年高考数学(理)总复习:圆锥曲线中的定点与定值、范围与存在性问题(原卷版)
- 格式:pdf
- 大小:63.57 KB
- 文档页数:9
圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法: (1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。
例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e −+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l .(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值..思路分析 (1)根据已知条件,求出a ,b 的值,得到椭圆C 2的标准方程.(2)①对直线OP 斜率分不存在和存在两种情况讨论,当OP 斜率存在时,设直线OP 的方程为y =kx ,并与椭圆C 1的方程联立,解得点A 横坐标,同理求得点P 横坐标,再通过弦长公式,求出PAPB 的表达式,化简整理得到定值.②设P(x 0,y 0),写出直线l 1的方程,并与椭圆C 1联立,得到关于x 的一元二次方程,根据直线l 1与椭圆C 1有且只有一个公共点,得到方程只有一解,即Δ=0,整理得(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,同理得到(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,从而说明k 1,k 2是关于k 的一元二次方程的两个根,运用根与系数的关系,证得定值.二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求△FBM 的面积;(2) ①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .圆锥曲线中的定点、定值问题解析一、题型选讲例1【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +−=−,可得121227(3)(3)y y x x =−++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219x y +=得222(9)290.m y mny n +++−=所以12229mn y y m +=−+,212299n y y m −=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +−−++++=解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).例2、【解析】(1)当直线l 的倾斜角为45°,则l 的斜率为1,,02p F ⎛⎫⎪⎝⎭,l ∴的方程为2p y x =−.由2,22,p y x y px ⎧=−⎪⎨⎪=⎩得22304p x px −+=.设()11,M x y ,()22,N x y ,则123x x p +=, ∴12416x x p M p N ++===,4p =, ∴抛物线C 的方程为28y x =.(2)假设满足条件的点P 存在,设(),0P a ,由(1)知()2,0F , ①当直线l 不与x 轴垂直时,设l 的方程为()2y k x =−(0k ≠),由()22,8,y k x y x ⎧=−⎨=⎩得()22224840k x k x k −++=,()22222484464640k k k k ∆=+−⋅⋅=+>,212248k x x k++=,124x x =. ∵直线PM ,PN 关于x 轴对称, ∴0PM PN k k +=,()112PM k x k x a −=−,()222PNk x k x a−=−. ∴()()()()()()122112128(2)222240a k x x a k x x a k x x a x x a k+−−+−−=−+++=−=⎡⎤⎣⎦, ∴2a =−时,此时()2,0P −.②当直线l 与x 轴垂直时,由抛物线的对称性,易知PM ,PN 关于x 轴对称,此时只需P 与焦点F 不重合即可. 综上,存在唯一的点()2,0P −,使直线PM ,PN 关于x 轴对称. 例3、【解析】(1)由抛物线2:2C x py =−经过点(2,1)−,得2p =.所以抛物线C 的方程为24x y =−,其准线方程为1y =.(2)抛物线C 的焦点为(0,1)F −. 设直线l 的方程为1(0)y kx k =−≠.由21,4y kx x y=−⎧⎨=−⎩得2440x kx +−=.设()()1122,,,M x y N x y ,则124x x =−. 直线OM 的方程为11y y x x =. 令1y =−,得点A 的横坐标11A x x y =−. 同理得点B 的横坐标22B x x y =−. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=−−−=−−− ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫−− ⎪⎪⎝⎭⎝⎭21216(1)n x x =++ 24(1)n =−++.令0DA DB ⋅=,即24(1)0n −++=,则1n =或3n =−. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)−.例4、【解析】(1)由题设得22411a b +=,22212a b a −=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++−=. 于是2121222426,1212km m x x x x k k −+=−=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y −−+−−=,可得221212(1)(2)()(1)40k x x km k x x m ++−−++−+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k−+−−−+−+=++. 整理得(231)(21)0k m k m +++−=.因为(2,1)A 不在直线MN 上,所以210k m +−≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =−−≠.所以直线MN 过点21(,)33P −.若直线MN 与x 轴垂直,可得11(,)N x y −.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y −−+−−−=.又2211163x y +=,可得2113840x x −+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P −.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP =. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.例5、【解析】(1)由2220e −+=解得2e =或e =,∴a =,又222a b c =+,a ∴=,又()020AC k a −−==−a ∴=1b ∴=,∴椭圆E 的方程为2212x y +=;(2)由题知,直线l 的斜率存在,设直线l 的方程为2y kx =−,设()()1122,,,P x y Q x y ,由22212y kx x y =−⎧⎪⎨+=⎪⎩得()2221860k x kx +−+=, ∴12122286,2121k x x x x k k +==++, ()()22=84621k k −−⨯⨯+=216240k −> 232k ∴>, ∴()121224421y y k x x k −+=+−=+,()()121222y y kx kx =−−()21212=24k x x k x x −++=224221k k −+, 直线BP 的方程为1111y y x x −=+,令0y =解得111x x y =−,则11,01x M y ⎛⎫⎪−⎝⎭,同理可得22,01x N y ⎛⎫⎪−⎝⎭, 12123411BOMBCNx x SSy y ∴=−−=()()()12121212123341141x x x x y y y y y y =−−−++=22226321444212121k k k k +−++++=12, BOM BON S S∆∴为定值12. 例6、 (1) 规范解答 设椭圆C 2的焦距为2c ,由题意,a =22,c a =32,a 2=b 2+c 2,解得b =2,因此椭圆C 2的标准方程为x 28+y 22=1.(3分)(2)①1°当直线OP 斜率不存在时,PA =2-1,PB =2+1,则PAPB =2-12+1=3-2 2.(4分) 2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =84k 2+1.(6分)所以x 2P =2x 2A ,由题意,x P 与x A 同号,所以x P =2x A ,从而PAPB=|x P-x A||x P-x B|=|x P-x A||x P+x A|=2-12+1=3-2 2.所以PAPB=3-22为定值.(8分)②设P(x0,y0),所以直线l1的方程为y-y0=k1(x-x0),即y=k1x-k1x0+y0,记t=-k1x0+y0,则l1的方程为y=k1x+t,代入椭圆C1的方程,消去y,得(4k21+1)x2+8k1tx+4t2-4=0,因为直线l1与椭圆C1有且只有一个公共点,所以Δ=(8k1t)2-4(4k21+1)(4t2-4)=0,即4k21-t2+1=0,将t=-k1x0+y0代入上式,整理得,(x20-4)k21-2x0y0k1+y20-1=0,(12分)同理可得,(x20-4)k22-2x0y0k2+y20-1=0,所以k1,k2为关于k的方程(x20-4)k2-2x0y0k+y20-1=0的两根,从而k1·k2=y20-1x20-4.(14又点在P(x0,y0)椭圆C2:x28+y22=1上,所以y20=2-14x20,所以k1·k2=2-14x20-1x20-4=-14为定值.(16分)二、达标训练1、【解析】(I) 椭圆22:14xC y+=,故)F,1 ||22FP x ====−.(II)设()33,A x y,()44,B x y,则将y kx m=+代入2214xy+=得到:()222418440k x kmx m+++−=,故2121222844,4141km mx x x xk k−−+==++,21241x xk−=+,OA OB=,故()3434343421k x x my yx x x x k+++==−++,得到34221kmx xk−+=+,PA PF=13122x x−=−42222x x−=−,由已知得:3124x x x x<<<或3124x x x x>>>,)()123421x x x x x+−+=−,2228241141km kmk k k−+=+++,化简得到221m k=+.故原点O到直线l的距离为1d==为定值.2、【解析】(1)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由241y xy kx⎧=⎨=+⎩得22(24)10k x k x+−+=.依题意22(24)410k k∆=−−⨯⨯>,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2).由(1)知12224kx xk−+=−,1221x xk=.直线P A的方程为1122(1)1yy xx−−=−−.令x=0,得点M的纵坐标为1111212211My kxyx x−+−+=+=+−−.同理得点N的纵坐标为22121Nkxyx−+=+−.由=QM QOλ,=QN QOμ得=1Myλ−,1Nyμ=−.所以2212121212122224112()111111=2111(1)(1)11M Nkx x x x x x k ky y k x k x k x x kk λμ−+−−−++=+=+=⋅=⋅−−−−−−.所以11λμ+为定值.3、规范解答(1)设椭圆的半焦距为c,由已知得,ca=32,则a2c-c=33,c2=a2-b2,(3分)解得a=2,b=1,c=3,(5分)所以椭圆E的标准方程是x24+y2=1.(6分)(2) 解法1 由题意,设直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分)设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,因为PA =1+k 21|x 1-t|,PB =1+k 21|x 2-t|,(10分)所以PA·PB =(1+k 21)|x 1-t||x 2-t|=(1+k 21)|t 2-(x 1+x 2)t +x 1x 2| =(1+k 21)|t 2-8k 21t 21+4k 21+4k 21t 2-41+4k 21|=(1+k 21)|t 2-4|1+4k 21,(12分) 同理,PC ·PD =(1+k 22)|t 2-4|1+4k 22,(14分) 所以PA·PB PC·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)解法2 由题意,设直线l 1的方程为y =k 1(x -t),直线l 2的方程为y =k 2(x -t),设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分) 则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,同理则x 3+x 4=8k 22t1+4k 22,x 3x 4=4k 22t 2-41+4k 22,PA →·PB →=(x 1-t ,y 1)(x 2-t ,y 2)=(x 1-t)(x 2-t)+k 21(x 1-t)(x 2-t)=(x 1-t)(x 2-t)(1+k 21), PC →·PD →=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t)(x 4-t)+k 22(x 3-t)(x 4-t)=(x 3-t)(x 4-t)(1+k 22).(12分) 因为P ,A ,B 三点共线,所以PA →·PB →=PA·PB ,同理,PC →·PD →=PC ·PD.PA ·PB PC ·PD =PA →·PB →PC →·PD →=(x 1-t )(x 2-t )(1+k 21)(x 3-t )(x 4-t )(1+k 22)=(1+k 21)(1+k 22)·(x 1-t )(x 2-t )(x 3-t )(x 4-t )=(1+k 21)(1+k 22)·x 1x 2-t (x 1+x 2)+t 2x 3x 4-t (x 3+x 4)+t 2.代入x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,x 3+x 4=8k 22t 1+4k 22,x 3x 4=4k 22t 2-41+4k 22,化简得PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21),(14分)因为是定值,所以PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)4规范解答 (1) 由题意B(0,1),C(0,-1),焦点F(3,0),当直线PM 过椭圆的右焦点F 时,则直线PM 的方程为x 3+y -1=1,即y =33x -1,联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍),即M ⎝⎛⎭⎫837,17.(2分)连结BF ,则直线BF :x 3+y1=1,即x +3y -3=0,而BF =a =2,点M 到直线BF 的距离为d =⎪⎪⎪⎪837+3×17-312+(3)2=2372=37.故S △MBF =12·BF ·d =12×2×37=37.(4分)(2) 解法1(点P 为主动点) ①设P(m ,-2),且m≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m , 则直线PM 的方程为y =-1m x -1,联立⎩⎨⎧y =-1m x -1,x 24+y 2=1化简得⎝⎛⎭⎫1+4m 2x 2+8m x =0,解得M ⎝ ⎛⎭⎪⎫-8m m 2+4,4-m 2m 2+4,(6分)所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3m ,(8分)所以k 1·k 2=-3m ·14m =-34为定值.(10分)5、规范解答 (1) 设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2,所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-14x 20x 20-4=-14.(4分)(2) 设直线AP 方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧y =k 1x -2,x 2+y 2=4得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =2k 21-11+k 21,y P =k 1(x P -2)=-4k 11+k 21, 联立⎩⎪⎨⎪⎧y =k 1x -2,x24+y 2=1得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0,解得x B =24k 21-11+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,(8分) 所以k BC =y B x B =-2k 14k 21-1,k PQ =y Px P +65=-4k 11+k 212k 21-11+k 21+65=-5k 14k 21-1, 所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC .(10分) (3) 设直线AC 方程为y =k 2(x -2),当直线PQ 与x 轴垂直时,Q ⎝⎛⎭⎫-65,-85,则P -65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 方程为y =-5k 14k 21-1⎝⎛⎭⎫x +65, 联立⎩⎪⎨⎪⎧y =-5k 14k 21-1⎝⎛⎭⎫x +65,x 2+y 2=4解得x Q =-216k 21-116k 21+1,y Q =16k 116k 21+1, 因为k 2=-y B -x B -2=4k 11+4k 2121-4k 211+4k 21-2=-14k 1, 所以k AQ =16k 116k 21+1-216k 21-116k 21+1-2=-14k 1=k 2,故直线AC 必过点Q .(16分) (不考虑直线与x 轴垂直的情形扣1分)。
课时过关检测(五十四)圆锥曲线中的最值、范围问题【原卷版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.2.已知抛物线C :y 2=4x ,点F 是C 的焦点,O 为坐标原点,过点F 的直线l 与C 相交于A ,B 两点.(1)求向量OA ―→与OB ―→的数量积;(2)设FB ―→=λAF ―→,若λ∈[9,16],求l 在y 轴上的截距的取值范围.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,E 的左顶点为A ,上顶点为B ,点P 在椭圆上,且△PF 1F 2的周长为4+23.(1)求椭圆E 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M ,N ,且线段MN 的垂直平分线过定点G (1,0),求k 的取值范围.4.已知椭圆E :x 2a 2+y 2b 21(a >b >0)的左、右焦点分别为F 1,F 2,椭圆E 的离心率为32,且通径长为1.(1)求E 的方程;(2)直线l 与E 交于M ,N 两点(M ,N 在x 轴的同侧),当F 1M ∥F 2N 时,求四边形F 1F 2NM 面积的最大值.课时过关检测(五十四)圆锥曲线中的最值、范围问题【解析版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.解:(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E的标准方程为x2a2+y2b2=1(a>b>0),焦距为2c,则b=c,∴a2=b2+c2=2b2,∴椭圆E的标准方程为x22b2+y2b2=1.又椭圆E,∴12b2+12b2=1,解得b2=1.∴椭圆E的标准方程为x22+y2=1.(2)由于点(-2,0)在椭圆E外,所以直线l的斜率存在.设直线l的斜率为k,则直线l:y=k(x+2),设M(x1,y1),N(x2,y2).k(x+2),y2=1,消去y得,(1+2k2)x2+8k2x+8k2-2=0.由Δ>0得0≤k2<12,从而x1+x2=-8k21+2k2,x1x2=8k2-21+2k2,∴|MN|=1+k2|x1-x2|=21+k22-4k2(1+2k2)2.∵点F2(1,0)到直线l的距离d=3|k|1+k2,∴△F2MN的面积为S=12|MN|·d=3k2(2-4k2)(1+2k2)2.令1+2k2=t,则t∈[1,2),∴S=3(t-1)(2-t)t2=3-t2+3t-2t2=3-1+3t-2t2=3当1t=34即t[1,S有最大值,S max=324,此时k=±66.∴当直线l的斜率为±66时,可使△F2MN的面积最大,其最大值324.2.已知抛物线C:y2=4x,点F是C的焦点,O为坐标原点,过点F的直线l与C相交于A,B两点.(1)求向量OA―→与OB―→的数量积;(2)设FB―→=λAF―→,若λ∈[9,16],求l在y轴上的截距的取值范围.解:(1)设A,B两点的坐标分别为(x1,y1),(x2,y2).由题意知直线l的斜率不可能为0,F(1,0),设直线l的方程为x=my+1.=my+1,2=4x,得y2-4my-4=0,Δ=16m2+16>0,1+y2=4m,1y2=-4.∴OA―→·OB―→=x1x2+y1y2=y21y2216+y1y2=1616-4=-3.∴向量OA―→与OB―→的数量积为-3.(2)由(1)1+y2=4m,1y2=-4.∵FB―→=λAF―→,∴y2=-λy1.将y2=-λy11+y2=4m,1y2=-4,1-λ)y1=4m,λy21=-4,-λ)2y21=16m2,λy21=-4,∴(1-λ)2-λ=-4m2,∴4m2=(1-λ)2λ=λ+1λ-2.令f(λ)=λ+1λ-2,易知f(λ)在[9,16]上单调递增,∴4m2∈649,22516,∴m2∈169,22564,∴m∈-158,-43∪43,158.∴l在y轴上的截距-1m的取值范围为-34,-815∪815,34.3.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,E的左顶点为A,上顶点为B,点P在椭圆上,且△PF1F2的周长为4+23.(1)求椭圆E的方程;(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,且线段MN的垂直平分线过定点G(1,0),求k的取值范围.解:(1)a+2c=4+23,=ca=32,=2,=3,则b2=a2-c2=1,∴椭圆E的方程为x24+y2=1.(2)设M(x1,y1),N(x2,y2),弦MN的中点D(x0,y0),kx+m,y2=1,消去y整理得,(1+4k2)x2+8kmx+4m2-4=0,∵直线l:y=kx+m(k≠0)与椭圆交于不同的两点,∴Δ=64k2m2-4(1+4k2)(4m2-4)>0,即m2<1+4k2,1+x2=-8km1+4k2,1·x2=4m2-41+4k2,则x0=x1+x22=-4km1+4k2,y0=kx0+m=m1+4k2,所以直线DG的斜率为k DG=y0x0-1=-m4km+1+4k2,又由直线DG和直线MN垂直可得-m4km+1+4k2·k=-1,则m=-1+4k23k,代入m2<1+4k2可得<1+4k2,即k2>15,解得k>55或k<-55.故所求k∞4.已知椭圆E:x2a2+y2b21(a>b>0)的左、右焦点分别为F1,F2,椭圆E的离心率为32,且通径长为1.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M∥F2N时,求四边形F1F2NM 面积的最大值.解:(1)c2,=2,=1,=3,故椭圆的方程为x24+y2=1.(2)假设M,N两点在x轴上侧,如图所示,延长MF1交E于点M0,由F1M∥F2N知M0与N关于原点对称,从而有|F1M0|=|F2N|,由(1)可知F1(-3,0),F2(3,0),设M(x1,y1),M0(x2,y2),设MF1的方程为x=my-3,由my-3,y2=1得(m2+4)y2-23my-1=0,Δ=12m2+4(m2+4)>0,故1+y2=23mm2+4,1y2=-1m2+4.设F1M与F2N的距离为d,四边形F1F2NM的面积为S,则S=12(|F1M|+|F2N|)d=12(|F1M|+|F1M0|)d=12|MM0|d=S△MF2M0,又因为S△MF2M0=12·|F1F2|·|y1-y2|=12×23×|y1-y2|=3(y1+y2)2-4y1y2=3·12m2(m2+4)2+4m2+4=43m2+1m2+4=43m2+1+3m2+1≤4323=2,当且仅当m2+1=3m2+1,即m=±2时,等号成立,故四边形F1F2NM面积的最大值为2.。
专题16圆锥曲线中的存在性问题1.(2022·上海黄浦·二模)已知双曲线 :221412x y ,F 为左焦点,P 为直线1x 上一动点,Q 为线段PF 与 的交点.定义:||()||FP d P FQ .(1)若点Q()d P 的值;(2)设()d P ,点P 的纵坐标为t ,试将2t 表示成 的函数并求其定义域;(3)证明:存在常数m 、n ,使得()||md P PF n .2.(2022·青海·海东市第一中学模拟预测(理))已知椭圆M :22221x y a b (a >b >0)的离心率为2,AB 为过椭圆右焦点的一条弦,且AB 长度的最小值为2.(1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点 2,0P ,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,当12111k k 时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.3.(2022·上海青浦·二模)已知椭圆22:143x y 的右焦点为F ,过F 的直线l 交 于,A B两点.(1)若直线l 垂直于x 轴,求线段AB 的长;(2)若直线l 与x 轴不重合,O 为坐标原点,求△AOB 面积的最大值;(3)若椭圆 上存在点C 使得||||AC BC ,且△ABC 的重心G 在y 轴上,求此时直线l 的方程.4.(2022·福建省福州格致中学模拟预测)圆O :224x y 与x 轴的两个交点分别为 12,0A , 22,0A ,点M 为圆O 上一动点,过M 作x 轴的垂线,垂足为N ,点R 满足12NR NM (1)求点R 的轨迹方程;(2)设点R 的轨迹为曲线C ,直线1x my 交C 于P ,Q 两点,直线1A P 与2A Q 交于点S ,试问:是否存在一个定点T ,当m 变化时,2A TS 为等腰三角形5.(2022·上海交大附中模拟预测)已知椭圆221214x y F F :,,是左、右焦点.设M 是直线 2l x t t :上的一个动点,连结1MF ,交椭圆 于 0N N y .直线l 与x 轴的交点为P ,且M 不与P 重合.(1)若M 的坐标为58,,求四边形2PMNF 的面积;(2)若PN 与椭圆 相切于N 且1214NF NF ,求2tan PNF 的值;(3)作N 关于原点的对称点N ,是否存在直线2F N ,使得1F N 上的任一点到2F N若存在,求出直线2F N 的方程和N 的坐标,若不存在,请说明理由.6.(2022·广东·华南师大附中三模)已知在△ABC 中, 2,0B , 2,0C ,动点A满足AB 90ABC ,AC 的垂直平分线交直线AB 于点P .(1)求点P 的轨迹E 的方程;(2)直线 x m m 交x 轴于D ,与曲线E 在第一象限的交点为Q ,过点D 的直线l 与曲线E 交于M ,N 两点,与直线3x m交于点K ,记QM ,QN ,QK 的斜率分别为1k ,2k ,3k ,①求证:123k k k 是定值.②若直线l 的斜率为1,问是否存在m 的值,使1236k k k 若存在,求出所有满足条件的m 的值,若不存在,请说明理由.7.(2022·福建省厦门集美中学模拟预测)已知△ABC 的顶点 4,0A , 4,0B ,满足:9tan tan 16A B .(1)记点C 的轨迹为曲线 ,求 的轨迹方程;(2)过点 0,2M 且斜率为k 的直线l 与 相交于P ,Q 两点,是否存在与M 不同的定点N ,使得NP MQ NQ MP 恒成立?若存在,求出点N 的坐标;若不存在,请说明理由.8.(2022·全国·哈师大附中模拟预测(文))已知椭圆 2222:10x y C a b a b的左、右顶点分别为1A ,2A ,且124A A ,离心率为12,过点 3,0M 的直线l 与椭圆C 顺次交于点Q ,P .(1)求椭圆C 的方程;(2)是否存在定直线:l x t 与直线2A P 交于点G ,使1A ,G ,Q 共线.9.(2022·湖北·华中师大一附中模拟预测)已知1(2,0)F ,2(2,0)F 为椭圆2222:1(0)x y E a b a b的左、右焦点,且A 5(2,)3为椭圆上的一点.(1)求椭圆E 的方程;(2)设直线2y x t 与抛物线22(0)y px p 相交于,P Q 两点,射线1F P ,1FQ 与椭圆E 分别相交于M 、N .试探究:是否存在数集D ,对于任意p D 时,总存在实数t ,使得点1F 在以线段MN 为直径的圆内?若存在,求出数集D 并证明你的结论;若不存在,请说明理由.10.(2022·江西师大附中三模(理))已知椭圆22221(0)x y a b a b的右焦点为F ,上顶点为M ,O 为坐标原点,若OMF的面积为12,且椭圆的离心率为2.(1)求椭圆的方程;(2)是否存在直线l 交椭圆于P ,Q 两点,且F 点恰为PQM 的垂心?若存在,求出直线l 的方程;若不存在,说明理由.11.(2022·江苏·南京师大附中模拟预测)如图,已知离心率为2的椭圆 2222:10x y M a b a b 的左右顶点分别为A 、B ,P 是椭圆M 上异于A 、B 的一点,直线AP 、BP 分别交直线:4l x 于C 、D 两点.直线l 与x 轴交于点H ,且퐴⋅퐴=36.(1)求椭圆M 的方程;(2)若线段CD 的中点为E ,问在x 轴上是否存在定点N ,使得当直线NP 、NE 的斜率NP k 、NE k 存在时,NP NE k k 为定值?若存在,求出点N 的坐标及NP NE k k 的值;若不存在,请说明理由.12.(2022·上海·模拟预测)在平面直角坐标系xOy 中,点B 与点(1,1)A 关于原点O 对称,P 是动点,且直线AP 与BP的斜率之积等于13.(1)求动点P 的轨迹方程C ;(2)设直线y t 与第(1)问的曲线C 交于不同的两点E 、F ,以线段EF 为直径作圆D ,圆心为D ,设 ,G G G x y 是圆D 上的动点,当t 变化时,求G y 的最大值;(3)设直线AP 和BP 分别与直线3x 交于点M 、N ,问:是否存在点P 使得PAB △与PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.13.(2022·江苏南京·模拟预测)已知椭圆C :22221x y a b (0a b )过点,直线l :y x m 与椭圆C 交于A ,B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为-0.5.(1)求椭圆C 的标准方程;(2)当1m 时,椭圆C 上是否存在P ,Q 两点,使得P ,Q 关于直线l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.14.(2022·重庆八中模拟预测)已知抛物线2:4C y x 的焦点为F ,不过原点的直线l 交抛物线C 于A ,B 两不同点,交x 轴的正半轴于点D .(1)当ADF 为正三角形时,求点A 的横坐标;(2)若||||FA FD ,直线1//l l ,且1l 和C 相切于点E ;①证明:直线AE 过定点,并求出定点坐标;②ABE △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.15.(2022·辽宁沈阳·三模)如图,在平面直角坐标系中,12,F F 分别为等轴双曲线 2222:10,0x y a b a b的左、右焦点,若点A为双曲线右支上一点,且12||||AF AF 2AF 交双曲线于B 点,点D 为线段1F O 的中点,延长AD ,BD ,分别与双曲线 交于P ,Q两点.(1)若1122(,),(,)A x y B x y ,求证: 1221214x y x y y y ;(2)若直线AB ,PQ 的斜率都存在,且依次设为12,k k ,试判断21k k 是否为定值,如果是,请求出21k k 的值;如果不是,请说明理出.16.(2022·浙江·绍兴一中模拟预测)如图,过抛物线2:2(0)E y px p 的焦点F 的直线1l 交抛物线于第一象限的点02,Q y ,且3QF ,过点()(,00)P a a (不同于焦点F )的直线2l 与抛物线E 交于A ,B ,过A 作抛物线的切线交y 轴于M ,过B 作MP 的平行线交y 轴于N.(1)求抛物线方程及直线1l 的斜率;(2)记1S 为,AM BN 与y 轴围成三角形的面积,是否存在实数 使1 OAB S S ,若存在,求出实数 的值,若不存在,请说明理由.17.(2022·全国·模拟预测(文))已知椭圆22:143x y 的右焦点为F , 11,A x y , 22,C x y 为 上不同的两点,且122x x ,31,2B.(1)证明:AF ,BF ,CF 成等差数列;(2)试问:x 轴上是否存在一点D ,使得DA DC ?若存在,求出点D 的坐标;若不存在,请说明理由.18.(2022·湖北·鄂南高中模拟预测)已知曲线2:2(0)C y px p 的焦点为F ,曲线C 上有一点 0,Q x p 满足2QF .(1)求抛物线C 的方程;(2)过原点作两条相互垂直的直线交曲线C 于异于原点的两点,A B ,直线AB 与x 轴相交于N ,试探究x 轴上存在一点是否存在异于N 的定点M 满足AMANBM BN 恒成立.若存在,请求出M 点坐标;若不存在,请说明理由.19.(2022·广东·模拟预测)已知双曲线2222:1(0,0)x y C a b a b的左、右焦点分别为12,F F ,点D 为线段1F O 的中点,过2F 的直线l 与C 的右支交于 1122,,,M x y N x y 两点,延长,MD ND 分别与C 交于点,P Q 两点,若C的离心率为 为C 上一点.(1)求证: 1221212x y x y y y ;(2)已知直线l 和直线PQ 的斜率都存在,分别记为121,,0k k k ,判断21k k 是否为定值?若是,求出该定值;若不是,说明理由.20.(2022·辽宁大连·二模)已知抛物线2:2(0)E y px p 的焦点为F ,点P 在抛物线上,O 为坐标原点,且32OP PF .(1)抛物线E 的标准方程;(2)如图所示,过点(,0)M t 和点(2,0)(26)N t t 分别做两条斜率为k 的平行弦分别和抛物线E 相交于点A ,B 和点C ,D ,得到一个梯形ABCD .记梯形两腰AD 和BC 的斜率分别为1k 和2k ,且12120k k k k .(i )试求实数k 的值;(ii )若存在实数 ,使得OAB ABCD S S 梯形△,试求实数 的取值范围.。
考点突破练15 圆锥曲线中的定点、定值、证明问题1.(2022·湖南岳阳质检二)已知椭圆C :y 2a 2+x 2b 2=1(a>b>0),F 为上焦点,左顶点P 到F 的距离为√2,且离心率为√22,设O 为坐标原点,点M 的坐标为(0,2). (1)求椭圆C 的标准方程;(2)若过F 的直线l 与C 交于A ,B 两点,证明:∠OMA=∠OMB.2.(2022·陕西西安四区县联考一)已知抛物线x 2=ay (a>0),过点M 0,a2作两条互相垂直的直线l 1,l 2,设l 1,l 2分别与抛物线相交于A ,B 及C ,D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1. (1)求抛物线的方程;(2)设线段AB ,CD 的中点分别为E ,F ,O 为坐标原点,求证:直线EF 过定点.3.(2022·北京石景山一模)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的短轴长等于2√3,离心率e=12. (1)求椭圆C 的标准方程;(2)过右焦点F 作斜率为k 的直线l ,与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点P ,判断|PF ||AB |是否为定值,请说明理由.4.(2022·全国乙·理20)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点. (1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.5.(2022·河南濮阳一模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e=√32,且圆x 2+y 2=2过椭圆C 的上、下顶点.(1)求椭圆C 的方程;(2)若直线l 的斜率为12,且直线l 与椭圆C 相交于P ,Q 两点,点P 关于原点的对称点为E ,点A (-2,1)是椭圆C 上一点,若直线AE 与AQ 的斜率分别为k AE ,k AQ ,证明:k AE ·k AQ ≤0.6.(2022·广西柳州三模)已知点A (2,√3),B (-2,-√3),点M 与y 轴的距离记为d ,且点M 满足MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =d24-1,记点M 的轨迹为曲线W. (1)求曲线W 的方程;(2)设点P 为x 轴上除原点O 外的一点,过点P 作直线l 1,l 2,l 1交曲线W 于C ,D 两点,l 2交曲线W 于E ,F 两点,G ,H 分别为CD ,EF 的中点,过点P 作x 轴的垂线交GH 于点N ,设CD ,EF ,ON 的斜率分别为k 1,k 2,k 3,求证:k 3(k 1+k 2)为定值.考点突破练15 圆锥曲线中的定点、定值、证明问题1.(1)解 左顶点P 到F 的距离为√2,可得a=√2,又e=ca=√22,故c=1,从而b=1.∴椭圆C 的标准方程为y 22+x 2=1.(2)证明 当l 与y 轴重合时,∠OMA=∠OMB=0°.当l 与y 轴不重合时,设l 的方程为y=kx+1,A (x 1,y 1),B (x 2,y 2),直线MA ,MB 的斜率之和为k MA +k MB =y 1-2x 1+y 2-2x 2=kx 1-1x 1+kx 2-1x 2=2k-(1x 1+1x 2)=2k-x 1+x 2x 1x 2,联立方程{y =kx +1,y 22+x 2=1,可得(2+k 2)x 2+2kx-1=0,x 1+x 2=-2k 2+k2,x 1x 2=-12+k2,∴2k-x 1+x 2x 1x 2=2k-2k=0,从而k MA +k MB =0,故直线MA ,MB 的倾斜角互补,∴∠OMA=∠OMB. 综上,∠OMA=∠OMB. 2.(1)解 ∵y'=2xa ,由题意得2×2a=1,∴a=4,∴抛物线的方程为x 2=4y. (2)证明 由题意得直线l 1,l 2的斜率都存在且都不为0,由M (0,2),可设直线AB 的方程为y=kx+2(k ≠0), 设A (x 1,y 1),B (x 2,y 2),由{y =kx +2,x 2=4y ,得x 2-4kx-8=0,则x 1+x 2=4k ,∴y 1+y 2=k (x 1+x 2)+4=4k 2+4,∴AB 的中点E (2k ,2k 2+2).∵l 1⊥l 2,∴直线CD 的斜率为-1k,同理可得CD 的中点F -2k ,2k2+2,∴EF 的方程为y-(2k 2+2)=2k 2+2-2k 2-22k+2k(x-2k ),化简整理得y=k-1k x+4, ∴直线EF 恒过定点(0,4).3.解 (1)由题意得b=√3,e=√1-b 2a 2=√1-3a 2=12,解得a=2,所以椭圆的方程为x 24+y23=1.(2)是定值.理由如下:由椭圆的方程x 24+y 23=1,得右焦点F (1,0),设直线l 的方程为y=k (x-1),A (x 1,y 1),B (x 2,y 2), 由{y =k (x -1),x 24+y23=1,得(3+4k 2)x 2-8k 2x+4k 2-12=0,则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2, |AB|=√1+k 2|x1-x 2|=√1+k 2√(x 1+x 2)2-4x 1x 2=12(1+k 2)3+4k 2,设线段AB 的中点为D (x 0,y 0),则x 0=x 1+x 22=4k 23+4k2,则y 0=k (x 0-1)=-3k3+4k2,即D (4k 23+4k2,-3k 3+4k 2),所以直线l 的中垂线的方程为y--3k3+4k2=-1k x-4k 23+4k 2.令y=0,得x P =k 23+4k 2,所以|PF|=|x P -1|=|k 23+4k 2-1|=3(k 2+1)3+4k 2,所以|PF ||AB |=3(k 2+1)3+4k 212(1+k 2)3+4k2=14. 4.(1)解 设椭圆E 的方程为mx 2+ny 2=1(m>0,n>0), 则{4n =1,94m +n =1,解得{m =13,n =14. 故椭圆E 的方程为x 23+y 24=1. (2)证明 由点A (0,-2),B (32,-1),可知直线AB 的方程为y=23x-2.当过点P 的直线MN 的斜率不存在时,直线MN 的方程为x=1.由{x =1,x 23+y 24=1,解得{x =1,y =2√63或{x =1,y =-2√63,则点M (1,-2√63),N (1,2√63). 将y=-2√63代入y=23x-2,得x=3-√6,则点T (3-√6,-2√63). 又MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,所以点H (5-2√6,-2√63),所以直线HN 的方程为y-2√63=-2√63-2√635-2√6-1x-1),即y=(2√63+2)x-2, 所以直线HN 过点(0,-2).当过点P 的直线MN 的斜率存在时,设直线MN 的方程为y+2=k (x-1),点M (x 1,y 1),N (x 2,y 2). 由{y +2=k (x -1),x 23+y 24=1,消去y ,得(4+3k 2)x 2-6k (k+2)x+3k (k+4)=0,则Δ>0,x 1+x 2=6k (k+2)4+3k 2,x 1x 2=3k (k+4)4+3k 2. 将y=y 1代入y=23x-2,得x=32(y 1+2),则点T (32(y 1+2),y 1).又MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,所以点H (3y 1+6-x 1,y 1).所以直线HN 的方程为(3y 1+6-x 1-x 2)(y-y 2)=(y 1-y 2)(x-x 2),即(3y 1+6-x 1-x 2)(y-y 2)-(y 1-y 2)(x-x 2)=0.将x=0,y=-2代入上式,整理得12-2(x 1+x 2)+3y 1y 2+6(y 1+y 2)-x 1y 2-x 2y 1=0.(*) 因为x 1+x 2=6k (k+2)4+3k2,x 1x 2=3k (k+4)4+3k2,所以y 1+y 2=k (x 1-1)-2+k (x 2-1)-2=-8k -164+3k 2,x 1y 2+x 2y 1=x 1[k (x 2-1)-2]+x 2[k (x 1-1)-2]=-24k4+3k 2,y 1y 2=[k (x 1-1)-2][k (x 2-1)-2]=-8k 2+16k+164+3k 2,所以(*)式左边=12-12k (k+2)4+3k2+-24k 2+48k+484+3k2+-48k -964+3k2−-24k 4+3k 2=0=右边,即(*)式成立.所以直线HN 过点(0,-2).综上所述,直线HN 恒过定点(0,-2).5.(1)解 由题可知{b =√2,c a =√32,a 2=b 2+c 2,解得a=2√2,b=√2,∴椭圆C 的方程为x 28+y 22=1. (2)证明 设P (x 1,y 1),Q (x 2,y 2),则E (-x 1,-y 1).设直线l 为y=12x+t ,代入椭圆方程得x 2+2tx+2t 2-4=0,则Δ=4t 2-4(2t 2-4)>0,解得-2<t<2,x 1+x 2=-2t ,x 1x 2=2t 2-4,则k AE +k AQ =y 2-1x 2+2+-y 1-1-x 1+2=(2-x 1)(y 2-1)-(2+x 2)(y 1+1)(2+x 2)(2-x 1),又y 1=12x 1+t ,y 2=12x 2+t ,∴(2-x 1)(y 2-1)-(2+x 2)(y 1+1)=2(y 2-y 1)-(x 1y 2+x 2y 1)+x 1-x 2-4=x 2-x 1-(x 1x 2+tx 1+tx 2)+x 1-x 2-4=-x 1x 2-t (x 1+x 2)-4=-(2t 2-4)-t (-2t )-4=0,即k AE +k AQ =0,∴k AE =-k AQ .于是k AE ·k AQ =-k AQ 2≤0.6.(1)解 设M (x ,y ),由题意得d=|x|,MA⃗⃗⃗⃗⃗⃗ =(2-x ,√3-y ),MB ⃗⃗⃗⃗⃗⃗ =(-2-x ,-√3-y ), ∵MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =d 24-1,∴(2-x ,√3-y )·(-2-x ,-√3-y )=d 24-1,∴x 2-4+y 2-3=x 24-1.∴3x24+y 2=6,M 的轨迹方程为x 28+y 26=1. (2)证法一 显然GH 斜率存在,设P (x 0,0),设GH 的方程为y=k 4x+m ,由题意知CD 的方程为y=k 1(x-x 0),联立方程{y =k 1(x -x 0),y =k 4x +m ,解得{x =k 1x 0+mk 1-k 4,y =k 1(k 4x 0+m )k 1-k 4,可得G k 1x 0+m k 1-k 4,k 1(k 4x 0+m )k 1-k4,设C (x C ,y C ),D (x D ,y D ),则有x C28+y C26=1,x D28+y D26=1,两式相减得:x C 2-x D28+y C 2-y D26=0,则有k 1=y C -y D x C-x D=-34·x C +xD y C+y D,又G 为CD 中点,则有k 1=-34·k 1x 0+mk1(k 4x 0+m ),将G 坐标代入CD 的方程可得4(k 4x 0+m )k 12+3x 0k 1+3m=0,同理可得4(k 4x 0+m )k 22+3x 0k 2+3m=0,故k 1,k 2为关于k 的方程4(k 4x 0+m )k 2+3x 0k+3m=0的两实根. 由韦达定理得k 1+k 2=-3x 04(k4x 0+m ).将x=x 0代入直线GH :y=k 4x+m ,可得N (x 0,k 4x 0+m ),故有k 3=k 4x 0+m x 0,则k 3(k 1+k 2)=k 4x 0+m x 0[-3x 04(k 4x 0+m )]=-34, 故k 3(k 1+k 2)为定值-34.证法二 由题意知直线CD ,EF ,ON 的斜率都存在,分别为k 1,k 2,k 3,设P (t ,0),N (t ,k 3t )(t ≠0),则直线CD ,EF 的方程分别为y=k 1(x-t ),y=k 2(x-t ),两直线分别与曲线W 相交,联立方程{y =k 1(x -t ),x 28+y 26=1,得(6+8k 12)x 2-16k 12tx+8k 12t 2-48=0,解得{x G =x 1+x 22=4k 12t3+4k 12,y G =-3k 1t3+4k 12,可得G (4k 12t3+4k 12,-3k 1t3+4k 12),同理可得H (4k 22t3+4k 22,-3k 2t3+4k 22),。
2020年高考数学(理)总复习:圆锥曲线中的定点与定值、范围与存在性问题题型一 圆锥曲线中的定点、定值问题【题型要点】圆锥曲线中定点、定值问题必然是变化中所表现出来的不变的量,那么就用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.解决这类问题的一般思路是:(1)引进变化的参数表示直线方程、数量积、比例关系等.(2)根据等式的恒成立、数式变换等寻找不受参数影响的量.(3)求解定点、定值问题,如果事先不知道定点、定值,可以先对参数取特殊值,通过特殊情况求出这个定点、定值,然后再对一般情况进行证明.【例1】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点Q ⎪⎭⎫ ⎝⎛b a b ,在椭圆上,O 为坐标原点.(1)求椭圆C 的方程;(2)已知点P ,M ,N 为椭圆C 上的三点,若四边形OPMN 为平行四边形,证明四边形OPMN 的面积S 为定值,并求该定值.(1)【解】 ∵椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,∴e 2=c 2a 2=a 2-b 2a 2=12,得a 2=2b 2① 又点Q ⎪⎭⎫ ⎝⎛b a b ,在椭圆C 上,∴b 2a 2+a 2b 4=1,② 联立①、②得a 2=8,且b 2=4.∴椭圆C 的方程为x 28+y 24=1. (2)【证明】 当直线PN 的斜率k 不存在时,PN 方程为x =2或x =-2, 从而有|PN |=23,所以S =12|PN |·|OM |=12×23×22=26; 当直线PN 的斜率k 存在时,设直线PN 方程为y =kx +m (m ≠0),P (x 1,y 1),N (x 2,y 2), 将PN 的方程代入椭圆C 的方程,整理得(1+2k 2)x 2+4kmx +2m 2-8=0,所以x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-81+2k 2, y 1+y 2=k (x 1+x 2)+2m =2m 1+2k 2,由OM →=OP →+ON →,得M ⎪⎭⎫ ⎝⎛++-22212,214k m k km 将M 点坐标代入椭圆C 方程得m 2=1+2k 2.又点O 到直线PN 的距离为d =|m |1+k 2, |PN |=1+k 2|x 1-x 2|,∴S =d ·|PN |=|m |·|x 1-x 2| =1+2k 2·(x 1+x 2)2-4x 1x 2=48k 2+242k 2+1=2 6. 综上,平行四边形OPMN 的面积S 为定值2 6. 题组训练一 圆锥曲线中的定点、定值问题已知椭圆C :x 2a 2+y 2b2=1过A (2,0),B (0,1)两点. (1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.【解析】 (1)由题意得a =2,b =1,∴椭圆C 的方程为x 24+y 2=1. 又c =a 2-b 2=3,∴离心率e =c a =32.(2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4.又A (2,0),B (0,1),∴直线P A 的方程为y =y 0x 0-2(x -2). 令x =0,得y M =-2y 0x 0-2, 从而|BM |=1-y M =1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1, 从而|AN |=2-x N =2+x 0y 0-1. ∴四边形ABNM 的面积S =12|AN |·|BM | =12⎪⎪⎭⎫ ⎝⎛-+⋅⎪⎪⎭⎫ ⎝⎛-+221120000x y y x =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2. 从而四边形ABNM 的面积为定值.题型二 圆锥曲线中的范围问题【题型要点】与圆锥曲线有关的取值范围问题的三种解法1.数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.2.构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.3.构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.【例2】设圆F 1:x 2+y 2+4x =0的圆心为F 1,直线l 过点F 2(2,0)且不与x 轴、y 轴垂直,且与圆F 1相交于两点C 、D ,过F 2作F 1C 的平行线交直线F 1D 于点E .(1)证明||EF 1|-|EF 2||为定值,并写出点的轨迹方程;(2)设点E 的轨迹曲线与直线l 交于M ,N 两点,过F 2且与垂直的直线与圆F 1交于P ,Q 两点,求△PQM 与△PQN 的面积之和的取值范围.【解析】 (1)圆F 1:(x +2)2+y 2=4,圆心F 1(-2,0),半径r =2,如图所示.因为F 1C ∥EF 2,所以∠F 1CD =∠EF 2D .又因为|F 1D |=|F 1C |,所以∠F 1CD =∠F 1DC ,所以∠EF 2D =∠F 1DC ,又因为∠F 1DC =∠EDF 2,所以∠EF 2D =∠EDF 2,故ED =EF 2,可得||EF 1|-|EF 2||=||EF 1|-|ED ||=2<|F 1F 2|,根据双曲线的定义,可知点E 的轨迹是以F 1,F 2为焦点的双曲线(顶点除外),易得点E的轨迹方程为x 2-y 23=1(y ≠0). (2)Γ:x 2-y 23=1(y ≠0). 依题意可设l :x =my +2(m ≠0),M (x 1,y 1),N (x 2,y 2),由于PQ ⊥l ,设l PQ :y =-m (x -2).圆心F 1(-2,0)到直线PQ 的距离d =|-m (-2-2)|1+m 2=|4m |1+m 2, 所以|PQ |=2r 2-d 2=41-3m 21+m 2, 又因为d <2,解得0<m 2<13.联立直线与双曲线的方程⎩⎪⎨⎪⎧ x 2-y 23=1x =my +2, 消去得(3m 2-1)+12my +9=0,则y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1, 所以|MN |=1+m 2|y 2-y 1| =1+m 2(y 1+y 2)2-4y 1y 2=6(m 2+1)1-3m 2, 记△PQM ,△PQN 的面积分别为S 1,S 2,则S 1+S 2=12|MN |·|PQ |=12m 2+11-3m 2 =121-3+4m 2+1, 又因为0<m 2<13,所以S 1+S 2∈(12,+∞), 所以S 1+S 2的取值范围为(12,+∞).题组训练二 圆锥曲线中的范围问题设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解析】 (1)因为|AD |=|AC |,EB ∥AC ,所以∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |,又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3. 所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),点A 到直线m 的距离为2k 2+1, 所以|PQ |=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ | =121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).题型三 圆锥曲线中的存在性问题【题型要点】解决探索性问题的注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.【例3】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且过点P ⎪⎭⎫ ⎝⎛23,1,F 为其右焦点. (1)求椭圆C 的方程;(2)设过点A (4,0)的直线l 与椭圆相交于M ,N 两点(点M 在A ,N 两点之间),是否存在直线l 使△AMF 与△MFN 的面积相等?若存在,试求直线l 的方程;若不存在,请说明理由.【解】 (1)因为c a =12,所以a =2c ,b =3c , 设椭圆方程x 24c 2+y 23c 2=1,又点P ⎪⎭⎫ ⎝⎛23,1在椭圆上,所以14c 2+34c 2=1,解得c 2=1,a 2=4,b 2=3,所以椭圆方程为x 24+y 23=1. (2)易知直线l 的斜率存在,设l 的方程为y =k (x -4),由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0,由题意知Δ=(32k 2)2-4(3+4k 2)(64k 2-12)>0,解得-12<k <12. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=32k 23+4k 2,① x 1x 2=64k 2-123+4k 2.② 因为△AMF 与△MFN 的面积相等,所以|AM |=|MN |,所以2x 1=x 2+4.③由①③消去x 2得x 1=4+16k 23+4k 2.④ 将x 2=2x 1-4代入②,得x 1(2x 1-4)=64k 2-123+4k 2⑤ 将④代入到⑤式,整理化简得36k 2=5.∴k =±56,经检验满足题设 故直线l 的方程为y =56(x -4)或y =-56(x -4). 题组训练三 圆锥曲线中的存在性问题已知抛物线C :x 2=2py (p >0)的焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q .(1)D 是抛物线C 上的动点,点E (-1,3),若直线AB 过焦点F ,求|DF |+|DE |的最小值;(2)是否存在实数p ,使|2QA →+QB →|=|2QA →-QB →|?若存在,求出p 的值;若不存在,说明理由.【解】 (1)∵直线2x -y +2=0与y 轴的交点为(0,2),∴F (0,2),则抛物线C 的方程为x 2=8y ,准线l :y =-2.设过D 作DG ⊥l 于G ,则|DF |+|DE |=|DG |+|DE |,当E ,D ,G 三点共线时,|DF |+|DE |取最小值2+3=5.(2)假设存在,抛物线x 2=2py 与直线y =2x +2联立方程组得:x 2-4px -4p =0,设A (x 1,y 1),B (x 2,y 2),Δ=(4p )2+16p =16(p 2+p )>0,则x 1+x 2=4p ,x 1x 2=-4p , ∴Q (2p,2p ).∵|2QA →+QB →|=|2QA →-QB →|,∴QA ⊥QB .则QA →·QB →=0,得(x 1-2p )(x 2-2p )+(y 1-2p )(y 2-2p )=(x 1-2p )(x 2-2p )+(2x 1+2-2p )(2x 2+2-2p )=5x 1x 2+(4-6p )(x 1+x 2)+8p 2-8p +4=0,代入得4p 2+3p -1=0,解得p =14或p =-1(舍去). 因此存在实数p =14,且满足Δ>0,使得|2QA →+QB →|=|2QA →-QB →|成立.题型四 基本不等式法求解与圆锥曲线有关的最值问题【题型要点】求解圆锥曲线中的最值问题,主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即要把求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.求最值方法有:(1)利用基本不等式求最值时要注意“一正、二定、三相等”的条件,三个条件缺一不可.(2)通过代换、拆项、凑项等技巧,改变原式的结构使其具备基本不等式的应用条件.【例4】 已知P 为圆A :(x +1)2+y 2=12上的动点,点B (1,0).线段PB 的垂直平分线与半径P A 相交于点T ,记点T 的轨迹为Γ.(1)求曲线Γ的方程;(2)设M ,N 是Γ上的两个动点,MN 的中点H 在圆x 2+y 2=1上,求原点到MN 距离的最小值.【解析】 (1)圆A 的圆心为A (-1,0),半径等于2 3.由已知|TB |=|TP |,于是|TA |+|TB |=|TA |+|TP |=23,故曲线Γ是以A ,B 为焦点,以23为长轴长的椭圆,a =3,c =1,b =2,曲线Γ的方程为x 23+y 22=1; (2)设M (x 1,y 1),N (x 2,y 2),H (x 0,y 0),将M (x 1,y 1),N (x 2,y 2),代入作差得(x 1+x 2)(x 1-x 2)3+(y 1+y 2)(y 1-y 2)2=0 ①x 1=x 2时,y 1+y 2=0,所以H (x 0,0),因为H 在圆x 2+y 2=1上,所以x 0=±1,则原点O 到直线MN 的距离为1;②x 1≠x 2时,设直线MN 的斜率k ,则2x 0+3ky 0=0,且x 20+y 20=1,所以x 20=9k 29k 2+4,y 20=49k 2+4, 所以x 0y 0=-32ky 20=-6k 9k 2+4. 设原点O 到直线MN 距离为d ,因为MN 的方程为y -y 0=k (x -x 0),即kx -y -kx 0+y 0=0,所以d 2=1-k 29k 4+13k 2+4, k =0时,d 2=1;k ≠0时,d 2=1-19k 2+13+4k 2≥1-125=2425. 因为2425<1,所以d 2的最小值为2425,即d 的最小值为265,此时k =±63, 由①②知,原点O 到直线MN 的最小值为265. 题组训练四 基本不等式法求解与圆锥曲线有关的最值问题平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.【解析】 (1)由题意知a 2-b 2a =32,可得a 2=4b 2,因为抛物线E 的焦点F ⎪⎭⎫⎝⎛21,0,所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1.(2)①证明:设P ⎪⎪⎭⎫ ⎝⎛2,2m m (m >0),由x 2=2y ,可得y ′=x ,所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ).即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0. 由Δ>0,得0<m <2+5(或0<m 2<2+5).(*)且x 1+x 2=4m 34m 2+1,因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因为y 0x 0=-14m .所以直线OD 方程为y =1-4mx ,联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14,所以点M 在定直线y =-14上.②由①知直线l 的方程为y =mx -m 22,令x =0,得y =-m 22,所以G ⎪⎪⎭⎫ ⎝⎛-2,02m , 又P ⎪⎪⎭⎫ ⎝⎛2,2m m ,F ⎪⎭⎫⎝⎛21,0,D ⎪⎪⎭⎫ ⎝⎛+-+)14(2,1422222m m m m ,所以S 1=12·|GF |·m =(m 2+1)m 4,S 2=12·|PM |·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1).所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.法一:S 1S 2=2(4m 4+5m 2+1)4m 4+4m 2+1=2+2m 24m 4+4m 2+1=2+24m 2+1m2+4≤94,当且仅当m =22时,满足(*)式,所以P 坐标为⎪⎪⎭⎫ ⎝⎛41,22. 法二:设t =2m 2+1,则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t +2,当1t =12,即t =2时,S 1S 2取到最大值94,此时m =22,满足(*)式, 所以P 点坐标为⎪⎪⎭⎫⎝⎛41,22. 因此S 1S 2的最大值为94,此时点P 的坐标为⎪⎪⎭⎫ ⎝⎛41,22.【专题训练】1.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,它的一个焦点恰好与抛物线y 2=4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.【解析】 (1)易知x 22+y 2=1.(2)由(1)知A (0,1),当直线BC 的斜率不存在时,设BC :x =x 0,设B (x 0,y 0),则C (x 0,-y 0), k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 20x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在.设直线BC 的方程为:y =kx +m (m ≠1),并代入椭圆方程,得: (1+2k 2)x 2+4kmx +2(m 2-1)=0, ①由Δ=(4km )2-8(1+2k 2)(m 2-1)>0得2k 2-m 2+1>0. ②设B (x 1,y 1),C (x 2,y 2),则x 1,x 2是方程①的两根,由根与系数的关系得, x 1+x 2=-4km1+2k 2,x 1·x 2=2(m 2-1)1+2k 2,由k AB ·k AC =y 1-1x 1·y 2-1x 2=14得: 4y 1y 2-4(y 1+y 2)+4=x 1x 2,即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0,整理得(m -1)(m -3)=0,又因为m ≠1,所以m =3,此时, 直线BC 的方程为y =kx +3.所以直线BC 恒过一定点(0,3).2.已知两点A (-2,0),B (2,0),动点P 在y 轴上的投影是Q ,且2P A →·PB →=|PQ →|2. (1)求动点P 的轨迹C 的方程;(2)过F (1,0)作互相垂直的两条直线交轨迹C 于点G ,H ,M ,N ,且E 1,E 2分别是GH ,MN 的中点.求证:直线E 1E 2恒过定点.(1)【解】 设点P 坐标为(x ,y ),∴点Q 坐标为(0,y ).∵2P A →·PB →=|PQ →|2,∴2[(-2-x )(2-x )+y 2]=x 2,化简得点P 的轨迹方程为x 24+y 22=1.(2)[证明] 当两直线的斜率都存在且不为0时,设l GH :y =k (x -1),G (x 1,y ),H (x 2,y 2),l MN :y =-1k(x -1),M (x 3,y 3),N (x 4,y 4),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x -1),消去y 得(2k 2+1)x 2-4k 2x +2k 2-4=0.则Δ>0恒成立. ∴x 1+x 2=4k 22k 2+1,且x 1x 2=2k 2-42k 2+1.∴GH 中点E 1坐标为⎪⎪⎭⎫⎝⎛+-+12,122222k k k k ,同理,MN 中点E 2坐标为⎪⎭⎫⎝⎛++2,2222k k k , ∴kE 1E 2=-3k2(k 2-1),∴lE 1E 2的方程为y =-3k 2(k 2-1)⎪⎭⎫ ⎝⎛-32x ,∴过点⎪⎭⎫⎝⎛0,32, 当两直线的斜率分别为0和不存在时,lE 1E 2的方程为y =0,也过点⎪⎭⎫⎝⎛0,32,综上所述,lE 1E 2过定点⎪⎭⎫ ⎝⎛0,32.3.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.(1)【解】 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆的方程为x 22+y 2=1. (2)[证明] 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2,从而直线AP ,AQ 的斜率之和 k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎪⎪⎭⎫⎝⎛+2111x x =2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.4.已知焦点在y 轴上的椭圆E 的中心是原点O ,离心率为双曲线y 2-x 22=1离心率的一半,直线y =x 被椭圆E 截得的线段长为4105.直线l :y =kx +m 与y 轴交于点P ,与椭圆E 交于A ,B 两个相异点,且AP →=λPB →.(1)求椭圆E 的方程;(2)是否存在实数m ,使OA →+λOB →=4OP →?若存在,求m 的取值范围;若不存在,请说明理由.【解析】 (1)设椭圆的方程为y 2a 2+x 2b 2=1(a >b >0),双曲线y 2-x 22=1离心率e =3,由椭圆的离心率e =ca=1-b 2a 2=32,则a =2b , 将y =x 代入椭圆y 2a 2+x 2b 2=1,解得:x =±a 55,∴2×2×a 55=4105,解得:a =2,∴椭圆E 的方程为y 24+x 2=1;(2)假设存在实数m ,使OA →+λOB →=4OP →成立,由题意可得P (0,m ),当m =0时,O ,P 重合,λ=1显然成立,当m ≠0时,由AP →=λPB →,可得OP →-OA →=λ(OB →-OP →),则OA →+λOB →=(1+λ)OP →,∴λ=3,设A (x 1,y 1),B (x 2,y 2),由AP →=3PB →,可得x 1=-3x 2 ①⎩⎪⎨⎪⎧y =kx +m y 24+x 2=1,整理得:(k 2+4)x 2+2kmx +m 2-4=0, ∴x 1+x 2=-2kmk 2+4,x 1x 2=m 2-4k 2+4, ②由①②可得:m 2k 2+m 2-k 2-4=0,则k 2=m 2-41-m2,m 2≠1,由Δ=(2km )2-4(k 2+4)(m 2-4)>0,则k 2+4-m 2>0,∴k 2+4-m 2=m 2-41-m 2+4-m 2=(m 2-4)m 21-m2>0,则1<m 2<4,解得:-2<m <-1或1<m <2,综上可得:m 的取值范围是(-2,-1)∪(1,2)∪{0}.。
高考材料高考材料专题14 圆锥曲线中的定值定点问题1.〔2023·全国·高考试题〔文〕〕已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过两点.()30,2,,12A B ⎛--⎫⎪⎝⎭(1)求E 的方程;(2)设过点的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足.证()1,2P -MT TH =明:直线HN 过定点.(答案)(1)22143y x +=(2) (0,2)-(解析) (分析)〔1〕将给定点代入设出的方程求解即可;〔2〕设出直线方程,与椭圆C 的方程联立,分情况商量斜率是否存在,即可得解.(1)解:设椭圆E 的方程为,过,221mx ny +=()30,2,,12A B ⎛--⎫⎪⎝⎭则,解得,,41914n m n =⎧⎪⎨+=⎪⎩13m =14n =所以椭圆E 的方程为:.22143y x +=(2),所以,3(0,2),(,1)2A B --2:23+=AB y x ①假设过点的直线斜率不存在,直线.代入, (1,2)P -1x =22134x y +=可得,,代入AB 方程,可得(1,MN223y x =-,由得到.求得HN 方程:(3,T MT TH =(5,H -+,过点. (22y x =-(0,2)-②假设过点的直线斜率存在,设. (1,2)P -1122(2)0,(,),(,)kx y k M x y N x y --+=联立得, 22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩22(34)6(2)3(4)0k x k k x k k +-+++=可得,, 1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩且1221224(*)34kx y x y k -+=+联立可得 1,223y y y x =⎧⎪⎨=-⎪⎩111113(3,),(36,).2y T y H y x y ++-可求得此时,1222112:()36y y HN y y x x y x x --=-+--将,代入整理得, (0,2)-12121221122()6()3120x x y y x y x y y y +-+++--=将代入,得 (*)222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-2.〔2023·全国·高考试题〕已知椭圆C 的方程为,右焦点为.22221(0)x y a b a b +=>>F 〔1〕求椭圆C 的方程;〔2〕设M ,N 是椭圆C 上的两点,直线与曲线相切.证明:M ,N ,F 三点共线的充要条件是MN 222(0)x y b x +=>||MN =(答案)〔1〕;〔2〕证明见解析.2213xy +=(解析) (分析)〔1〕由离心率公式可得,即可得解;a =2b 〔2充分性:设直线,由直线与圆相切得,联立直线与椭圆方程结合弦长公式可得():,0MN y kx b kb =+<221b k =+,即可得解.=1k =±(详解)〔1〕由题意,椭圆半焦距 c =c e a ==a =又,所以椭圆方程为;2221b a c =-=2213x y +=〔2〕由〔1〕得,曲线为,221(0)x y x +=>当直线的斜率不存在时,直线,不合题意; MN :1MN x =当直线的斜率存在时,设,MN ()()1122,,,M xy N x y 必要性:假设M ,N ,F 三点共线,可设直线即,(:MN y k x =0kxy -=由直线与曲线,解得,MN 221(0)x y x +=>11k =±联立可得,所以,(2213y x x y ⎧=±⎪⎨⎪+=⎩2430x -+=121234x x x x +=⋅=,高考材料高考材料所以必要性成立;充分性:设直线即, ():,0MN y kx b kb =+<0kx y b -+=由直线与曲线,所以,MN 221(0)x y x +=>1=221b k =+联立可得, 2213y kx b x y =+⎧⎪⎨+=⎪⎩()222136330k x kbx b +++-=所以, 2121222633,1313kb bx x x x k k-+=-⋅=++===化简得,所以,()22310k -=1k =±所以,所以直线或,1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =y x =-所以直线过点,M ,N ,F 三点共线,充分性成立; MN F 所以M ,N ,F 三点共线的充要条件是||MN =3.〔2023·青海·海东市第—中学模拟预测〔理〕〕已知椭圆M :〔a >b >0,AB 为过椭圆右22221x y a b +=焦点的一条弦,且AB 长度的最小值为2. (1)求椭圆M 的方程;(2)假设直线l 与椭圆M 交于C ,D 两点,点,记直线PC 的斜率为,直线PD 的斜率为,当()2,0P 1k 2k 12111k k +=时,是否存在直线l 恒过肯定点?假设存在,请求出这个定点;假设不存在,请说明理由.(答案)(1)22142x y +=(2)存在, ()2,4--(解析) (分析)〔1〕由题意求出,即可求出椭圆M 的方程.,,a b c 〔2〕设直线l 的方程为m (x -2)+ny =1,,,联立直线l 的方程与椭圆方程()11,C x y ()22,D x y ,得,则,化简得,即可求()()222242x y x -+=--()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭12114114n k k m +=-=+14m n +=-出直线l 恒过的定点. (1)因为〔a >b >0,过椭圆右焦点的弦长的最小值为,22221x y a b +=222b a=所以a =2,,所以椭圆M 的方程为.c b =22142x y +=(2)设直线l 的方程为m (x -2)+ny =1,,, ()11,C x y ()22,D x y 由椭圆的方程,得.2224x y +=()()222242x y x -+=--联立直线l 的方程与椭圆方程,得,()()()2222422x y x m x ny ⎡⎤⎣⎦-+=---+即,, ()()()221424220m x n x y y +-+-+=()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭所以, 12121222114114x x nk k y y m--+=+=-=+化简得,代入直线l 的方程得,14m n +=-()1214m x m y ⎛⎫-+--= ⎪⎝⎭即,解得x =-2,y =-4,即直线l 恒过定点. ()1214m x y y ---=()2,4--4.〔2023·上海松江·二模〕已知椭圆的右顶点坐标为,左、右焦点分别为、,且2222:1(0)x y a b a bΓ+=>>(2,0)A 1F 2F ,直线交椭圆于不同的两点和.122F F =l ΓM N (1)求椭圆的方程;Γ(2)假设直线的斜率为,且以为直径的圆经过点,求直线的方程; l 1MN A l (3)假设直线与椭圆相切,求证:点、到直线的距离之积为定值.l Γ1F 2F l (答案)(1);22143x y +=(2)或; 2y x =-27y x =-(3)证明见解析. (解析) (分析)〔1〕依据焦距及椭圆的顶点求出即可得出;,a b 〔2〕设直线的方程为 ,联立方程,由根与系数的关系及求解即可;l y x b =+0AM AN ⋅=〔3〕分直线斜率存在与不存在商量,当斜率不存在时直接计算可得,当斜率存在时,设直线的方程为 ,l y kx b =+依据相切求出关系,再由点到直线的距离直接计算即可得解. ,b k (1)∵ ∴,1222F F c ==1c =∵,由 得,∴2a =222a b c =+241=+b 22=34=b a ,高考材料高考材料所以椭圆的方程:;Γ22143x y +=(2)∵直线的斜率为,故可设直线的方程为 , l 1l y x b =+设,,,1(M x 1)y 2(N x 2)y 由 可得, 22143y x b x y =+⎧⎪⎨+=⎪⎩22784120x bx b ++-=则,,1287b x x +=-2124127b x x -=∵以为直径的圆过右顶点,∴,∴MN A 0AM AN ⋅=1212(2)(2)0x x y y --+=∴21212122211))2()4((2(2)()4b b x x x x x x x x b x x b -+++=+-+++++,整理可得,2241282(2)4077b b b b -=⋅--⋅++=271640b b ++=∴或,2b =-27b =-∵, 2226447(412)16(213)b b b ∆=-⋅⋅-=⋅-当或时,均有2b =-27b =-0∆>所以直线的方程为或. l 2y x =-27y x =-(3)椭圆左、右焦点分别为、Γ1(1,0)F -2(1,0)F ①当直线平行于轴时,∵直线与椭圆相切,∴直线的方程为, l y l Γl 2x =±此时点、到直线的到距离分别为,∴. 1F 2F l 121,3d d ==123d d ⋅=②直线不平行于轴时,设直线的方程为 ,l y l y kx b =+联立,整理得, 2234120y kx b x y =+⎧⎨+-=⎩222(34)84120k x kbx b +++-=,222222644(34)(412)16(9123)k b k b k b ∆=-+-=⋅+-∵直线与椭圆相切,∴,∴ l Γ0∆=2234b k =+∵到直线的距离为到直线的距离为,1(1,0)F -l 1=d 2(1,0)F -l 2=d ∴,123d d ⋅=∴点、到直线的距离之积为定值由.1F 2F l 35.〔2023·上海浦东新·二模〕已知分别为椭圆:的左、右焦点, 过的直线交椭圆于两12F F 、E 22143x y+=1F l E ,A B 点.(1)当直线垂直于轴时,求弦长;l x AB(2)当时,求直线的方程;2OA OB ⋅=-l (3)记椭圆的右顶点为T ,直线AT 、BT 分别交直线于C 、D 两点,求证:以CD 为直径的圆恒过定点,并求出定6x =点坐标. (答案)(1)3 (2))1y x =+(3)证明见解析;定点 ()()4080,,,(解析) (分析)〔1〕将代入椭圆方程求解即可;1x =-〔2〕由〔1〕知当直线的斜率存在,设直线的方程为:,联立直线与椭圆的方程,得出l l ()1y k x =+,设可得韦达定理,代入计算可得斜率;()22223484120k xk x k +++-=()()1122A x y B x y ,,,2OA OB ⋅=-〔3〕分析当直线的斜率不存在时,由椭圆的对称性知假设以CD 为直径的圆恒过定点则定点在轴上,再以CD 为l x 直径的圆的方程,令,代入韦达定理化简可得定点 0y =(1)由题知,将代入椭圆方程得 ()110F -,1x =-332y AB =±∴=,(2)由〔1〕知当直线的斜率不存在时,此时,不符合题意,舍去l 331122A B ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,OA ·OB =14直线的斜率存在,设直线的方程为:,∴l l ()1y k x =+联立得,设,则, ()221431x y y k x ⎧+=⎪⎨⎪=+⎩()22223484120k x k x k +++-=()()1122A x y B x y ,,,2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩由OA ·OB =x 1x 2+y 1y 2=x 1x 2+k (x 1+1)k (x 2+1)=(1+k 2)x 1x 2+k 2(x 1+x 2)+k 2=(1+k 2)4k2‒123+4k 2+k2‒8k 23+4k 2,解得+k 2=‒5k 2‒123+4k 2=‒222k k ==,直线的方程为..∴l )1y x =+(3)①当直线的斜率不存在时, l ()33112022A B T ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,,,直线AT 的方程为,C 点坐标为, 112y x =-+()62-,直线BT 的方程为,D 点坐标为,以CD 为直径的圆方程为,由椭圆的对称性知假设以112y x =-()62,()2264x y -+=CD 为直径的圆恒过定点则定点在轴上,令,得即圆过点. x 0y =48x x ==,.()()4080,,,高考材料高考材料②当直线的斜率存在时,同〔2〕联立,直线AT 的方程为, l ()1122y y x x =--C 点坐标为,同理D 点坐标为,以CD 为直径的圆的方程为11462y x ⎛⎫ ⎪-⎝⎭,22462y x ⎛⎫ ⎪-⎝⎭,,()()12124466022y y x x y y x x ⎛⎫⎛⎫--+--= ⎪⎪--⎝⎭⎝⎭令,得,0y =()2121212161236024y y x x x x x x -++=-++由, ()()()()22222121222121212122241281611611343416441282424243434k k k k x k x k k y y k k x x x x x x x x k k ⎛⎫--++ ⎪++++⎝⎭===----++-++-+++得,解得,即圆过点. 212320x x -+=48x x ==,()()4080,,,综上可得,以CD 为直径的圆恒过定点. ()()4080,,,6.〔2023·上海长宁·二模〕已知分别为椭圆的上、下顶点,是椭圆的右焦点,是椭圆,A B 222Γ:1(1)xy a a+=>F ΓM上异于的点.Γ,A B(1)假设,求椭圆的标准方程 π3AFB ∠=Γ(2)设直线与轴交于点,与直线交于点,与直线交于点,求证:的值仅与有关 :2l y =y P MA Q MB R PQ PR ⋅a (3)如图,在四边形中,,,假设四边形面积S 的最大值为,求的值.MADB MA AD ⊥MB BD ⊥MADB 52a (答案)(1)2214x y +=(2)证明见解析 (3) 2a =(解析) (分析)〔1〕依据已知推断形状,然后可得;AFB △〔2〕设,表示出直线、的方程,然后求Q 、R 的坐标,直接表示出所求可证; ()11,M x y AM BM 〔3〕设,,依据已知列方程求解可得之间关系,表示出面积,结合已知可得. ()11,M x y ()44,D x y 14,x x (1)因为,,所以是等边三角形, AF BF =π3AFB ∠=AFB △因为,,所以,2AB =AF a =2a =得椭圆的标准方程为.2214x y +=(2)设,,, ()11,M x y ()2,2R x ()3,2Q x 因为,()0,1A()0,1B -所以直线、的方程分别为AM BM , 111:1AM y l y x x -=+, 111:1BM y l y x x +=-所以,, 12131x x y =+1311x x y =-又221121x y a-=所以, 2211221331x PQ PR x x a y ⋅===-所以的值仅与有关. PQ PR ⋅a (3)设,, ()11,M x y ()44,D x y 因为,,MA DA ⊥MB DB ⊥所以,()()1414110x x y y +--=()()1414110x x y y +++=高考材料高考材料两式相减得,41y y =-带回原式得,214110x x y +-=因为,所以, 221121x y a+=142x x a =-1412111MAB DAB S S S x x x a a a ⎛⎫=+=+=+≤+ ⎪⎝⎭A A 因为的最大值为 ,所以 ,得.S 52152a a +=2a =7.〔2023·福建省福州格致中学模拟预测〕圆:与轴的两个交点分别为,,点为圆O 224x y +=x ()12,0A -()22,0A M 上一动点,过作轴的垂线,垂足为,点满足O M x N R 12NR NM =(1)求点的轨迹方程;R (2)设点的轨迹为曲线,直线交于,两点,直线与交于点,试问:是否存在一个定点R C 1x my =+C P Q 1A P 2A Q S T ,当变化时,为等腰三角形m 2A TS (答案)(1)2214x y +=(2)存在,证明见解析 (解析) (分析)〔1〕设点在圆上,故有,设,依据题意得,,再代入圆()00,M x y 224x y +=22004x y +=(),R x y 0x x =012y y =即可求解;〔2〕先推断斜率不存在的情况;再在斜率存在时,设直线的方程为,与椭圆联立224x y +=l 1x my =+得:,,,再依据题意求解推断即可. ()224230m y my ++-=12224m y y m -+=+12234y y m -=+(1)设点在圆上, ()00,M x y 224x y +=故有,设,又,可得,, 2204x y +=(),R x y 12NR NM =0x x =012y y =即,0x x =02y y =代入可得,22004x y +=()2224x y +=化简得:,故点的轨迹方程为:.2214x y +=R 2214x y +=(2)依据题意,可设直线的方程为,l 1x my =+取,可得,, 0m=P ⎛ ⎝1,Q ⎛ ⎝可得直线的方程为的方程为1APy x =+2AQ y x =-联立方程组,可得交点为;(14,S 假设,,由对称性可知交点,1,P ⎛ ⎝Q ⎛ ⎝(24,S 假设点在同一直线上,则直线只能为:上,S l 4x =以下证明:对任意的,直线与直线的交点均在直线:上. m 1A P 2A Q S l 4x =由,整理得 22114x my x y =+⎧⎪⎨+=⎪⎩()224230m y my ++-=设,,则, ()11,P x y ()22,Q x y 12224m y y m -+=+12234y y m -=+设与交于点,由,可得 1A P l ()004,S y 011422y y x =++10162y y x =+设与交于点,由,可得, 2A Q l ()004,S y '022422y y x '=--20222y y x '=-因为 ()()()()122112102126123622222y my y my y y y y x x x x --+'-=-=+-+-, ()()()()()22121211121212464402222m mmy y y y m m x x x x ----+++===+-+-因为,即与重合, 00y y '=0S 0S '所以当变化时,点均在直线:上,m S l 4x =因为,,所以要使恒为等腰三角形,只需要为线段的垂直平分线即可,依据对称性()22,0A ()4,S y 2A TS 4x =2A T 知,点.()6,0T 故存在定点满足条件.()6,0T 8.〔2023·全国·模拟预测〕已知椭圆的离心率为,椭圆C 的左、右顶点分别为A ,B ,上顶点()2222:10x y C a b a b+=>>12为D ,.1AD BD ⋅=-(1)求椭圆C 的方程;(2)斜率为的动直线l 与椭圆C 相交于M ,N 两点,是否存在定点P 〔直线l 不经过点P 〕,使得直线PM 与直线PN 12的倾斜角互补,假设存在这样的点P ,请求出点P 的坐标;假设不存在,请说明理由.(答案)(1)22143x y +=(2)存在,点P 的坐标为或31,2⎛⎫ ⎪⎝⎭31,2⎛⎫-- ⎪⎝⎭(解析) (分析)高考材料高考材料〔1〕利用数量积公式及离心率可得a ,b ,c 从而得到椭圆方程; 〔2〕设直线l 的方程为,与椭圆方程联立,写出韦达定理,由题意可得直线PM 与直线PN 的斜率之和为12y x m =+零,利用韦达定理化简可得结果. (1)设椭圆C 的焦距为2c ,由题意知,,,(),0A a -(),0B a ()0,D b 所以,,所以,解得. (),AD a b = (),BD a b =- 2221AD BD a b c ⋅=-+=-=- 1c =又椭圆C 的离心率为,所以,1222a c ==b ==故椭圆C 的方程为.22143x y +=(2)假设存在这样的点P ,设点P 的坐标为,点M ,N 的坐标分别为,,设直线l 的方程为()00,x y ()11,x y ()22,x y . 12y x m =+联立方程消去y 后整理得.221,4312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩2230x mx m ++-=,得,()222431230m m m ∆=--=->22m -<<有 12212,3.x x m x x m +=-⎧⎨=-⎩假设直线PM 与直线PN 的倾斜角互补,则直线PM 与直线PN 的斜率之和为零,所以 01020102010201021122y x m y x m y y y y x x x x x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪--⎝⎭⎝⎭+=+----()()()()()()()()()()010*********0102010222222222222y m x x x y m x x x y m x y m x x x x x x x x x ---+---⎡⎤⎡⎤----⎣⎦⎣⎦=+=----()()()()()()()()()()20000012121200102010222223222222y m x m m mx y m x x x x x x x x x x x x x x x x -++-+--++-+⎡⎤⎣⎦==----.()()()()()()()()0000000001020102462322323022x y y x m x y y x mx x x x x x x x -+--+-===----所以解得或0000230,230,x y y x -=⎧⎨-=⎩001,32x y =⎧⎪⎨=⎪⎩001,3.2x y =-⎧⎪⎨=-⎪⎩故存在点P 符合条件,点P 的坐标为或.31,2⎛⎫ ⎪⎝⎭31,2⎛⎫-- ⎪⎝⎭9.〔2023·内蒙古·海拉尔第二中学模拟预测〔文〕〕已知椭圆的两个焦点分别为和,椭圆()2222:10x y C a b a b +=>>1F 2F 上一点到和的距离之和为,且椭圆C 1F 2F 4C (1)求椭圆的方程;C (2)过左焦点的直线交椭圆于、两点,线段的中垂线交轴于点〔不与重合〕,是否存在实数,使1F l A B AB x D 1F λ恒成立?假设存在,求出的值;假设不存在,请说出理由.1AB DF λ=λ(答案)(1)2214x y +=(2)存在,λ=(解析) (分析)〔1〕由椭圆的定义可求得的值,依据椭圆的离心率求得的值,再求出的值,即可得出椭圆的方程; a c b C 〔2〕分析可知,直线不与轴垂直,分两种情况商量,一是直线与轴重合,二是直线的斜率存在且不为零,设l x l x l 出直线的方程,与椭圆方程联立,求出、,即可求得的值. l AB 1DF λ(1)解:由椭圆的定义可得,则,因为,则, 24a =2a=ce a ==c ∴=1b ==因此,椭圆的方程为.C 2214x y +=(2)解:假设直线与轴垂直,此时,线段的垂直平分线为轴,不符合题意; l x AB x 假设直线与轴重合,此时,线段的垂直平分线为轴,则点与坐标原点重合,lx AB y D 此时,1AB DF λ===假设直线的斜率存在且不为零时,设直线的方程为,设点、,l l )0x my m =≠()11,Ax y ()22,B x y 联立可得, 2244xmy x y ⎧=⎪⎨+=⎪⎩()22410m y +--=,()()22212441610m m m ∆=++=+>由韦达定理可得, 12y y +=12214yy m =-+则()121222my y x x ++==所以,线段的中点为, AB M ⎛ ⎝高考材料高考材料所以,线段的垂直平分线所在直线的方程为,AB y m x ⎛=- ⎝在直线方程中,令可得y m x ⎛=-+ ⎝0y=x =故点,D ⎛⎫ ⎪ ⎪⎝⎭,()22414m m +=+因此,. ()221414m AB DF m λ+===+综上所述,存在,使得恒成立.λ=1AB DF λ=10.〔2023·河南安阳·模拟预测〔文〕〕已知椭圆上一个动点N 到椭圆焦点的距离的最2222:1(0)C bb x a a y +>>=(0,)Fc 小值是,且长轴的两个端点与短轴的一个端点B 构成的的面积为2.212,A A 12A A B △(1)求椭圆C 的标准方程;(2)如图,过点且斜率为k 的直线l 与椭圆C 交于P ,Q 两点.证明:直线与直线的交点T 在定直线4(0,)M -1A P 2A Q 上.(答案)(1)2214y x +=(2)证明见解析 (解析) (分析)〔1〕依据题意得到,再解方程组即可.22221222a c ab a b c ⎧-=⎪⎪⨯=⎨⎪=+⎪⎩〔2〕首先设直线,,,与椭圆联立,利用韦达定理得到,.:4l y kx =-()11,P x y ()22,Q x y 12284k x x k +=+122124x x k =+,,依据,即可得到,从而得到直线与直线的交点1112:2PA y l y x x ++=2222:2QA y l y x x --=2123y y +=--1y =-1A P 2A Q T 在定直线上. 1y =-(1)由题知:,解得,即:椭圆22221222a c ab a b c⎧-=⎪⎪⨯=⎨⎪=+⎪⎩21a b c ⎧=⎪=⎨⎪=⎩22:14+=y C x (2)设直线,,,,, :4l y kx =-()11,P x y ()22,Q x y ()10,2A -()20,2A . ()222214812044y x k x kx y kx ⎧+=⎪⇒+-+=⎨⎪=-⎩,. 12284k x x k +=+122124x x k =+则,, 1112:2PA y l y x x ++=2222:2QA y l y x x --=则, ()()()()1212122212112122222266y x kx x kx x x y y y x kx x kx x x +--+===----因为, ()1212212342k kx x x x k ==++所以,解得. ()()12212121213232123293362x x x x x y y x x x x x +--+===---++-1y =-所以直线与直线的交点在定直线上.1A P 2A Q T 1y =-11.〔2023·安徽省舒城中学三模〔理〕〕已知椭圆,过原点的直线交该椭圆于,两点〔点在22:184x y Γ+=O ΓA B A x轴上方〕,点,直线与椭圆的另一交点为,直线与椭圆的另一交点为.()4,0E AE C BE D高考材料高考材料(1)假设是短轴,求点C 坐标;AB Γ(2)是否存在定点,使得直线恒过点?假设存在,求出的坐标;假设不存在,请说明理由.T CD T T (答案)(1);82(,)33(2)存在,.8(,0)3T (解析) (分析)〔1〕两点式写出直线,联立椭圆方程并结合韦达定理求出C 坐标; AE 〔2〕设有,联立椭圆求C 坐标,同理求坐标,商量、,推断直线恒过00(,)A x y 00:(4)4=--y AE y x x D 00x ≠00x =CD 定点即可. (1)由题设,,而,故直线为,(0,2)A ()4,0E AE 240x y +-=联立并整理得:,故,而,22:184x y Γ+=23840y y -+=83A C y y +=2A y =所以,代入直线可得,故C 坐标为.23C y =AE 284233C x =-⨯=82(,)33(2)设,则, 00(,)A x y 00:(4)4=--y AE y x x 由,故, ()00224428y y x x x y ⎧=-⎪-⎨⎪+=⎩2220202(4)8(4)+-=-y x x x 由韦达定理有, 20222222000000002220000020328(4)328(4)16(8)8(4)64242(4)22482481(4)C y x y x x x x x x x y x y x x x --------====-+--+-所以,故,同理得:,,00833C x x x -=-003C y y x =-00833D x x x +=+03D y y x -=+当时,取,则,同理, 00x ≠8(,0)3T 0000003383833TCy x yk x x x -==----003TD y k x =-故共线,此时过定点.,,T C D CD 8(,0)3T 当时,,此时过定点.00x =83C D x x ==CD 8(,0)3T 综上,过定点.CD 8(,0)3T 12.〔2023·广东茂名·二模〕已知圆O :x 2+y 2=4与x 轴交于点,过圆上一动点M 作x 轴的垂线,垂足为H ,(2,0)A -N 是MH 的中点,记N 的轨迹为曲线C . (1)求曲线C 的方程;(2)过作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.6(,0)5-(答案)(1);2212x y +=(2)证明见解析. (解析) (分析)〔1〕运用相关点法即可求曲线C 的方程;( 2)首先对直线的斜率是否存在进行商量,再依据几何关系分别求出P 、Q 、S 三点的坐标,进而表示出直线AP , AS l 的斜率,再依据斜率的表达式进行化简运算,得出结论. 12,k k (1)设N 〔x 0,y 0〕,则H 〔x 0,0〕, ∵N 是MH 的中点,∴M 〔x 0,2y 0〕,又∵M 在圆O 上,,2200(2)4y x +=∴即; 220014x y +=∴曲线C 的方程为:;2214x y +=(2)①当直线l 的斜率不存在时,直线l 的方程为:,65x =-假设点P 在轴上方,则点Q 在x 轴下方,则,6464(,),(,5555P Q ---直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称, ∴,64(,55S1244001551,,6642255APAS k k k k --======-++;124k k ∴=假设点P 在x 轴下方,则点Q 在x 轴上方,高考材料高考材料同理得:,646464(,(,(,555555P Q S ----,1244001551,6642255APAS k k k k ----===-∴===--++∴k 1=4k 2;②当直线l 的斜率存在时,设直线l 的方程为:,6,5x my =-由与联立可得, 6,5x my =-2214x y +=221264(4)0525m m y y +--=其中,22144644(4)02525m m ∆=+⨯+⨯>设,则,则,1122(,),(,)P x y Q x y 22(,)S x y --1212221264525,44m y y y y m m -+==++∴ 112212112200,,2222AP AS k y y y y k k k x x x x ---======++-+-则121122121216()2542()5y my k y x k x y my y --=⋅=++,∴k 1=4k 2. 121112212121112226464161616252554545444641216()4445525525454545my y y y y m m my y y y y m m y y m m m -----++====++---+⋅--+++13.〔2023·安徽·合肥市第八中学模拟预测〔文〕〕生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在y 轴上,中心在坐标原点,从下焦点射出的光线1F 经过椭圆镜面反射到上焦点,这束光线的总长度为42F 离心率e <(1)求椭圆C 的标准方程;(2)假设从椭圆C 中心O 出发的两束光线OM 、ON ,分别穿过椭圆上的A 、B 点后射到直线上的M 、N 两点,假4y =设AB 连线过椭圆的上焦点,试问,直线BM 与直线AN 能交于肯定点吗?假设能,求出此定点:假设不能,请说2F 明理由.(答案)(1)22143y x +=(2)能,定点为〔0,〕85(解析) (分析)〔1〕由条件列方程求可得椭圆方程;,,a b c〔2〕联立方程组,利用设而不求法结论完成证明. (1)由已知可设椭圆方程为,22221(0)y x a b a b+=>>则,24a =122c b ⨯⨯=222ab c =+又e <所以,21a b c ===,故椭圆C 的标准方程为22143y x +=(2)设AB 方程为,由,得, 1y kx =+221431y x y kx ⎧+=⎪⎨⎪=+⎩22(34)690k x kx ++-=222(6)36(34)1441440k k k ∆=++=+>设,则.. ()()1122A x y B x y ,,,121222693434k x x x x k k --+==++由对称性知,假设定点存在,则直线BM 与直线AN 交于y 轴上的定点,由得,则直线BM 方程为, 114y y xx y ⎧=⎪⎨⎪=⎩1144x M y ⎛⎫ ⎪⎝⎭,211121444()4y xy x x y x y --=--令,则0x =122114(4)44x y y x y x -=+-()()112211414114x x kx x kx x ⎡⎤-+=+⎢⎥+-⎢⎥⎣⎦112211234(1)4x kx x x x kx x -=+-+2121124()4x x x x kx x -=-+又, 12123()2x x kx x +=则,21212112214()4()83554()()22x x x x y x x x x x x --===-++-所以,直线BM 过定点〔0,〕,同理直线AN 也过定点.858(0,5则点〔0,〕即为所求点.8514.〔2023·全国·模拟预测〕设椭圆的右焦点为F ,左顶点为A .M 是C 上异于A 的动点,过()222:10416x y C b b+=<<F 且与直线AM 平行的直线与C 交于P ,Q 两点〔Q 在x 轴下方〕,且当M 为椭圆的下顶点时,.2AM FQ =高考材料高考材料(1)求椭圆C 的标准方程;(2)设点S ,T 满足,,证明:平面上存在两个定点,使得T 到这两定点距离之和为定值. PS SQ = FS ST =(答案)(1)2116x =(2)证明见解析 (解析) (分析)〔1〕由向量的坐标运算用表示出点坐标,代入椭圆方程求得参数,得椭圆方程; ,b c Q b 〔2〕设,直线PQ 的斜率不为0,设其方程为,设.(), 0F c x m y c =+1122(,),(,)P x y Q x y 直线方程代入椭圆方程应用韦达定理得,利用向量相等的坐标表示求得点坐标,得出点坐标满足一个椭圆12y y +T T 方程,然后再由椭圆定义得两定点坐标. (1)当M 为椭圆的下顶点时,,则.(4,)AM b =- 12,22b FQ AM ⎛⎫==- ⎪⎝⎭ 设C 的焦距为2c ,则,即.2,2b Q c ⎛⎫+- ⎪⎝⎭2,2b Q ⎫-⎪⎭因为Q 在C,解得.114=()22162b =-=则椭圆C 的标准方程为. 2116x =(2)设,直线PQ 的斜率不为0,设其方程为,设.(), 0F c x m y c =+1122(,),(,)P x y Q x y 联立直线PQ 和C 的方程,消x 得.()22220y ++-=,12y y +=1212()2x x m y y c +=++=由得S 为弦PQ 的中点,故. PS SQ = S由得S是线段FT 的中点,故.FS ST =T设T 的坐标为,则,,故(), xy x c =y c=,即,2211x y c c ⎛⎫⎫== ⎪⎪⎝⎭⎭221x c +=这说明T 在中心为原点,为长轴端点,为短轴端点的椭圆上运动,故T 到两焦点的(,0)c ±0,⎛⎫ ⎪ ⎪⎝⎭,0⎛⎫ ⎪ ⎪⎝⎭距离之和为定值.代入得两焦点坐标为.(()4,0±-综上所述,平面上存在两定点,,使得T 到这两定点距离之和为定值.()4-()4-+15.〔2023·上海交大附中模拟预测〕已知椭圆是左、右焦点.设是直线上的一221214x y F F Γ+=:,,M ()2l x t t =>:个动点,连结,交椭圆于.直线与轴的交点为,且不与重合.1MF Γ()0N N y ≥l x P M P(1)假设的坐标为,求四边形的面积; M 58⎫⎪⎪⎭,2PMNF (2)假设与椭圆相切于且,求的值;PN ΓN 1214NF NF ⋅= 2tan PNF ∠(3)作关于原点的对称点,是否存在直线,使得上的任一点到N N '2F N 1F N '2F N 的方程和的坐标,假设不存在,请说明理由.2F N N(答案)(3)存在;; y x =126N ⎫⎪⎪⎭(解析) (分析)〔1〕依据点斜式方程可得,再联立椭圆方程得到,再依据求解1:MF l y x =12N ⎫⎪⎭2112PMNF PF M NF F S S S =-△△即可;〔2〕设,依据相切可知,直线与椭圆方程联立后判别式为0,得到,再依据,:()PN l y k x t =-2214k t =-1214NF NF ⋅=化简可得,再依据直角三角形中的关系求解的值即可;t =12N ⎫⎪⎭2tan PNF ∠〔3〕设,表达出,再依据列式化简可得,结合()00,N x y 2NF l 22O NF d -=2148k =k =和直线的方程N 2F N高考材料高考材料(1)由题意,,故()1F1MF k ==1:MF l y x =与椭圆方程联立 ,可得:,即,又由题意,故2214x y y x⎧+=⎪⎪⎨⎪=⎪⎩213450x+-=(130xx +=N x >解得,故且x =12N ⎫⎪⎭121122NF F S =⋅=△11528PF M S ==△则 2112PMNF PF M NF F S S S =-△△(2)由于直线PN 的斜率必存在,则设:()PN l y k x t =-与椭圆方程联立,可得:2214()x y y k x t ⎧+=⎪⎨⎪=-⎩()22222148440k x k tx k t +-+-=由相切,,则 ()22216140k k t ∆=+-=2214k t =-同时有韦达定理,代入有,化简得,故 21228214N k t x x x k +==+2214k t =-2244414N t t x t -=+-4N x t =2222414N N x t y t -=-=而,解得 222122122134N N t NF NF x y t -⋅=+-==2t =>则,所以轴,故在直角三角形中,12N ⎫⎪⎭2NF x ⊥2PNF A 222tan PF PNF NF ∠===(3)由于N 与,与是两组关于原点的对称点,由对称性知N '1F 2F 四边形是平行四边形,则与是平行的,12F NF N '2NF 1N F '故上的任一点到的距离均为两条平行线间的距离d .1F N '2F N 设,其中,易验证,当时,与之间的距离为()00,N xy 0(x ∈0=x 2NF 1N F 'k =则,即,2(:NF y l k x =0kx y -=发觉当时,,整理得 0≠x 22O NF d d -===221914k k =+2148k =代入,代入整理得,即由k =(220048y x =220014x y =-20013450x --=(00130x x -=于,所以,故0(x ∈0x=126N ⎫⎪⎪⎭k ==则的直线方程为 2F Nly x =16.〔2023·全国·模拟预测〔理〕〕已知椭圆:的右顶点为A ,上顶点为,直线的斜率为C ()222210x y a b a b+=>>B AB ,原点到直线O AB (1)求的方程;C (2)直线交于,两点,,证明:恒过定点.l C M N 90MBN ∠=︒l (答案)(1)22143x y +=(2)证明见解析 (解析) (分析)〔1〕题意得,依据AB 斜率,可得AB 的方程,依据点到直线距离公式,可求得a (,0),(0,)A a B b b a =值,进而可得b 值,即可得答案.〔2〕分析得直线l 的斜率存在,设,与椭圆联立,可得关于x 的一元二次方程,依据韦1122,(,),(,)y kx m M x y N x y =+达定理,可得表达式,进而可得、的表达式,依据,可得,依据数量1212,x x x x +12y y 12y y +90MBN ∠=︒0MB NB⋅=积公式,化简计算,可得m 值,分析即可得证 (1)由题意得,(,0),(0,)A aB b 所以直线AB 的斜率为b a =-b a =又直线AB的方程为, )y x a =-20y +=所以原点到直线的距离, O AB d 2a =所以.b =22143x y +=(2)由椭圆的对称性可得,直线l 的斜率肯定存在,设直线l 的方程为, 1122,(,),(,)y kx m M x y N x y =+联立方程,消去y 可得, 22143x y y kx m ⎧+=⎪⎨⎪=+⎩222(34)84120k x kmx m +++-=所以, 21212228412,3434km m x x x x k k --+==++所以,, 22221212122312()34m k y y k x x km x x m k-=+++=+121226()234m y y k x x m k +=++=+高考材料高考材料因为,所以,90MBN ∠=︒MB BN ⊥因为,所以,B 1122(),()MB x y NB x y =-=--所以,22212121222241263123)30343434m m m k MB NB x x y y y y k k k --⋅=+++=++=+++ 整理得,解得或,2730m --=m=m =因为,所以B m 所以直线l 的方程为,得证y kx =0,⎛ ⎝17.〔2023·全国·模拟预测〔理〕〕已知椭圆的左、右焦点分别为,,,分别为左、2222:1(0)x y C a b a b+=>>1F 2F 1A 2A 右顶点,,分别为上、下顶点.假设四边形,且,,成等差数列. 1B 2B 1122B F B F 212F F 212B B 212A A (1)求椭圆的标准方程;C (2)过椭圆外一点(不在坐标轴上)连接,,分别与椭圆交于,两点,直线交轴于点.试P P 1PA 2PA C M N MN x Q 问:,两点横坐标之积是否为定值?假设为定值,求出定值;假设不是,说明理由. P Q (答案)(1);22132x y +=(2)为定值,理由见解析. 32P Q x x =(解析) (分析)〔1〕应用菱形面积公式、等差中项的性质及椭圆参数关系求椭圆参数,写出椭圆标准方程.〔2〕由题意分析知,所在直线斜率均存在且不为0、斜率和差均不为0,设直线,联立椭圆求,1PA 2PA 1PA 2PA M 的坐标及点横坐标,应用点斜式写出直线,令求横坐标,即可得结论.N P MN 0y =Q (1)由题设知:,可得, 2222222844bc b a c a b c ⎧=⎪⎪=+⎨⎪=+⎪⎩22321a b ⎧=⎪⎨⎪=⎩所以椭圆标准方程为.22132x y +=(2)由题意,,所在直线斜率均存在且不为0、斜率和差均不为0,1PA 2PA 设为,联立椭圆方程整理得:, 1PA (y k x =22229(23)302k k x x +++-=所以1M A x x +=1A x =M x ==设为,联立椭圆方程整理得:,2PA (y m x =22229(23)302m m x x+-+-=所以, 2N A x x +=2Ax=N x =所以M y k=⋅=N y m =⋅=联立直线、可得:,1PA 2PA P x=直线为,令,则 MN2()[23m k y x km +=⋅-0y =Q x =所以为定值.32P Q x x ==18.〔2023·山西·太原五中二模〔文〕〕已知椭圆,过原点的两条直线和分别与椭圆交于和,2221x y +=1l 2l A B △C D △记得到的平行四边形的面积为.ACBD S (1)设,用的坐标表示点到直线的距离,并证明; ()()1122,,,A x y C x y A C △C 1l 12212S x y x y =-(2)请从①②两个问题中任选一个作答 ①设与的斜率之积,求面积的值.1l 2l 12-S ②设与的斜率之积为.求的值,使得无论与如何变动,面积保持不变.1l 2l m m 1l 2l S (答案)(1)(2)见解析 (解析) (分析)〔1〕商量和,分别写出直线的方程,由距离公式即可求得点到直线的距离,由面积公式即可证明10x ≠10x =1l C 1l ;12212S x y x y =-〔2〕假设选①,设出直线和的方程,联立椭圆求出的坐标,结合〔1〕中面积公式求解即可;假设选②,设1l 2l A C △出直线和的方程,联立椭圆求出的坐标,结合〔1〕中面积公式得到的表达式,平方整理,由含的项1l 2l A C △S 42,k k 系数为0即可求解. (1)高考材料高考材料当时,直线的方程为:,则点到直线的距离为10x ≠1l 11y y x x =C 1l d当时,直线的方程为:,则点到直线的距离为,也满足10x =1l 0x =C 1l 2d x =d 则点到直线;因为C 1l2AB AO ==则;21211222S AB d x x x y y y =⋅=--=(2)假设选①,设,设,直线与椭圆联立可得1122121:,:,2l y k x l y k x k k ===-()()1122,,,A x y C x y 1l 12221y k x x y =⎧⎨+=⎩,()221121k x+=同理直线与椭圆联立可得,不妨令,则2l ()222121k x +=120,0x x >>11x y =,22x y====则122S x y x =-假设选②,设,设,直线与椭圆联立可得,则12:,:m l y kx l y x k ==()()1122,,,A x y C x y 1l 2221y kx x y =⎧⎨+=⎩()22121k x +=,212112x k =+同理可得,则2222221212k x k m m k ==+⎛⎫+ ⎪⎝⎭1221121221222m m x x x kx k x k S y x x k x y =-=-=-⋅⋅⋅,两边平方整理得1222m m k x x k k ==-⋅,()24222222224(48)240Sk S S m m k m S m -++++-=由面积与无关,可得,解得,故时,无论与如何变动,面积保持不S k 2222240480S S S m m ⎧-=⎨++=⎩12S m ⎧=⎪⎨=-⎪⎩12m =-1l 2l S 变.19.〔2023·福建·厦门一中模拟预测〕已知,分别是椭圆的右顶点和上顶点,,A B 2222:1(0)x y C a b a b+=>>||AB =直线的斜率为.AB 12-(1)求椭圆的方程;(2)直线,与,轴分别交于点,,与椭圆相交于点,.证明: //l AB x y M N C D 〔i 〕的面积等于的面积;OCM A ODN △〔ii 〕为定值.22||||CM MD +(答案)(1)2214x y +=(2)〔i 〕证明见解析;〔ii 〕证明见解析 (解析) (分析)〔1〕依据,,由,直线的斜率为求解;(,0)A a (0,)B b ||AB =AB 12-〔2〕设直线的方程为,得到,,与椭圆方程联立,依据,l 12y x m =-+(2,0)M m (0,)N m 11|2|||2=A OCM S m y ,利用韦达定理求解. 21||||2=A ODN S m x 2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+(1)解:、是椭圆的两个顶点,A B 22221(0)x y a b a b+=>>且,直线的斜率为,||AB =AB 12-由,,得 (,0)A a (0,)B b ||AB ==又,解得,, 0102b b k a a -==-=--2a =1b =椭圆的方程为; ∴2214x y +=(2)设直线的方程为,则,,l 12y x m =-+(2,0)M m (0,)N m 联立方程消去,整理得.221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩y 222220x mx m -+-=, 得22248(4)3240m m m ∆=--=->28m <设,,,.1(C x 1)y 2(D x 2)y高考材料高考材料,.122x x m ∴+=21222x x m =-所以, 11|2|||2=A OCM S m y 21||||2=A ODN S m x 则有 112222|2||2|||1||||||-====A A OCMODNS y m x x Sx x x 的面积等于的面积;OCM ∴A ODN A ,,2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+2222221112221144()44()22x mx m x m x mx m x m =-++-++-++-+, ()()221212125551042x x x x m x x m =+--++ . ()2222552210102m m m m =---+5=20.〔2023·北京市第十二中学三模〕已知椭圆过点2222:1(0)x y M a b a b +=>>(2,0)A (1)求椭圆M 的方程;(2)已知直线在x 轴上方交椭圆M 于B ,C 〔异于点A 〕两个不同的点,直线AB ,AC 分别与y 轴交于点P 、(3)y k x =+Q ,O 为坐标原点,求的值.()k OP OQ +(答案)(1)22142x y +=(2) 45(解析) (分析)〔1〕直接由点坐标及离心率求得椭圆方程即可;A 〔2〕联立直线与椭圆求得,再表示出直线AB ,AC 的方程,求得P 、Q 坐标,再计算2212122212184,2121k k x x x x k k --+==++即可.()k OP OQ +(1)由题意知:,则椭圆M 的方程为;2,c a a ==c =2222b a c =-=22142x y +=(2)联立直线与椭圆,整理得,22(3)142y k x x y =+⎧⎪⎨+=⎪⎩()222221121840k x k x k +++-=,()()422214442118440160k k kk ∆=-+-=-+>即在x 轴上方交椭圆M 于B ,C〔异于点A 〕两点,则 k <<(3)y k x =+0k <<设,则,,, 1122(,),(,)B x y C x y 1222,22x x -<<-<<2212122212184,2121k k x x x x k k --+==++1122(3),(3)y k x y k x =+=+易得直线AB ,AC 斜率必定存在,则,令,得,则,同理可得11:(2)2y AB y x x =--0x =11202y y x =>-112(0,)2y P x -,且, 222(0,2y Q x -22202y x >-则()()()()()112121212223222222()(32)22k x x y y x x x k x k x OP x OQ k k -++⎛⎫+==⋅⎪⎝⎭+-+----. 222212122212122218412422442()242121184122()4242121k k k k k kx x k x x k k k k k k k x x x x k k ---⋅-⋅+--++++=⋅=⋅---++-⋅+++45=高考材料高考材料。
第 4 讲 圆锥曲线中的定点、定值、存在性问题(大题) __________________________ 热点分类突破 __________________________-典例研撕 各吓击區-热点一 定点问题解决圆锥曲线中的定点问题应注意(1) 分清问题中哪些是定的,哪些是变动的;(2) 注意“设而不求”思想的应用,引入参变量,最后看能否把变量消去;(3) “先猜后证”,也就是先利用特殊情况确定定点,然后验证,这样在整理式子时就有了明 确的方向.例1已知P (0,2)是椭圆C : a 2+b 2 =l (a >b >0)的一个顶点,C 的离心率e=g.(1)求椭圆的方程;⑵过点P 的两条直线l 1,l 2分别与C 相交于不同于点P 的A , B 两点,若*与12的斜率之和 为一4,则直线AB 是否经过定点?若是,求出定点坐标;若不过定点,请说明理由.厂b = 2 ,解(1)由题意可得c =¥,a 3—2 - b 2 + c 2 ,解得a -眉,b-2 , c -辭,・•・椭圆的方程为手+芍-1. ⑵当直线AB 的斜率存在时,设直线 AB 的方程为 y - kx + t , A (x 1, y 1), B (x 2, y 2),y-kx + t ,联立,x 2 y 2消去y 并整理, X 2 + y 2 — 1€ 6 4' 可得(3k + 2)x 2 + 6ktx + 3t 2 - 12-0 ,- 36(kt )2 - 4 x (3k 2 + 2)⑶2 - 12)>0 ,即24(6k2-t2+4)>0,则x i+x2_^^^- ,x i x2_3^-121 23k2+2 1 23k2+ 2由l1与l2的斜率之和为-4 , 可得y!-+ y2-_-4,x1 x2又y i = kx1 + t, y2二kx2+1 ,y1- 2 _ y2- 2 _ kx1+1 - 2 _ kx2+1 - 2 . + _ +x1 x2 x1 x2- 6kt(t - 2)・----(t - 2)(x1+ x2) 3k2 + 2_2k+1——忆 _2k+ _- 4 ,3t2 - 12x1x23k2+2化简可得t二-k - 2 ,.*.y _ kx - k - 2 _ k(x - 1) - 2 ,•°•直线AB经过定点(1 , - 2).当直线AB的斜率不存在时,设直线AB的方程为x _ m , A(m , yj , B(m , y2),y i-2,y2-2_y i+y2-4,m m m又点A, B 均在椭圆上,. A , B 关于x 轴对称,. y i+ y2_ 0,. m_ i,故直线AB的方程为x_1 ,也过点(1 ,-2),综上直线AB经过定点,定点为(1 , - 2).跟踪演练1 (2019・攀枝花模拟)已知抛物线C:y2=2px(p>0)上一点P(4,t)(t>0)到焦点F的距离等于5.(1)求抛物线C的方程和实数t的值;(2)若过F的直线交抛物线C于不同的两点A, B(均与P不重合),直线PA, PB分别交抛物线的准线l于点M,N.试判断以MN为直径的圆是否过点F,并说明理由.解 ⑴由抛物线定义可知I PF I 二4 f 2)二5,解得P 二2 ,故抛物线C 的方程为y 2二4x ,将P (4 , t )(t >0)代入抛物线方程解得t 二4.⑵以MN 为直径的圆一定过点F ,理由如下:设 A (x 1, y 1), B (x 2, y 2),设直线AB 的方程为x 二my + l (m 丘R ),代入抛物线C :y 2 = 4x , 化简整理得y 2 - 4my -4 = 0,环2 二-4,由⑴知P (4,4),所以直线PA 的方程为y -4二乩三(x -4)二丄三(x -4), x l - 4 my l - 3令x =-1得y 二的-5)儿+ 8, my l - 3__ - (4m - + 8、即 M - 1 , ------ 丛一,€ m y 1 -3 丿 同理可得j - 1 ,的-5汕+ 8€ m y 2 - 3 丿(4m - 5)y〔 + 8 (4m - 5)y 2 + 8 (2m - D 2y 1y 2 + (8m - 10)(y 1+y 2) + 16m 2y 1y 2- 3m (y 1+ y 2)+ 9-4(2m - |,2 + 4m (8m - 10) + 16-4m 2 - 3m ・4m + 916m 2- 9= 二-1 ,- 16m 2+ 9:.MF 丄NF , 故以MN 为直径的圆过点F .(也可用MF ・NF=0).热点二 定值问题 :'k MF k NF2(my 1 - 3) 2(my 2 - 3)求定值问题常见的方法有两种(1)从特殊情况入手,求出定值,再证明这个定值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.例2已知椭圆C:02+b2=l(a>b>O)经过点(0, V3),离心率为2,左、右焦点分别为厲(一c,0),F2(c,0).(1)求椭圆C的方程;3(2)P, N是C上异于M的两点,若直线PM与直线PN的斜率之积为一4证明:M, N两点的横坐标之和为常数.(1)解因为椭圆经过点(0,间,所以b =\:3 , 又因为e二2,所以V,2 a 2又C2 = a2~ b2 ,解得a 二 2 , b 二护, 所以椭圆C的方程为》+等二1.⑵证明设P , M , N三点坐标分别为(x p, y p) , (x M, y M) , (x N, y N), 设直线PM , PN斜率分别为k i, k2, 则直线pM方程为y~y p = k1(x - x P),x2+y2 二 1 由方程组,4 3' 消去y,得、y-y P二k1…x - x P(3 + 4k#)x2 - 8k1(k1x p- y p)x + 4k x p - 8k1x p y p+ 4y p - 12 二0 , 由根与系数的关系可得x +x二贴伙1Xp - yp),M p3+ 4k21故x_8k1(k1x p-y p) X_ 4k2x p- 8k”- 3x p,M_ 3 + 4* p_ 3 + 4k2 '从而 X N + X M =0,即 M ,N 两点的横坐标之和为常数 0.跟踪演练2 (2019.四川百校冲刺卷)已知椭圆C : X 2+y 2=l 的左、右焦点分别为F ], F 2,点 P (m , n )在椭圆C 上.(1)设点P 到直线l : x =4的距离为d 证明:韵为定值;⑵若0V m V 2, A , B 是椭圆C 上的两个动点(都不与点P 重合),且直线PA , PB 的斜率互为 相反数,求直线AB 的斜率(结果用n 表示).(1)证明 由已知,得a 2 = 4 , b 2 = 3 , :.C 2 = a 2 - b 2=1 ,即 F 1(- 1,0), F 2(1,0).(2)解 当0 < m < 2时,则n M 0 ,直线PA , PB 的斜率一定存在.同理可得S + Xp 二 sag 一 y p )3+4k 22.d…l PF 2l 2 为定值.2l m - 4l设 A (X 1, y 1) , B (x 2 , y 2),直线 PA 的斜率为 k ,则直线PA 的方程为y - n 二k (x - m ),即y-kx- km + n ,与椭圆C 的方程3x 2 + 4y 2二12 , 联立组成方程组,消去y ,整理得,(3 + 4k 2)x 2 - 8k (km - n )x + 4(km - n )2 - 12-0.工是4(km - n )2 - 12 于疋 x 二 ',y - kx, - km + n . 1 (3 + 4k 2)m I II 1根据直线PB 的斜率为-k ,将上式中的k 用-k 代替,4( - km - n )2 - 12 4(km + n )2 - 12 得x 二 - 2 [3 + 4( - k )2]m (3 + 4k 2)my 2-- kx 2+ km + n .于是 y 1 - y 2 二(kx 1 - km + n ) - (- kx 2 + km + n )- k (x 1+ x 2)- 2km(3 + 4k 2)m (3 + 4k 2)m 8(k 2m 2 + n 2)- 24 - 2m 2(3 + 4k 2) k •一(3 + 4k 2)m8n 2- 24- 6m 2注意到 3m 2+ 4n 2- 12,得 12- 4n 2- 3m 2,(3 + 4k 2)m k ,4(km - n )2 -12x 1 - x 2 -II 2 (3 + 4k 2)m 由根与系数的关系,得m ・x i4(km - n )2 - 123 + 4k 2 -k 4(km - n )2 - 12 4(km + n )2_ 2km4(km + n )2- 12 (3 + 4k 2)m 4[(km - n )2 - (km + n )2] _ - 16kmn(3 + 4k 2)m(3 + 4k 2)m 因此,直线AB 的斜率为J y^2 x 1 -x 2_ (8n2 - 24 - 6m2)k-16kmn_ 3m2- 4n2+ 12 _ 6m2 _3m_ 寸9- 3m8mn 8mn 4n 2n热点三存在性问题存在性问题的求解策略(1)若给出问题的一些特殊关系,要探索一般规律,并证明所得规律的正确性,通常要对已知关系进行观察、比较、分析,然后概括一般规律;(2)若只给出条件,求“不存在”“是否存在”等语句表述问题时,一般先对结论给出肯定存在的假设,然后由假设出发,结合已知条件进行推理,从而得出结论.例3 (2019•乐山、峨眉山联考)已知椭圆G:a2+b2=1(a>b>0)过点人(1,和点B(0,T)・⑴求椭圆G的方程;(2)设直线y=x+m与椭圆G相交于不同的两点M, N,记线段MN的中点为P,是否存在实数m,使得I BM I = I BN I?若存在,求出实数m;若不存在,请说明理由.解(1)椭圆G:a+b2_1(a>b>0)过点A,1,普…和点B(0,-1),:.b_1 ,由丄+ — _ 1,解得。