压汞公式表(新)
- 格式:doc
- 大小:56.50 KB
- 文档页数:1
<美国康塔仪器公司培训教材>压汞法应用基础摘要1921年,Washburn 首先提出了多孔固体的结构特性可以通过把非浸润的液体压入其孔中的方法来分析的观点。
在当时,Washburn假定迫使非浸润的液体进入半径为R的孔所需的最小压力P由公式P=KR确定,这里K是一个常数。
这个简单的概念就成为了现代压汞法测孔仪的理论基础,相应地压汞法成为了描述各种固体特性的一项技术。
尽管能感觉得出这一方法有其根本和实际应用上的局限性,但压汞法在未来仍将被看作是测量大孔和中孔分布的标准方法。
这是因为该项技术在长时间的应用过程中存在三个明显的优点:1原理简单;2试验速度快;3该方法的最独到之处还在于它所测定的孔半径的范围比现在正在应用的其它方法(如:气体吸附,测热量法,热注汞法等)的范围要宽阔很多。
很明显,大家希望从试验结果可以推导出尽可能多的有关结构的信息。
令人惊奇的是,现在已公开的文献上根据压汞法测得的孔分布总结出来的材料相当少。
在这里,本文就通过研究各种报导中测试颗粒的分布、颗粒间和颗粒内部的孔隙率、孔的弯曲率、渗透性、喉/孔比、分形特性和可压缩性时(通过注汞曲线及退汞曲线)的优缺点,来加强压汞数据解释和分析,作者认为做这样的工作还是很有必要的。
关键词:压汞法;孔特性;孔;颗粒目录1.介绍2.压汞法作为分析特性的一个工具2.1理论基础2.1.1滞后现象2.1.2理想孔系统的研究2.2实验研究2.2.1连续扫描与分步加压方法的对比2.2.2接触角测量2.2.3汞的纯度2.2.4空白修正2.3应用范围2.3.1样品种类2.3.2压力和孔尺寸极限2.4汞孔率的数据分析2.4.1颗粒尺寸分布2.4.1.1Mayer-Stowe(MS)理论2.4.1.2Smith-Stermer(SS)理论2.4.2孔间隙和颗粒内孔隙率2.4.3 孔的弯曲率2.4.4 渗透性2.4.5 孔喉比2.4.6 分形特性2.4.7样品的可压缩性3.结论4.致谢5.参考资料1. 绪言压汞法是研究多孔物质特性一项较好的技术(1-3)。
2.2 孔隙结构特征参数的定义为了对不同类型的岩心的孔隙结构进行定量分析,根据恒速压汞实验结果,结合国内外近十年来恒速压汞的应用成果,我们对相关孔隙结构特征参数的定义如下。
2.2.1平均喉道(throat)半径:设喉道半径为r i的每一喉道的分布频率为f i,则每一喉道半径归一化的分布频率密度αi,(2-1)平均喉道半径为:(2-2)2.2.2平均孔隙(pore)半径定义为孔隙半径加权平均值。
设孔隙半径为r i的每一孔隙的分布频率为f i,则每一孔隙半径归一化的分布频率密度βi,(2-3)平均孔隙半径为:(2-4)2.2.3孔喉半径比平均值定义为孔隙/喉道半径比的加权平均值。
设孔隙/喉道半径比为ηi的分布频率为f i,则每一孔隙/喉道半径比的归一化分布频率密度γi,(2-5) 平均孔隙/喉道半径比为:(2-6)2.2.4平均毛管(tube)半径建立在毛管束模型基础之上。
任一毛管孔道r i的体积V i与所有毛管孔道体积和V p的比值相当于该毛管孔道在总毛管系统中的饱和度。
(2-7)(2-8)2.2.5 喉道半径方均根值:(2-9)2.2.6 单个喉道对渗透率的贡献率在泊谡叶公式的基础上,推导出单根喉道对整个岩心的贡献率公式:(2-10)式中Si的定义见(2-7)。
比较(2-9)得:(2-11)2.2.7主流喉道半径采用喉道对渗透率累积贡献率达80%以前喉道半径的加权平均值,因为对于低渗透油藏,有效渗流能力随驱替动力增加而增加,只有当驱替动力达到一定值时,有效渗流能力趋于稳定。
其转折点处的压力梯度很大,油藏开发时不可能达到如此大的压力梯度。
因此取渗透率贡献率达到80%时喉道的加权平均值。
主流喉道半径R M定义如下:(2-12)(2-13)2.2.8主流喉道半径下限为喉道对渗透率累积贡献率达80%时的喉道半径。
(2-14)2.2.9微观均质系数a定义为各喉道半径对最大喉道半径的总偏离度。
a值越大,组成样品的喉道半径越接近最大喉道半径,样品的喉道分布越均匀。
压汞仪实验指导书1. 实验目的:混凝土是由粗骨料、细骨料、水泥水化颗粒、未水化水泥颗粒、孔隙和裂纹等不同组分组成的水泥基复合材料,是一种多孔的、在各尺度上多相的非均质复杂体系。
孔结构对混凝土的渗透性和强度等宏观性能有重要影响。
压汞法(mercuryintrutionporosimetry )测孔是研究水泥基复合材料孔结构参数(如孔隙率、孔径尺寸和孔径分布)的一种广泛应用的方法,成功应用于许多关于硬化水泥浆和水泥砂浆体的研究,并取得了大量的成果,促进了混凝土材料科学的进步。
本实验的目的是了解压汞仪工作原理;掌握压汞仪操作;并学会分析所测孔结构数据。
2压汞仪工作原理:通过加压使汞进入固体中,进入固体孔中的孔体积增量所需的能量等于外力所做的功,即等于处于相同热力学条件下的汞-固界面下的表面自由能。
而之所以选择水银作为试验液体,是根据固体界面行为的研究结论,当接触角大于90度时,固体不会被液体润湿。
同时研究得知,水银的接触角是117度,故除非提供外加压力,否则混凝土不会被水银润湿,不会发生毛细管渗透现象。
因此要把水银压入毛细孔,必须对水银施加一定的压力克服毛细孔的阻力。
通过试验得到一系列压力p 和得到相对应的水银浸入体积V ,提供了孔尺寸分布计算的基本数据,采用圆柱孔模型,根据压力与电容的变化关系计算孔体积及比表面积,依据华西堡方程计算孔径分布。
压汞试验得到的比较直接的结果是不同孔径范围所对应的孔隙量,进一步计算得到总孔隙率、临界孔径(临界孔径对应于汞体积屈服的末端点压力。
其理论基础为,材料由不同尺寸的孔隙组成,较大的孔隙之间由较小的孔隙连通,临界孔是能将较大的孔隙连通起来的各孔的最大孔级。
根据临界孔径的概念,该表征参数可反映孔隙的连通性和渗透路径的曲折性)、平均孔径、最可几孔径(即出现几率最大的孔径)及孔结构参数等。
图1 毛细孔中汞受力情况若欲使毛细孔中的汞保持一平衡位置,必须使外界所施加的总压力P 同毛细孔中水银的表面张力产生的阻力P 1相等,根据平衡条件,可得公式; 2P 2cos s r p P r ππσθ==-22cos r p r ππσθ=-只有当施加的外力P ≥ Ps 时,水银才可进入毛细孔,从而得到施加压力和孔径之间的关系式,即Washburn 公式:3实验用原材料、仪器及操作步骤和注意事项:美国产PoreMaster-33全自动压汞仪,天平,脱脂棉,镊子,汞,液氮,硫磺,酒精 美国产PoreMaster-33全自动压汞仪主要技术指标:孔分布测定范围孔直径为微米;从真空到33000psia 可连续或步进加压。
Porowin 安装及使用说明1、直接双击执行文件setup.exe,选择安装目录。
2、安装完毕后会跳出一个Calibration窗口,提示插入软盘,这是用于安装仪器测试参数,和数据处理无关,按取消。
3、安装完毕后,打开Poromaster for windows,点击主菜单options,再击tabulardata options,将print one out of every 10 data point,改为1。
(很重要,不然数据点很少)4、直接打开测量文件,显示的是原始测量(孔径/累计孔体积)曲线。
按鼠标右键,选择相应目录即可得到所需曲线或数据。
5、常用目录:(1) 绘孔径分布图Graphics Plots-----Pore Size Distribution ----- -dv/dlogR------ -dv/dlogR VS. poresize(2)导出数据Tables----Pore Size Distribation----by V olume----Intrusion,单击鼠标右键,save as,另存为文本文件。
数据处理参见“数据处理说明”文件。
可以自己绘制曲线。
(3)孔隙率数据Tables----Porosity----Porosity Summary,同上操作,另存为文本文件。
孔隙率应看total porosity数据,其它的Total interparticle porosity(粒子间孔隙率)和Total intraparticle porosity(粒子内孔隙率)没有实际意义。
(4)孔容、比表面数据Tables----Standard Report Summary,同上操作,另存为文本文件。
6、注意:文件中经常会出现乱码现象,这是由于Windows操作系统是中文所致,你可以通过修改windows中的“区域和语言选项”,将“区域选项”改成-英语美国就可以了。
压汞实验结果数据处理说明1、带prm后缀的文件是原始文件,需要用数据处理软件Porowin打开。
中国石油大学渗流物理实验报告实验日期: 成绩: 班级: 学号: 姓名: 教师: 张俨彬同组者:压汞毛管力曲线测定实验一.实验目的1.了解压汞仪的工作原理及仪器结构;2.掌握毛管力曲线的测定方法及实验数据处理方法。
二.实验原理岩石的孔隙结构极其复杂,可以看作一系列相互连通的毛细管网络。
汞不润湿岩石孔隙,在外加压力作用下,汞克服毛管力可进入岩石孔隙。
随压力增加,汞依次由大到小进入岩石孔隙,岩心中的汞饱和度不断增加。
注入压力与岩心中汞饱和度的关系曲线即为毛管力曲线,如图4-1所示。
三.实验流程图1 压汞仪流程图(岩心尺寸:φ25×20--25mm,系统最高压力50MPa)四.实验步骤1.装岩心、抽真空:将岩样放入岩心室并关紧岩心室,关岩心室阀,开抽空阀,关真空泵放空阀;开真空泵抽空15~20分钟;2.充汞:开岩心室阀,开补汞阀,调整汞杯高度,使汞杯液面至抽空阀的距离H 与当前大气压力下的汞柱高度(约760mm)相符;开隔离阀,重新调整汞杯高度,此时压差传感器输出值为28.00~35.00cm之间;关抽空阀,关真空泵,打开真空泵放空阀,关闭补汞阀;3.进汞、退汞实验:关高压计量泵进液阀,调整计量泵,使最小量程压力表为零;按设定压力逐级进泵,稳定后记录压力及汞体积测量管中汞柱高度,直至达到实验最高设定压力;按设定压力逐级退泵,稳定后记录压力及汞体积测量管中汞柱高度,直至达到实验最低设定压力;4.结束实验:开高压计量泵进液阀,关隔离阀;开补汞阀,开抽空阀;打开岩心室,取出废岩心,关紧岩心室,清理台面汞珠。
(注意:进泵时,压力由小到大,当压力达到压力表量程的2/3时,关闭相应的压力表;退泵时,压力降到高压表量程的1/3以下并在下一级压力表的量程范围内时,才能将下一级压力表打开。
)五.数据处理1.毛管力曲线测定原始记录表1 毛管力曲线测定原始记录表岩心直径: 2.500 cm 计量管截面积:0.3532 cm2岩心长度: 2.394 cm 岩心孔隙度:35.2 %以进汞压力为10MP 为例(1) 校正计量管中汞柱的高度:σ∆+='i i h h =24.34+0.99=24.33 (2) 含汞饱和度Hg S :%100)(%1000⨯'-=⨯=Pi PHg Hg V h h A V V S=%53.79%100394.25.225.0)33.24-64.33(3532.02=⨯⨯⨯⨯⨯π (3) 对应的毛管半径:)(07354.0107354.07354.0140cos 4802cos 2m P P P r cccμθσ===⨯⨯-==(4) 岩石的最大孔喉半径:)(71.81009.07354.07354.0max m P r Tμ===(5) 含汞饱和度为50%时相应的毛管压力Pc50=2.6MP(6) 退汞效率%54.42%100%53.79%70.45%53.79%100max min max =⨯-=⨯-=Hg Hg Hg S S S We2.计算岩心含汞饱和度,绘制毛管力曲线(举例说明计算过程,并将含汞饱和度填入原始记录表);(1)校正计量管中汞柱的高度:σ∆+='i i h h式中:i h '-任一压力下,校正后的计量管中汞柱的高度,cm ;i h -任一压力下,计量管中汞柱的高度,cm ;σ∆—任一压力下,主要包含汞本身的压缩值在内的系统误差,σ∆通过空载实验测得。
BET 测试法是BET 比表面积测试法的简称,该方法由于是依据著名的BET 理论为基础而得名。
BET 是三位科学家(Brunauer 、Emmett 和Teller )的首字母缩写,三位科学家从经典统计理论推导出的多分子层吸附公式基础上,即著名的BET 方程,成为了颗粒表面吸附科学的理论基础,并被广泛应用于颗粒表面吸附性能研究及相关检测仪器的数据处理中。
BET 测试理论是根据希朗诺尔、埃米特和泰勒三人提出的多分子层吸附模型,并推导出单层吸附量m V 与多层吸附量V 间的关系方程,即著名的BET 方程。
BET 方程是建立在多层吸附的理论基础之上,与物质实际吸附过程更接近,因此测试结果更准确。
通过实测3-5组被测样品在不同氮气分压下多层吸附量,以P/0P 为X 轴,P/V (0P -P )为Y 轴,由BET 方程做图进行线性拟合,得到直线的斜率和截距,从而求得m V 值计算出被测样品比表面积。
理论和实践表明,当P/0P 取点在0.05~0.35范围内时,BET 方程与实际吸附过程相吻合,图形线性也很好,因此实际测试过程中选点在此范围内。
BET 方程如下:P/V(0P -P)=[1/m V ×C ]﹢[﹙C-1/m V ×C ﹚×﹙P/0P ﹚]式中: P: 氮气分压0P : 液氮温度下,氮气的饱和蒸汽压V: 样品表面氮气的实际吸附量m V : 氮气单层饱和吸附量C : 与样品吸附能力相关的常数BET 实验操作程序与直接对比法相近似,不同的是BET 法需标定样品实际吸附氮气量的体积大小,理论计算方法也不同。
BET 法测定比表面积适用范围广,目前国际上普遍采用,测试结果准确性和可信度高,特别适合科研单位使用。
当被测样品吸附氮气能力较强时,可采用单点BET 方法,测试速度与直接对比法相同,测试结果与多点BET 法相比误差。
材料孔隙结构测试技术一压汞法理论研究2011年第1期Number1in2011材料孔隙结构测试技术一压汞法韩瑜,郭志强,王宝民(大连理工大学建设工程学部,辽宁大连116024)摘要:多孔材料的物理性能,特别是强度和耐久性,主要取决于材料的孔隙结构.因此,评估多孔材料的孔隙结构特征对于全面准确地了解材料的物理性能具有重要的意义.压汞法是研究材料孔隙结构的重要方法之一,而压汞仪是主要仪器.本文结合实践操作经验,对AutoPore1V9500压汞仪的操作方法,试验注意事项进行了总结,希望能为读者进行压汞试验提供借鉴和参考.关键词:孔结构;测试技术;压汞法Materialporestructuretestingtechnique一一MeuryPorosimetryHANYu,GUOZhiqiang,WANGBaomin (FacultyofInfrastructureEngineering,Dalianl/niversityofTechnology,Dalian116024,Chi na)Abstract:Thephysicalproperties,especiallythestrengthanddurabilityoftheporousmateria ls,mainlydependonthemalerialporestructure.Therefore,evaluatingtheporestructurecharacteristicsoftheporousmaterialsisex tremelysignificantforthecomprehensiveand accurateunderstandingofmaterialphysicalproperties.MercuryPorosimetryisoneofthemo stvitalmethodstotestmaterialporestructure, biningwiththepracticalexperience,th eauthorsummarizestheoperatingmethods andexperimentalprecautionsofAutoPoreIV9500MercuryPorosimeter.Hopetoprovidereade~withthereferencefortherelevantexperiments.Keywords:Porestructure;Testtechnology;MercuryPorosimeterU刖吾压汞仪是利用压汞法测定材料内部微观气孔结构的先进仪器设备,具有所需样品量小,测试结果准确和重复性好等优点.压汞仪可用于分析粉末或块状固体的孑L尺寸分布,孑L隙率,总孔体积,总孔面积,样品表观密度和密度等,已直接用于检测水泥,陶瓷,混凝土,耐火材料,玻璃等无机非金属材料以及金属和部分有机材料内部微观气孔的分布状态;压汞仪还可用于研究材料内部微观气孔结构对材料性能的影响规律等领域.目前大多数压汞仪采用美国MIC(Micromertics)公司生产的AutoPoreIVSeries压汞仪.可测试储油岩,耐热材料,树脂,颜料,碳黑,催化剂,织物,皮革,吸附剂,药物,薄膜,过滤器,陶瓷,纸,燃料电池和其他粉末或块状固体,获得开放孔和裂隙的孑L尺寸分布,总孔体积,总孔面积,样品堆/真密度,流体传输性等物理性质.最大压力3.3万磅(228MPa),孔径测量范围5.5llm~360gm,有一个高压和两个低压站,进汞和退汞的体积精度小于0.1.1压汞法的基本原理压汞法的实质是把粉末体或多孔体通孔中的气体作者简介:王宝民(1973~),大连理工大学建筑材料研究所所长,副教授,博士. Email:***************.en15?混凝土技术ConcreteTechnology抽出,然后在外压作用下使汞填充通孔.压入多孑L材料的汞量与孑L径大小及分布情况有关.压汞压力与孑L径大小有关.定性地说,孔越小所需压汞压力也越大,反之亦然.也就是通常所说的高压NsI,~L,低压测大孔.压汞法首先是由里特fH.L.Ritter)和德列克(L_C.Drake)提出来的.它基于水银对固体表面的不可润湿性,要在外部压力作用下才能挤入固体小孑L,因此外部压力就可作为孔大小的量度.压汞法分析多孔固体材料的孔径分布在原理上是十分简单的,分为低压分析,高压分析两步.一般的程序是:首先要干燥样品试块,使得孑L隙中不含水分,然后称重,装入试管中,抽真空,利用管中的真空状态产生的负压导入水银,使试管充满水银.水银虽然呈液体状态,但它却不会像普通液体那样渗透到水泥试块中,因而只有当施加足够的压力时水银才会被注入试块的孔隙中去.进行高压分析时压汞仪以一种步进式的方式对水银施加压力,每一次步进加压所注入的水银由设备自动监控.一系列的步进压力值和对应的水银注入量为孔隙分布计算提供了基本数据.然而这些数据本身对孔隙分布的情况提供不了任何信息,要获得孔隙分布的信息,首先要建立一个合适的物理模型,常用的模型是圆柱型孑L隙模型,如图1所示.图1圆柱形孑L隙模型它要求:(1)试块所有的孔隙都是圆柱型的;(2)所有孔隙均能延伸到试块的外表面,从而和外部的水银相接触.着名的washburn公式就是基于这种圆柱型孔隙模型的,对于符合圆柱模型的多孔体系,可以用该公式来估算柱型孔隙的直径,该公式建立了注入水银所需的压力和孔隙直径之间的关系为:d=-4rcosO/P式中:d是被压入水银的柱状孔隙的直径;r是水银的表面张力;0是水银和样品表面的接触角;P是施加的压力.事实上除了人为特别加工处理的材料外,很少有材料符合这样的模型.这就意味着,基于washburn公式,用压汞仪采集的数据计算得来的孔隙分布和实际情况相去甚远,事实表明测得的大多数孔比他们的实际情况要sbl~2个数量级,而且用压汞仪数据得到的孔径分布曲线也只是反映了水银被注入的物理过程,并不由试样中实际的孔隙情况来控制.2压汞仪的试验方法2.1操作方法及注意事项压汞仪试验操作分为低压和高压过程两个部分.低压和高压分析的主要步骤总结如下:第一步:选择膨胀计;选择合适的膨胀计需要考虑以下方面:样品构成和形状;样品孔隙率;样品代表性和样品量.膨胀计有两种:粉末膨胀计和固体膨胀计.粉末膨胀计适合于粉末样品或颗粒物体,当直径大于25mm,长为25mm时,应放到固体膨胀计的头部.通常膨胀计的头部体积应满足最小的代表样品量体积.预估的样品孔体积不应超过90%或低于25%的毛细管体积. 如果样品已被测量过,就可以简单选择最佳膨胀计.第二步:称量样品及膨胀计组件;在称量前需要对样品提前进行预处理,在烘箱内烘干样品,在150~C或更高温度下烘干1h.一旦样品被烘干,就不要将样品重新暴露于大气中.加载样品时将膨胀计毛细管朝下,用手握住膨胀计,将样品慢慢倒入膨胀计头部.要使用真空密封酯涂抹在膨胀计头部的研磨了的玻璃表面上,真空密封酯为阿皮松高级密封酯(ApiezonH),使用低劣的密封酯,会带来漏汞和真空度问题.必须要三次称量膨胀计组件重量,分别为膨胀计的重量,膨胀计和密封脂的重量,膨胀计,密封脂,样品的总重量,膨胀计重量必须以这种方法称量,这样可以区别出密封酯的重量.因为每一次密封时,密封酯用量会不同.第三步:进行低压分析;首先安装膨胀计在低压分析口;安装时将薄薄的用真空密封脂(硅密封脂,"大牙膏状")在膨胀计杆的外侧涂抹约5em长,不要涂在杆的顶部,以免堵塞毛细管.需要编辑一个样品分析文件.确认钢瓶气体压力不低于200Pa,气体减压表设置为16?理论研究2011年第1期Number1in20110.25MPa,否则会带来分析误差或终止分析测试.从低压分析口卸载膨胀计时确认低压站内压力返回到接近大气压力,确认汞的排空指示灯亮.若排空指示灯不亮, 汞可能会从低压空中流出.第四步:进行高压分析;低压分析结束后不要停留很长时间,才进行高压分析,以免汞和样品接触,产生氧化影响分析结果.在打开高压仓前观察其内部压力值,确认其压力为常压.检查仓内高压油面,保证油面刚好位于仓内的台阶处,少了要加油.每一个高压分析应对应同一个样品的低压分析结束的文件,压汞仪会检查文件的统一性,如果错误,将出现报警,你可以继续或者取消分析.除此之外,还应注意以下问题:(1)加样时,样品的体积要小于样品管体积的三分之一;否则,若采样量大,油面会上涌.(2)汞池内汞液面距上端的高度要保持在1~3ram以内;氮气瓶内的压力保持在0.25~0.3Pa之间.(3)在开始测试样品前,必须要校正膨胀计,否则在测量结果中没有孔隙率.(4)在分析站状态栏目显示最大进汞体积百分比,当显示量sTEM小于25%或大于90%时,需要改变分析变量,第一,稍大的样品量可以提供更好的分辨率;第二, 改变毛细管体积.2.2试验结果分析利用压汞仪可以测量多孔材料的多种性质.其中包括总孔比表面积,中孑L直径(体积,面积),平均孔直径,松装密度,骨架密度,孔隙率等.以及这些物理量与压力以及孔直径的关系.由试验所测得的孔分布与孔Di竹erentialIntrusionVSD\IlIntrUS●on/一\}/0010O,00010,01.0101O00P0re00sizeO图2典型孑L分布图(微分式)径的关系如图2,图3所示. CumulativePoreAreaVSntrusionforPoresize;f』flativePoreArea|ali7/00P0re00size00Diameterfnm1图3典型孔分布图(积分式)除了在试验或者研究中常用的孔分布图外,压汞试验还可以测定多孔介质表面的分维.Friesen和Mikula 提出利用压力(P)和压人汞的体积(V)之间的关系:dV/dP~P确定分维数D.用这种方法,可以测定一系列煤微粒的分维.已增强的数据处理软件可进行弯曲度,渗透性,压缩性,孔喉比,不规则尺寸分布,Mayer—Stowe颗粒尺寸分布等数据处理.3讨论3.1存在问题及改进方法3.1.1测量准确性有待提高目前,国内不同单位的压汞仪对同种制品孑L径测试结果多不一致,有时甚至差别很大.这种差别除仪器的精度和计算时选取的常数值有差别之外,被测多孔材料本身的不均匀性也是导致这种差别的重要原因.如何考验一台压汞仪的测试数据准确性还没有统一的方法, 这应是多孔材料测试研究者要解决的一个问题.从统计学观点看,一台压汞仪通过大量测试有良好的重复性, 再与其它仪器测试结果进行对比,若能获得满意的结果,这台仪器的测试数据即是可用的.3.1.2基本假设存在缺陷对压汞法来说,一个基本的假设就是孔为圆柱形,且表面比较光滑,这样各处的接触角及表面张力可近似视为常数,这对于测定孔分布不会引起大的偏差.然而测定介质的表面分维,也就是要测定介质表面不光滑的程度,而且高压会引起孑L的塌陷,这些是否会对测量结17?混凝土技术ConcreteTechnology果产生影响.3.1.3存在水银封闭间隙现象试验分析时,样品被装入膨胀计中,当水银进入膨胀计并包裹整个样品时,由于样品粗糙和水银表面张力大,因此水银并不能完全填满样品表面的空隙.装样品的膨胀计壁与样品的间隙很小,在不大高的压力下,水银有时不能完全充满这些间隙,随着外加压力的升高, 水银才逐渐挤满这些间隙.这一现象被称作水银封闭间隙,并论述水银封闭间隙是指残留在样品粗糙表面与外包非润湿性水银之间的空隙体积,当压力增高时水银就完全地充填了这一空间,这一现象在试验中必须和同时发生的水银进入孔隙空间的现象区别开来.3.2提高测量准确性的方法washburn公式中的2个基本假定都和实际的情形相去甚远,尤其是第2个假设.另外,材料中不可避免的混有气泡,高压状态下额外空间的产生,这在分析结果中却无法体现出来.根据上述种种原因,在实际试验经验积累的基础上,本文对提高压汞仪测量的准确性提出了几点建议.(1)样品的制备,由于所要研究的实际对象在几何尺寸,数量上和试验需要的样品根本无法比拟,故样品的选取要具有代表性,为保证结果的稳定性,在试验中对同一对象至少应取3份样品分别进行试验分析.试验前应将试块在试验机上用高频荷载(如:22MPa/min)将其粉碎,使用高频荷载可以减少在粉碎过程中试块内裂缝的产生,保持试验样品和研究对象的相似性,粉碎后样品应在烤箱内保持温度105~110~C,烘烤24h或更长,以使样品完全失水维持恒重,然后在干燥器中冷却保存直到试验开始.(2)保证增,减压力的连续性和使用高精度计量方法计量微量汞体积是提高压汞仪测试水平的根本途径.(3)依据样品的疏松程度,设置合适的充汞压力,在不影响测试精度的前提下,尽量采用稍高一些的充汞压力,以尽量减少封闭间隙体积的存在.(4)粗糙程度是产生水银封闭间隙的主要原因,碳酸盐岩样品较之碎屑样品更光滑,其封闭间隙体积就要小些.此外,从试验还得知同样粗糙程度的样品;体积越大其封闭间隙体积就越大,可见样品表面粗糙程度及样品大小均与水银封闭间隙成正相关.过大过长的样品均会产生明显的触点效应,不规则的样品亦会产生额外的封闭间隙.样品要处理得尽量光滑,无伤痕,无明显缝洞.(5)密封条件对操作的影响很大,因此在操作的时候一定要保证整个操作系统的密封完全.四,结论材料的孑L隙结构特征是极其复杂的,为了研究和描述它,通常有效的试验方法是在不同的压力下将汞压入样品,测定并记录压力与对应的进汞量的变化关系,从而测出样品的孔隙结构特征,习惯称之为压汞法,完成测定任务的仪器便是压汞仪.目前国内外的压汞仪类型很多,结构各异,但其主要差别有两点:一是工作压力, 包括增减压力的方法,所用传递介质,最高工作压力,压力计量方法以及工作的连续性等;二是汞体积变化的测量方法.而保证增,减压力的连续性和使用高精度计量方法计量微量汞体积是提高压汞仪测试水平的根本途径.参考文献:[1]周花,戴李宗,董炎明.陈立富密封条件对压汞仪分析测试的影响[J].实验技术与管理,2009,6(26):42.45.[2]唐伟家,齐志强.用压汞仪测聚丙烯睛原丝微孔结构[J】.合成纤维工业,1984,1:29.31.[3]李跃,魏路线.改善压汞仪测量准确性的研究[J].国外建材科技,2004,2(25):75.77.[4]李绍芬,张宝泉,王富民评介利用压汞仪等测定介质表面分维的方法[J].基础研究论文评介,1995,1:97.99.[5]李泽田.中压压汞仪一种简单实用的多孔材料测孔设备[J].新金属材料,1979,3:29—33.[6]6张志勇,廖光伦,唐桂宾,唐勇.压汞仪数据处理中消除水银封闭间隙体积的量化方法[J].矿物岩石, 1997,3(17):49—52.【7]邵东亮,刘有芳,史永和.新型压汞仪的研制[J].石油仪器,1999,13(3):11-13.18?。
压汞曲线参 数 说 明1. 汞饱和度中值压力P 50: 是指在S Hg =50%时相应的注入曲线的毛细管压力。
这个数值是反应当孔隙中存在油、水两相时,用以衡量油的产能大小。
一般说来,排驱压力P d 越小,P 50也越低。
P 50越大,则表明岩石致密程度越高(偏向于细歪度),虽然仍能出油,但生产能力很小;P 50越小,则表明岩石(对油的)渗滤性能越好,具有高的生产能力。
2. 中值孔隙半径R 50: 饱和度中值压力P 50对应的孔隙半径。
该数值反应了总的孔隙喉道大小受到岩石的物理、化学成因及随后的任何变化的影响。
5050735.0P R = 3. 排驱压力P d 和最大孔隙半径R max : 是指孔隙系统中最大的连通孔隙的毛细管压力。
即沿毛细管压力曲线的平坦部分做切线与纵轴相交就是P d 值,与P d 值相对应的就是最大连通孔隙喉道半径R max 。
排区压力是划分岩石储集性能好坏的主要标志之一。
因为它既反映了岩石的孔隙喉道的集中程度,同时又反映了这种集中的孔隙喉道的大小。
(本油田采用:若S Hgi -S Hgi -1≥1%,则拐点i-1即为该岩样的排驱压力P d ,对应孔隙半径为最大孔隙半径R max )。
dP R 735.0max = 4. 平均孔隙半径R : Hgin i Hgi i S S R R ∑==125. 孔隙分布峰位Rv 和孔隙分布峰值Rm:即孔隙大小分布曲线上最高峰相对应的孔隙半径为孔隙分布峰位Rv ,其孔隙大小分布最高峰之峰值为孔隙分布峰值Rm 。
6. 渗透率分布峰位Rf 和渗透率分布峰值Fm:即渗透率分布曲线上最高峰相对应的孔隙半径为渗透率分布峰位Rf ,其渗透率贡献最高值为渗透率分布峰值Fm 。
7. 孔隙喉道半径的ψ值: 2ln 500ln 2log i i R D =-=ψi D ----第i 点的孔隙喉道直径(μm);i R ----第i 点的孔隙喉道半径 (μm)。
压汞参数对比(勘探院与大庆油田研究院结果对比)2010年7月1 压汞法原理及孔隙结构参数定义与计算压汞法以毛管束模型为基础,假设多孔介质是由直径大小不相等的毛管束组成。
汞不润湿岩石表面,是非润湿相,相对来说,岩石孔隙中的空气或汞蒸气就是润湿相。
往岩石孔隙中压注汞就是用非润湿相驱替润湿相。
当注入压力高于孔隙喉道对应的毛管压力时,汞即进入孔隙之中,此时注入压力就相当于毛细管压力,所对应的毛细管半径为孔隙喉道半径,进入孔隙中的汞体积即该喉道所连通的孔隙体积。
不断改变注入压力,就可以得到孔隙分布曲线和毛管压力曲线,其计算公式为2cos c P rσθ=(1) 式中,P c ——毛细管压力,MPa ;σ——汞与空气的界面张力,σ=480dyn/cm ; θ——汞与岩石的润湿角,θ=140º,cos θ=0.765; r ——孔隙半径,μm 。
可得孔隙半径r 所对应的毛管压力为0.735cr P =(2)实验过程严格按照石油天然气行业标准SY/T 5346-2005《岩石毛管压力曲线的测定》执行,常见毛管压力曲线特征见图1。
C a p i l l a r y P r e s s u r e , P P o r e -T h r o a t R a d i u s ,rmax S minRP 50100MercuryWetting Phase Saturation (%)c图1 毛管压力曲线特征图定量描述孔喉大小分布定量指标主要有以下参数:排驱压力、中值压力、最大连通孔隙半径、孔隙半径中值、平均孔隙半径、半径均值、最大汞饱和度、最终剩余汞饱和度、仪器最大退出效率、分选系数、结构系数、孔隙度峰位、渗透率峰位、渗透率峰值、孔隙度峰值、歪度、相对分选系数、特征结构参数、均质系数等,其定义及计算公式如下:1. P d 排驱压力(MPa):指非润湿相开始进入岩样最大喉道的压力,也就是非润湿相刚开始进入岩样的压力。
第18卷第2期低渗特低渗砂岩油藏与常规油藏不同,其孔隙结构为小孔细喉或细孔微喉。
常规压汞和恒速压汞是研究孔隙结构的2种主要研究手段。
笔者对比研究了恒速压汞和常规压汞在研究孔隙结构方面的差异,揭示了常规压汞与恒速压汞的本质区别,对孔隙结构数据的认识、辨别具有一定的指导意义。
1模型的区别压汞的基本原理为:汞对于大多数固体界面为非润湿相,当汞进入毛细管时需要克服毛细管压力,其中毛细管压力p c 与孔隙半径R 、界面张力σ、静态接触角θ满足如下关系[1]:p c =2σcos θ(1)根据压汞实验得到的进汞量和相应的压力,作出毛细管压力曲线,然后根据式(1)计算出孔隙或孔隙和喉道半径分布曲线。
恒速压汞与常规压汞遵循的原理相同。
常规压汞法以毛细管束模型为基础,假设多孔介质由直径大小不同的毛细管束组成(见图1a );恒速压汞假设多孔介质由直径大小不同的喉道和孔隙构成(见图1b )。
恒速压汞模型假设的孔隙结构特征更加符合低渗、特低渗恒速压汞与常规压汞的异同何顺利1焦春艳1王建国1罗富平2邹林3(1.中国石油大学(北京)石油工程教育部重点实验室,北京102249;2.中国中化集团石油勘探开发有限公司,北京100031;3.中国石油西南油气田分公司重庆气矿,重庆400021)基金项目:国家科技重大专项“油田开采后期提高采收率新技术”(2009ZX05009-004)摘要文中深刻剖析恒速压汞与常规压汞的区别,便于对微观孔隙结构进行分析时选择较合适的实验手段,更加准确地对微观孔隙结构进行描述与表征。
从理论模型、实验过程、测量结果的可靠性等方面,分析对比常规压汞与恒速压汞的不同,揭示了它们的本质区别。
研究发现:恒速压汞由于其实验过程是准静态过程,可以将孔隙与喉道区别开来,测量值更接近静态毛细管压力,得到的喉道半径结果比较接近真实情况。
因此,恒速压汞是研究孔隙结构的比较好的方法。
关键词恒速压汞;常规压汞;毛细管压力动态效应;静态毛细管压力中图分类号:TE 311文献标志码:A文章编号:1005-8907(2011)02-235-03Discussion on the differences between constant-speed mercury injection andconventional mercury injection techniquesHe Shunli 1Jiao Chunyan 1Wang Jianguo 1Luo Fuping 2Zou Lin 3(1.MOE Key Laboratory of Petroleum Engineering,China University of Petroleum,Beijing 102249,China;2.Oil and GasExploration and Development Co.Ltd.of Sinochem Group,Beijing 100031,China;3.Chongqing Natural Gas Division,SouthwestOil &Gas Field Company,PetrolChina,Chongqing 400021,China )Abstract:In this paper,the difference between constant-speed mercury injection and conventional mercury injection techniques was studied in order to choose the correct method to describe the microscopic pore structure accurately.The differences between the conventional mercury injection and constant -speed mercury injection were discussed from the reliability of theoretical model,experimental process and measurements in this paper.So the essential differences between them were revealed.Study result shows that the pore and throat can be distinguished because the experimental process of constant-speed mercury injection is a quasi-static process.The measured values are closer to static capillary pressure and the obtained throat radius is closer to the real situation.Therefore,the constant-speed mercury injection is a good method to study the pore structure.Key words:constant-speed mercury injection;conventional mercury injection;dynamic effect of capillary pressure;static capillary pressure引用格式:何顺利,焦春艳,王建国,等.恒速压汞与常规压汞的异同[J ].断块油气田,2011,18(2):235-237.He Shunli ,Jiao Chunyan ,Wang Jianguo ,et al.Discussion on the differences between constant-speed mercury injection and conventional mercury injection techniques [J ].Fault-Block Oil &Gas Field ,2011,18(2):235-237.断块油气田FAULT-BLOCK OIL &GAS FIELD2011年3月2352011年3月断块油气田油藏小孔细喉或细孔微喉的结构特征,比常规压汞模型更接近真实的孔隙结构。
附录:参数意义、公式
1. P d 排驱压力(MPa): 指非润湿相开始进入岩样最大喉道的压力,也就是非润湿相刚开始进入岩样的压力。
2. r max 最大孔喉半径(μm): 压力为排驱压力时非润湿相进入岩石的孔喉半径为最大孔喉半径,与P d 一起是表示岩石渗透
性好坏的重要参数。
3. P 50 饱和度中值压力(MPa): 非润湿相饱和度50%时相应的毛管压力为P 50,它越小反映岩石渗滤性越好,产能越高。
4. r 50 孔喉半径中值(μm): 非润湿相饱和度为50%时相应的孔喉半径为r 50,它可近似地代表样品的平均孔喉半径。
5. r 孔喉半径平均值(μm): 它是表示岩石平均孔喉半径大小的参数。
采用半径对汞饱和度的权衡求出。
6. α 均质系数: 均质系数表征储油岩石孔隙介质中每一个孔喉(ri)与最大孔喉半径的偏离程度,α在0~1
之间变化,α愈大,孔喉分布愈均匀。
7. F 岩性系数: 它是岩样实测渗透率与计算渗透率之比,反映喉道的迂曲情况。
8. Smax 最大汞饱和度(%): 实验最高压力时的累计汞饱和度%。
9. We 退汞效率(%): 在限定的压力范围内,从最大注入压力降到起始压力时,从岩样内退出的水银体积与降压前
注入的水银总体积的百分数。
它反映了非湿相毛细管效应采收率。
10. φp 结构系数: 它表征了真实岩石孔隙特征与假想的长度相等、粗细不同的圆柱形平行毛管束模型之间的差
别,它的数值是影响这种差别的各种综合因素的度量。
11. 1/Dr φp 特征结构系数: 它是相对分选系数Dr 与结构系数φp 乘积的倒数,既反映孔喉分选程度,又反映孔喉连通程
度,此值愈小,岩样孔隙结构愈差。
12. S KP 偏态(又称歪度): 表示孔喉大小分布对称性的参数,当S KP =0时为对称分布;S KP >0时为正偏(粗歪度);S KP <0
时为负偏(细歪度)。
13. K P 峰态: 表示孔喉分布频率曲线陡峭程度的参数,当S KP =1时为正态分布曲线;S KP >1时为高尖峰曲线;
S KP <1时为缓峰或双峰曲线。
14. D r 变异系数: 又称相对分选系数,能更好反映孔喉大小分布均匀程度的参数。
数值越小,孔喉分布越均匀。
15. K j 渗透率贡献值(%): 以某孔喉半径所能提供的渗透率百分数。
16. J(sw)函数: 又称为毛管力函数,是基于因次分析推论出的一个半经验关系的无因次函数,它是毛管力曲
线的一个很好的综合处理方法,并可用来鉴别岩石的物性特征。
(1) d P r
7354.0max
=
(2)
50
507354.0P r = (3) ∑∑-----+=
)
(2)
)((111
i i i i i i s s s s r r
r (4) %100max
min max ⨯-=S S S We (5)
⎰
∑∑⨯⨯=
∆∆⨯=
==max
)(max
max 1
1
max
1S s n
i i
n
i i
i
dS
r S r S S r
r α(6)
⎰
=
m ax
2)(0000111333.0S S ds
r K
F φ
(7)
5
.0)(⎪⎪⎭⎫
⎝⎛=φσk p s J c w (8)
∑∑∆∆⨯-⨯=
-i
i
i p kp S
S r S S 33
)( (9)
∑∑∆∆⨯-⨯=
-i
i
i p p S
S r r S K 44
)(
(10)
2
)
(8r K
p φ
φ=
(11)
⎰
⎰+=
m ax
1
2
)
(2)(S S S S j dS
r
dS r K j j (12)
∑∑∆∆⨯-=
=i
i
i
p
r S S
r r r
r S D 2
)(1
式中: r —平均孔喉半径μm ; S i —某点的汞饱和度%; r i —某点的孔喉半径μm
а—均质系数(无因次量); ΔS i —对应于r i 的某一区间的汞饱和度%; r max —最大孔喉半径,μm
F —岩性系数(无因次量); K —空气渗透率μm 2; φ —孔隙度%;
r (s)—孔喉半径分布函数中某一孔喉半径μm ; ds —对应于的某一区间汞饱和度%;
Smax —实验最高压力时的累计汞饱和度%; Smin —退汞到起始压力时残留在孔隙中汞饱和度%; We —退汞效率%; φp —结构系数,无因次量; S KP —偏态,无因次量; S p —分选系数; K j —渗透率贡献值%; S —汞饱和度%;
P c —毛管压力MPc ; σ—界面张力dyn/cm ; D r —变异系数(无因次量); K P —峰态(无因次量); 1/Dr φp —特征结构系数(无因次量);。