000倍)但是,当讨论信噪比(S/N)时,常以分贝(dB)为单位。
公式如下:S/N = 10lgS/N (dB)(分贝与信噪比之间的关系为:dB=10lgS/N)公式表明,信道带宽限制了比特率的增加,信道容量还取决于系统信噪比以及编码技术种类信道容量信道容量是信道的一个参数,反映了信道所能传输的最大信息量,其大小与信源无关。
对不同的输入概率分布,互信息一定存在最大值。
我们将这个最大值定义为信道的容量。
一但转移概率矩阵确定以后,信道容量也完全确定了。
尽管信道容量的定义涉及到输入概率分布,但信道容量的数值与输入概率分布无关。
我们将不同的输入概率分布称为试验信源,对不同的试验信源,互信息也不同。
其中必有一个试验信源使互信息达到最大。
这个最大值就是信道容量。
信道容量有时也表示为单位时间内可传输的二进制位的位数(称信道的数据传输速率,位速率),以位/秒(b/s)形式予以表示,简记为bps。
[编辑本段]nyjingle补充:通信的目的是为了获得信息,为度量信息的多少(信息量),我们用到了熵这个概念。
在信号通过信道传输的过程中,我们涉及到了两个熵,发射端处信源熵——即发端信源的不确定度,接收端处在接收信号条件下的发端信源熵——即在接收信号条件下发端信源的不确定度。
信息论三大定律信息论是由克劳德·香农在1948年提出的一种研究信息传输和处理的数学理论。
在信息论中,有三个重要的定律,分别是香农熵定律、数据压缩定律和通信容量定律。
本文将分别介绍这三个定律的基本原理和相关应用。
首先是香农熵定律。
香农熵是用来描述一个随机变量的平均不确定性的度量。
根据香农熵定律,信息的平均传输速率不能高于信源的熵。
这个定律可以通过以下公式表示:H(X) = - Σ (P(xi) * log2 (P(xi)))其中,H(X)表示随机变量X的熵,P(xi)表示X取值为xi的概率。
根据熵的定义,我们可以得出一个重要结论:当信源的熵为最大值时,信息传输效率最低,即传输的信息量最大。
所以,在信息传输中,我们希望尽量减小信源的熵,以提高信息传输的效率。
香农熵定律的应用广泛。
例如,在数据压缩中,我们可以根据香农熵定律,对信源进行编码,以达到尽量减小信息传输量的目的。
另外,熵也被广泛应用于密码学领域,用来评估密码算法的安全性。
接下来是数据压缩定律。
数据压缩定律指的是,随机变量的数据可以通过适当的编码方法进行压缩,使其传输所需的位数尽可能减少。
数据压缩的目标是尽量减小数据的冗余性,从而节省传输带宽和存储空间。
数据压缩定律的应用非常广泛。
在计算机领域,我们经常使用各种压缩算法对数据进行压缩,例如无损压缩算法(如ZIP)和有损压缩算法(如JPEG)。
此外,数据压缩也被广泛应用于通信领域,以提高数据传输的效率和速率。
最后是通信容量定律。
通信容量定律指的是,在给定的信道条件下,最大传输速率是有限的。
通信容量取决于信道的带宽和信噪比(信号与噪声比)。
通信容量定律的应用包括无线通信、光纤通信等领域。
通过优化通信系统的参数,如信噪比、调制方式等,可以提高通信容量,从而提高数据传输的速率和可靠性。
综上所述,信息论的三大定律分别是香农熵定律、数据压缩定律和通信容量定律。
这些定律在信息传输和处理中起到了重要的作用,相关应用广泛。
1.香农定理香农定理:香农定理则描述了有限带宽;有随机热噪声信道的最大传输速率与信道带宽;信号噪声功率比之间的关系.在有随机热噪声的信道上传输数据信号时,数据传输率Rmax与信道带宽B,信噪比S/N关系为:Rmax=B*Log⒉(1+S/N)在信号处理和信息理论的相关领域中,通过研究信号在经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,叫做香农(Shannon)定理。
它以比特每秒(bps)的形式给出一个链路速度的上限,表示为链路信噪比的一个函数,链路信噪比用分贝(dB)衡量。
因此我们可以用香农定理来检测电话线的数据速率。
香农定理由如下的公式给出: C=Blog2(1+S/N) 其中C是可得到的链路速度,B是链路的带宽,S是平均信号功率, N是平均噪声功率,信噪比(S/N)通常用分贝(dB)表示,分贝数=10×log10(S/N)。
根据香农定理,带宽为4000Hz,信噪比为30dB的信道容量为多少?最佳答案B表示带宽4000Hz 信噪比r换算分贝数:30dB=10lg(r)r=1000则C=4000*log(1+1000)=4k*10=40k例:在话音信道上,设带宽为3100Hz,话音信道上的信噪比为30分贝,则信道的最大容量是多少?30(db)=10*lg(S/N),S/N=1000C=3100log2(1+1000)=30894 b/slog2(1001)近似的看成是log2(1000)就可以得到10啦!再*3100就行啦!这个人是算不出来的吧只能估计范围1001=7*13*11log2(1001)=lg1001/lg2=(lg7+lg13+lg11)/lg2如果你知道lg2,lg7,lg11,lg13的值,带进去算出来log1=0log2=0.3010log3=0.4771log4=2*log2log5=0.6990log6=0.7782log7=0.8451log8=3*log2log9=2*log3_____________________________________________________________R=B log2 N 尼奎斯特尼奎斯特定理中n=lbN,其中的lb代表的是什么?R=BlbN=2WlbN,请详细解释一下这个公式的运算顺序以及其中lb的含义?C=Wlb(1+S/N)中的lb的意思?dB=10lgS/N的意思是10乘以10为底S/N的对数吗?问题补充:C=Wlb(1+S/N)中的1是代表的数字1吗?比如s/n是2500,那么是用数字1加上2500,还是有别的含义?提问者:shenglang2004 - 助理三级最佳答案问题一lb代表的是log2,log2是一种数学运算中的符号,中学课本里面应该学过.其中的2应该是右下标的小2,我的输入法打不出。
现代通信与香农三大定理姓名:杨伟章学号:201110404234摘要:当我们提起信息论,就不得不把香农和信息论联系在一起,因为正是香农为通信理论的发展所做出的划时代贡献,宣告了一门崭新的学科——信息论的诞生。
从此,在香农信息论的指导下,为了提高通信系统信息传输的有效性和可靠性,人们在信源编码和信道编码两个领域进行了卓有成效的研究,取得了丰硕的成果。
其实,信息论是人们在长期通信实践活动中,由通信技术与概率论、随机过程、数理统计等学科相互结合而逐步发展起来的一门新兴交叉学科。
关键词:信息论基础现代通信系统香农三大定理上个世纪四十年代,半导体三极管还未发明,电子计算机也尚在襁褓之中。
但是通信技术已经有了相当的发展。
从十九世纪中叶,电报就已经很普遍了。
电报所用的摩斯码(Morse Code),就是通信技术的一项杰作。
摩斯码用点和线(不同长度的电脉冲)来代表字母,而用空格来代表字母的边界。
但是每个字母的码不是一样长的。
常用的字母E只有一个点。
而不常用的Z有两划两点。
这样,在传送英语时,平均每个字母的码数就减少了。
事实上,摩斯码与现代理论指导下的编码相比,传送速度只差15%。
这在一百五十多年前,是相当了不起了。
在二次世界大战时,雷达和无线电在军事上广泛应用。
无线电受各种噪声的干扰很厉害,这也给通讯技术提出了新的课题。
各种不同的调制方式也纷纷问世。
于是就出现了这样一个问题:给定信道条件,有没有最好的调制方式,来达到最高的传送速率?“传输速率是波特率与每波特所含比特数的乘积。
波特率受频宽的限制,而每波特所含比特数受噪声的限制。
”前一个限制,由那奎斯特(Harry Nyquist)在1928年漂亮地解决了。
而后一个问题则更复杂。
1928年,哈特利(R. V. L. Hartley)首先提出了信息量的概念,并指出编码(如摩斯码)在提高传送速度中的重要作用。
但是他未能完整定量地解决这个问题。
二战期间,维纳(Norbert Wiener)发展了在接收器上对付噪声的最优方法。
现代通信与香农的三大定理LT至此,香农开创性地引入了“信息量”的概念,从而把传送信息所需要的比特数与信号源本身的统计特性联系起来。
这个工作的意义甚至超越了通信领域,而成为信息储存,数据压缩等技术的基础。
解决了信号源的数据量问题后,我们就可以来看信道了。
信道(channel)的作用是把信号从一地传到另一地。
在香农以前,那奎斯特已经证明了:信道每秒能传送的符号数是其频宽的一半。
但问题是,即使这些符号,也不是总能正确地到达目的地的。
在有噪声的情况下,信道传送的信号会发生畸变,而使得接收者不能正确地判断是哪个符号被发送了。
对付噪声的办法是减少每个符号所带的比特数:“而每个波特所含的比特数,则是受噪声环境的限制。
这是因为当每个波特所含的比特数增加时,它的可能值的数目也增加。
这样代表不同数据的信号就会比较接近。
例如,假定信号允许的电压值在正负1伏之间。
如果每个波特含一个比特,那么可能的值是0或1。
这样我们可以用-1伏代表0,用1伏代表1。
而假如每波特含两个比特,那么可能的值就是0,1,2,3。
我们需要用-1伏,-0.33伏,0.33伏,1伏来代表着四个可能值。
这样,如果噪声造成的误差是0.5伏的话,那么在前一种情况不会造成解读的错误(例如把-1V 错成了-0.5伏,它仍然代表0)。
而在后一种情况则会造成错误(例如把-1V错成了-0.5伏,它就不代表0,而代表1了)。
所以,每个波特所含的比特数也是不能随便增加的。
以上两个因素合起来,就构成了对于数据传输速率的限制。
”其实,除此之外,还有一个对付噪声的办法,就是在所有可能的符号序列中只选用一些来代表信息。
例如,如果符号值是0和1,那么三个符号组成的序列就有8个:000,001,010,011,100,101,110,111。
我们现在只用其中两个来代表信息:000和111。
这样,如果噪声造成了一个符号的错误,比如000变成了010,那我们还是知道发送的是000而不是111。
香农信息论中的三大极限定理
香农信息论中有三个重要的极限定理,它们对于信息的传输和压缩有着深远的影响。
第一个定理是信道容量定理,它指出在给定的信道和噪声条件下,信息的传输速率存
在一个上限,即信道的容量。
这个定理的核心思想是,对于给定的信噪比,存在一个最大
的传输速率,如果超过这个速率,信息的错误率将会变得不可接受,而如果低于这个速率,信道的资源没有得到最充分的利用。
第二个定理是无损压缩定理,它指出在给定的信息源下,存在一个理论上的最小压缩比,即无损压缩的极限。
这个定理说明了无论采用何种无损压缩算法,都无法将压缩后的
信息大小减小到小于其信息熵的大小。
信息熵是在给定的信息源下,所包含的平均信息量
的度量,它表示了信息源的不确定性。
第三个定理是有损压缩定理,它指出在给定的信息源下,存在一个理论上的最高压缩比,即有损压缩的极限。
与无损压缩不同,有损压缩允许在压缩过程中丢失一定量的信息,以达到更高的压缩比。
根据有损压缩定理,无论采用何种有损压缩算法,压缩后的信息大
小将永远大于其信息熵。
这意味着,虽然有损压缩可以实现更高的压缩比,但也会导致信
息的质量损失。
这三个极限定理在信息论中具有重要的理论和实际意义。
它们为信息的传输和压缩提
供了指导原则,帮助人们理解信息的本质和限制,同时也为信息技术的发展提供了理论基础。
香农定理公式
香农定理是信息论的重要理论,它定义了有关信息的门槛和信息的可
靠性的概念,并为信息传输技术提供了理论基础。
香农定理由著名的科学
家Claude Shannon提出,他在1948年发表了一篇论文,它定义了消息传
输系统的最佳状态:在一定容错率下,最小的消息长度会对应最大的可靠性。
香农定理的公式表示为:H(p) = -p log2p-(1-p)log2(1-p),其中H
是熵,p是信息事件的概率,其意义是:给定概率p,若有一个消息包含
多个事件,那么消息的最小长度可以用-p log2p-(1-p)log2(1-p)来表示。
香农定理的推导及其后续应用很多,而它的基本原理却很简单——在
给定容错率的情况下,消息的长度越短,消息的可靠性越大,反之消息长
度越长,消息的可靠性越小。
因此,在确定消息长度时,可以采取香农定
理来求出消息传输系统最佳状态。
香农定理为当今信息处理和传输技术的
发展提供了重要的理论支持,已成为信息论的重要理论。
简述香农定理的内容
香农定理,也叫信息论中的香农原理,是加拿大物理学家和数学家
Claude Shannon提出的定理。
它是对在特定的信息编码的情况下,信息传输率的
一种上限,它成功地结合了信号理论与熵学,并在技术上实现了信息与熵的最佳平衡。
它为数字信息通信技术提供了基本的理论固定基础。
香农定理建立在概率论的基础上,证明信息的传输率直接取决于信源的不
确定度,定义了特定的信息编码的情况下,信息传输率的上限——传输熵。
香农定理将传输熵表达为H=-Σpi log pi,其中pi是原始事件的概率。
香农定理的意义很显著,它有变动蔓延的影响,它不仅有助于揭开信息的
奥秘,而且还在诸多领域有着重要应用价值,比如在计算机科学、信息理论技术、网络和认知科学等领域。
它可以帮助科学家和工程技术人员清楚直观地理解系统的性能,比如能够帮助他们设计有效的编码算法、评估系统的可靠性和可经济性等等。
总的来说,香农定理是有助于解决信息传输系统的性能问题的一个重要定理,使信息的传输率变成可量化的,通过一个明确的数学模型,表示出在特定的条件下,信息传输的效率上限,香农定理的推广、应用及改进,对技术系统来说极其重要,可以说不存在香农定理,数字信息通信就不可能诞生,所以它叫做“人类通信技术的出发点”。
香农第一、二、三定理
第一定理:
将原始信源符号转化为新的码符号,使码符号尽量服从等概分布,从而每个码符号所携带的信息量达到最大,进而可以用尽量少的码符号传输信源信息
第二定理:
当信道的信息传输率不超过信道容量时,采用合适的信道编码方法可以实现任意高的传输可靠性,但若信息传输率超过了信道容量,就不可能实现可靠的传输。
第三定理:
只要码长足够长,总可以找到一种信源编码,使编码后的信息传输率略大于率失真函数,而码的平均失真度不大于给定的允许失真度,即D'<=D。