当前位置:文档之家› 粒子群算法(优化算法)毕业设计毕设论文(包括源代码实验数据-截图-很全面的)[1]

粒子群算法(优化算法)毕业设计毕设论文(包括源代码实验数据-截图-很全面的)[1]

粒子群算法(优化算法)毕业设计毕设论文(包括源代码实验数据-截图-很全面的)[1]
粒子群算法(优化算法)毕业设计毕设论文(包括源代码实验数据-截图-很全面的)[1]

毕业论文

题目粒子群算法及其参数设置专业信息与计算科学

班级计算061

学号3060811007

学生xx

指导教师徐小平

2010年

I

粒子群优化算法及其参数设置

专业:信息与计算科学

学生: xx

指导教师:徐小平

摘要

粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,粒子群优化算法通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。论文介绍了粒子群优化算法的基本原理,分析了其特点。论文中围绕粒子群优化算法的原理、特点、参数设置与应用等方面进行全面综述,重点利用单因子方差分析方法,分析了粒群优化算法中的惯性权值,加速因子的设置对算法基本性能的影响,给出算法中的经验参数设置。最后对其未来的研究提出了一些建议及研究方向的展望。

关键词:粒子群优化算法;参数;方差分析;最优解

II

Particle swarm optimization algorithm and its

parameter set

Speciality: Information and Computing Science

Student: Ren Kan

Advisor: Xu Xiaoping

Abstract

Particle swarm optimization is an emerging global based on swarm intelligence heuristic search algorithm, particle swarm optimization algorithm competition and collaboration between particles to achieve in complex search space to find the global optimum. It has easy to understand, easy to achieve, the characteristics of strong global search ability, and has never wide field of science and engineering concern, has become the fastest growing one of the intelligent optimization algorithms. This paper introduces the particle swarm optimization basic principles, and analyzes its features. Paper around the particle swarm optimization principles, characteristics, parameters settings and applications to conduct a thorough review, focusing on a single factor analysis of variance, analysis of the particle swarm optimization algorithm in the inertia weight, acceleration factor setting the basic properties of the algorithm the impact of the experience of the algorithm given parameter setting. Finally, its future researched and prospects are proposed.

Key word:Particle swarm optimization; Parameter; Variance analysis; Optimal solution

III

目录

摘要.................................................................................................................................. II Abstract ............................................................................................................................. I II 1.引言. (1)

1.1 研究背景和课题意义 (1)

1.2 参数的影响 (1)

1.3 应用领域 (2)

1.4 电子资源 (2)

1.5 主要工作 (2)

2.基本粒子群算法 (3)

2.1 粒子群算法思想的起源 (3)

2.2 算法原理 (4)

2.3 基本粒子群算法流程 (5)

2.4 特点 (6)

2.5 带惯性权重的粒子群算法 (7)

2.7 粒子群算法的研究现状 (8)

3.粒子群优化算法的改进策略 (9)

3.1 粒子群初始化 (9)

3.2 邻域拓扑 (9)

3.3 混合策略 (12)

4.参数设置 (14)

4.1 对参数的仿真研究 (14)

4.2 测试仿真函数 (15)

4.3 应用单因子方差分析参数对结果影响 (33)

4.4 对参数的理论分析 (34)

5结论与展望 (39)

致谢 (43)

附录 (44)

IV

基于粒子群优化算法的图像分割

安康学院 学年论文(设计) 题目_____________________________________________ 学生姓名_______________ 学号_____________________________ 所在院(系)_______________________________________ 专业班级__________________________________________________ 指导教师_____________________________________________ 年月曰

基于粒子群优化算法的图像分割 (作者:) () 指导教师: 【摘要】本文通过对粒子群优化算法的研究,采用Java编程,设计出一套用于图像分割的系统。 基于粒子群优化算法的图像分割系统,可以将一幅给定的图像进行分割,然后将分割结果保存。图像分割的目的是将感兴趣的区域从图像中分割出来,从而为计算机视觉的后续处理提供依据。图像分割的方法有多种,阈值法因其实现简单而成为一种有效的图像分割方法。而粒子群优化(PSO)算法是一类随机全局优化技术,它通过粒子间的相互作用发现复杂搜索空间中的最优区域缩短寻找阈值的时间。因此,基于粒子群优化算法的图像分割以粒子群优化算法为寻优工具,建立具有自适应和鲁棒性的分割方法。从而可以在最短的时间内,准确地确定分割阈值。 关键词:粒子群优化(PSO,图像分割,阈值法,鲁棒性 Abstract T his paper based on the particle swarm optimizati on algorithm, desig ns a set of system for image segme ntati on using Java program min g. Image segme ntati on system based on particle swarm optimizati on algorithm, the image can be a given segmentation, and then the segmentation results would be saved. Image segmentation is the purpose of the interested area from the image, thus providing the basis for the subsequent processing of computer vision. There are many methods of image segmentation, threshold method since its simple realization, becomes a kind of effective method in image segmentation. Particle swarm optimization (PSO) algorithm is a stochastic global optimization technique; it finds optimal regions of complex search spaces for threshold time shorte ned through the in teractio n betwee n particles. Therefore, particle swarm optimization algorithm of image segmentation based on particle swarm optimization algorithm based on optimizati on tools; establish segme ntati on method with adaptive and robust. Therefore, it is possible for us in the shortest possible time to accurately determ ine the segme ntati on threshold. Key word s: PSO, image segmentation, threshold method, robust. 1引言 1.1研究的背景和意义 技术的不断向前发展,人们越来越多地利用计算机来获取和处理视觉图像信息。据统计,人类

matlab粒子群优化算法进行传感器优化配置程序

1.Pso算法 function [xm,fv] = SAPSO( fitness,N,c1,c2,wmax,wmin,M ) % fitness 适应度函数 % N 种群个数 % c1 % c2 % wmax 最大权重 % wmin 最小权重 % M 迭代次数 cg=32;%传感器个数 format long; %-----------------------初始化种群个体 ------------------------------------- for i=1:N %粒子个数为n a1=-17.5:10:12.5; a11=a1*(i+5)/10; [a2,a3]=meshgrid(a1,a11); a4=reshape(a2,1,16); a5=reshape(a3,1,16); b1=-12.5:10:17.5; b11=b1*(i+5)/10; [b2,b3]=meshgrid(b1,b11); b4=reshape(b2,1,16); b5=reshape(b3,1,16); x11=[a4,b4;a5,b5]+20;%ó|ó?μè±èàyà?é¢y1ì?¨ x(:,:,i)=x11';%初始化传感器个数为20 v(:,:,i)=10*rand(cg,2); end %----------------------计算各个粒子适应度------------------------------for i=1:N; p(i)=fitness(x(:,:,i)); y(:,:,i)=x(:,:,i); end pg=x(:,:,N); %pg为全局最优 for i=1:(N-1) if fitness(x(:,:,i))

(完整word版)基本粒子群算法的原理和matlab程序

基本粒子群算法的原理和matlab程序 作者——niewei120(nuaa) 一、粒子群算法的基本原理 粒子群优化算法源自对鸟群捕食行为的研究,最初由Kennedy和Eberhart提出,是一种通用的启发式搜索技术。一群鸟在区域中随机搜索食物,所有鸟知道自己当前位置离食物多远,那么搜索的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。PSO 算法利用这种模型得到启示并应用于解决优化问题。PSO 算法中,每个优化问题的解都是粒子在搜索 空间中的位置,所有的粒子都有一个被优化的目标函数所决定的适应值,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。 PSO 算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。每个粒子有了初始位置与初始速度。然后通过迭代寻优。在每一次迭代中,每个粒子通过跟踪两个“极值”来更新自己在解空间中的空间位置与飞翔速度。第一个极值就是单个粒子本身在迭代过程中找到的最优解粒子,这个粒子叫做个体极值。另一个极值是种群所有粒子在迭代过程中所找到的最优解粒子,这个粒子是全局极值。上述的方法叫全局粒子群算法。如果不用种群所有粒子而只用其中一部分作为该粒子的邻居粒子,那么在所有邻居粒子中的极值就是局部极值,该方法称为局部PSO 算法。 速度、位置的更新方程表示为: 每个粒子自身搜索到的历史最优值p i ,p i=(p i1,p i2,....,p iQ),i=1,2,3,....,n。所有粒子搜索到的最优值p g,p g=(p g1,p g2,....,p gQ),注意这里的p g只有一个。 是保持原来速度的系数,所以叫做惯性权重。 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。 是[0,1]区间内均匀分布的随机数。 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设 置为1 。

基于MATLAB的粒子群优化算法的应用示例

对于函数f=x*sin(x)*cos(2*x)-2*x*sin(3*x),求其在区间[0,20]上该函数的最大值。 ?初始化种群 已知位置限制[0,20],由于一维问题较为简单,因此可以取初始种群N 为50,迭代次数为100,当然空间维数d 也就是1。 位置和速度的初始化即在位置和速度限制内随机生成一个N×d 的矩阵,对于此题,位置初始化也就是在0~20内随机生成一个50×1的数据矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50×1的数据矩阵。 此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。 粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。 每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。 ?速度与位置的更新

速度和位置更新是粒子群算法的核心,其原理表达式和更新方式如下: 每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。 代码如下: clc;clear;close all; %% 初始化种群 f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式figure(1);ezplot(f,[0,0.01,20]); N = 50; % 初始种群个数 d = 1; % 空间维数 ger = 100; % 最大迭代次数 limit = [0, 20]; % 设置位置参数限制 vlimit = [-1, 1]; % 设置速度限制 w = 0.8; % 惯性权重 c1 = 0.5; % 自我学习因子 c2 = 0.5; % 群体学习因子 for i = 1:d

基本粒子群算法的matlab源程序

主函数源程序(main.m) %------基本粒子群优化算法(Particle Swarm Optimization)-----------%------名称:基本粒子群优化算法(PSO) %------作用:求解优化问题 %------说明:全局性,并行性,高效的群体智能算法 %------初始格式化--------------------------------------------------clear all; clc; format long; %------给定初始化条件---------------------------------------------- c1=1.4962;%学习因子1 c2=1.4962;%学习因子2 w=0.7298;%惯性权重 MaxDT=1000;%最大迭代次数 D=10;%搜索空间维数(未知数个数) N=40;%初始化群体个体数目 eps=10^(-6);%设置精度(在已知最小值时候用) %------初始化种群的个体(可以在这里限定位置和速度的范围)------------for i=1:N for j=1:D x(i,j)=randn;%随机初始化位置 v(i,j)=randn;%随机初始化速度 end end %------先计算各个粒子的适应度,并初始化Pi和Pg----------------------for i=1:N p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end pg=x(1,:);%Pg为全局最优 for i=2:N if fitness(x(i,:),D) pg=x(i,:); end end %------进入主要循环,按照公式依次迭代,直到满足精度要求------------for t=1:MaxDT for i=1:N v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:)); x(i,:)=x(i,:)+v(i,:); if fitness(x(i,:),D) p(i)=fitness(x(i,:),D); y(i,:)=x(i,:);

粒子群算法解决函数优化问题

粒子群算法解决函数优化问题 1、群智能算法研究背景 粒子群优化算法(Particle Swarm Optimization,PSO)是由Kennedy 和Eberhart 在研究鸟类和鱼类的群体行为基础上于1995 年提出的一种群智能算法,其思想来源于人工生命和演化计算理论,模仿鸟群飞行觅食行为,通过鸟集体协作使群体达到优。 PSO算法作为一种新的群智能算法,可用于解决大量非线性、不可微和多峰值的复杂函数优化问题,并已广泛应用于科学和工程领域,如函数优化、神经网络训练、经济调度、模式识别与分类、结构设计、电磁场和任务调度等工程优化问题等。 PSO算法从提出到进一步发展,仅仅经历了十几年的时间,算法的理论基础还很薄弱,自身也存在着收敛速度慢和早熟的缺陷。如何加快粒子群算法的收敛速度和避免出现早熟收敛,一直是大多数研究者关注的重点。因此,对粒子群算法的分析改进不仅具有理论意义,而且具有一定的实际应用价值。 2、国内外研究现状 对PSO算法中惯性权重的改进:Poli等人在速度更新公式中引入惯性权重来更好的控制收敛和探索,形成了当前的标准PSO算法。 研究人员进行了大量的研究工作,先后提出了线性递减权值( LDIW)策略、模糊惯性权值( FIW) 策略和随机惯性权值( RIW) 策略。其中,FIW 策略需要专家知识建立模糊规则,实现难度较大,RIW 策略被用于求解动态系统,LDIW策略相对简单且收敛速度快, 任子晖,王坚于2009 年,又提出了基于聚焦距离变化率的自适应惯性权重PSO算法。 郑春颖和郑全弟等人,提出了基于试探的变步长自适应粒子群算

法。这些改进的PSO算法既保持了搜索速度快的特点, 又提高了全局搜索的能力。 对PSO算法的行为和收敛性的分析:1999 年采用代数方法对几种典型PSO算法的运行轨迹进行了分析,给出了保证收敛的参数选择范围。在收敛性方面Fransvan den Bergh引用Solis和Wets关于随机性算法的收敛准则,证明了标准PSO算法不能收敛于全局优解,甚至于局部优解;证明了保证收敛的PSO算法能够收敛于局部优解,而不能保证收敛于全局优解。 国内的学者:2006 年,刘洪波和王秀坤等人对粒子群优化算法的收敛性进行分析,指出它在满足收敛性的前提下种群多样性趋于减小,粒子将会因速度降低而失去继续搜索可行解的能力,提出混沌粒子群优化算法。 2008 年,黄翀鹏和熊伟丽等人分析惯性权值因子大小对PSO算法收敛性所带来的影响,对粒子群算法进行了改进。2009 年,高浩和冷文浩等人,分析了速度因子对微粒群算法影响,提出了一种基于Gaussian 变异全局收敛的粒子群算法。并证明了它能以概率 1 收敛到全局优解。 2010 年,为提高粒子群算法的收敛性,提出了基于动力系统的稳定性理论,对惯性权重粒子群模型的收敛性进行了分析,提出了使得在算法模型群模型收敛条件下的惯性权重和加速系数的参数约束关系,使算法在收敛性方面具有显著优越性。在PSO算法中嵌入别的算法的思想和技术。 1997年,李兵和蒋慰孙提出混沌优化方法; 1998年,Angeline在PSO算法中引入遗传算法中的选择算子,该算法虽然加快了算法的收敛速度,但同时也使算法陷入局部优的概率大增,特别是在优化Griewank 基准函数的优值时得到的结果不理想; 2004 年,高鹰和谢胜利将混沌寻优思想引入到粒子群优化算法中,首先对当前群体中的优粒子进行混沌寻优, 再用混沌寻优的结果随机替换群体中的一个粒子,这样提出另一种混沌粒子群优化算法。

图像拼接算法及实现.doc

图像拼接算法及实现(一) 来源:中国论文下载中心 [ 09-06-03 16:36:00 ] 作者:陈挺编辑:studa090420 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this paper, the algorithm adapted, in the repetitive texture, such as relatively large rotation more difficult to automatically match occasions can still achieve an accurate image registration. Key words: image mosaic, image registration, image fusion, panorama 第一章绪论

(完整word版)基本粒子群算法的原理和matlab程序.doc

基本粒子群算法的原理和matlab 程序 作者—— niewei120 (nuaa) 一、粒子群算法的基本原理 粒子群优化算法源自对鸟群捕食行为的研究,最初由Kennedy 和 Eberhart 提出,是一种通 用的启发式搜索技术。一群鸟在区域中随机搜索食物,所有鸟知道自己当前位置离食物多远, 那么搜索的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。PSO 算法利用这种模型得到启示并应用于解决优化问题。PSO 算法中,每个优化问题的解都是粒子在搜索 空间中的位置,所有的粒子都有一个被优化的目标函数所决定的适应值,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。 PSO 算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。每个粒子有了初始位置与初始速度。然后通过迭代寻优。在每一次迭代中,每个粒子通过跟踪两个“极值”来更新自己在解空间中的空间位置与飞翔速度。第一个极值就是单个粒子本身在迭代过程中找到的最优解粒子,这个粒子叫做个体极值。另一个极值是种群所有粒子在迭代过程中所找到的最优解粒子,这个粒子是全局极值。上述的方法叫全局粒子群算法。如果不用种群所有粒子而只用其中一部分作为该粒子的邻居粒子,那么在所有邻居粒子中的极值就是局部极值,该方法称为局部PSO 算法。 速度、位置的更新方程表示为: 每个粒子自身搜索到的历史最优值p i,p i=(p i1 ,p i2 ,....,p iQ ), i=1,2,3,....,n 。所有粒子搜索到的最优值p g, p g=(p g1 ,p g2,....,p gQ ),注意这里的p g只有一个。 是保持原来速度的系数,所以叫做惯性权重。 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为 2 。 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。 是[0,1] 区间内均匀分布的随机数。 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设 置为 1 。

基于比值法图像拼接的等比例改进算法

收稿日期:2009-06-26;修回日期:2009-09-10 作者简介:冉柯柯(1982-),女,河南人,硕士研究生,研究方向为数字图像处理和模式识别;王继成,教授,研究员,研究方向为模式识别与智能系统、数字图像和语音处理。 基于比值法图像拼接的等比例改进算法 冉柯柯,王继成 (同济大学电子与信息工程学院,上海201804) 摘 要:图像拼接技术是通过将一组具有部分重叠的图像或视频图像进行无缝拼接后而得到的具有高分辨率的图像或全景图,是图像处理技术的一个重要内容。主要介绍了图像拼接技术的主要步骤、比值匹配法的基本原理和优缺点,然后针对此算法容易出现误匹配的问题,提出了一种改进的算法。通过引用等比例数列的思想增加区域像素信息,与传统方法相比,这种方法可以更快更准地找到最佳匹配位置,从而提高了算法的准确性。实验结果证明了此算法可以有效的消除误匹配。 关键词:图像拼接;图像匹配;比值匹配法;图像融合 中图分类号:TP391 文献标识码:A 文章编号:1673-629X (2010)02-0005-04 An Improved Mosaic Algorithm B ased on R atio Matching Using G eometric Proportion RAN Ke 2ke ,WAN G Ji 2cheng (Department of Electronics and Information Engineering ,Tongji University ,Shanghai 201804,China ) Abstract :Image stitching is normally used to make up a seamless and high resolution with a set of the overlap parts of images and videos.It is one of important technologies for image processing.Presented the main step of the image mosaics ,basic principle and advantages and disadvantages of the ration matching algorithm ,based on the ratio matching algorithm ,an improved algorithm of image stitching is pre 2sented in order to resolve the pseudo https://www.doczj.com/doc/364434135.html,ing the theory of geometric proportion ,comparing with traditional methods ,the algo 2rithm can find the optimal position more quickly and more exactly.The experiments show that this method can eliminate false matches validly. K ey w ords :image stitching ;image registration ;ratio matching ;image fusion 0 引 言 随着数码照相设备的广泛普及,越来越多的数码图像被应用于各个方面的研究中。在实际的科学研究和工程项目中,经常会用到超过人眼视角的高分辨率图像。为了得到大视角的高分辨率图像,人们往往利用广角镜头和扫描式相机来解决部分问题。但这些设备都有价格昂贵和使用复杂等缺点,另外,在一幅低分辨率的图像中得到超宽视角会损失景物中物体的分辨率,而且,广角镜头的图像边缘会产生难以避免的扭曲变形。所以为了在不降低图像分辨率的条件下获取大视野范围的场景照片,人们采用了图像拼接技术来将多幅照片拼接成一幅大的照片。 研究图像拼接技术的目的就是利用计算机进行自 动匹配,将具有重叠区域的多幅图片合成为一幅宽角度图片,以此来扩大视区的范围。现在图像拼接技术已经成为数字图像处理领域的一个研究热点,被广泛应用于虚拟现实、计算机视觉、遥感图像处理、医学图像分析、计算机图形学、视频的索引和检索以及数字视频压缩等领域。 图像拼接技术主要包括图像配准和图像融合两个关键环节。图像配准是图像拼接的核心部分,它直接关系到图像拼接算法的成功率和执行速度。图像配准算法大体可分为基于特征的图像配准和基于区域的图像配准两类[1]。基于特征的图像拼接是利用图像的明显特征(角点或轮廓等)来估算图像之间的变换,从而确定匹配位置。基于区域的方法是利用图像的像素值之间的相关性来寻找最佳匹配点的。常用的方法[2]有点匹配法、线匹配法、面积匹配法[3]、网格匹配法[4]和比值匹配法[5]。比值匹配法具有计算速度快等特点,广泛应用于图像拼接技术中。但是这种方法由于其自 第20卷 第2期2010年2月 计算机技术与发展COMPU TER TECHNOLO GY AND DEV ELOPMEN T Vol.20 No.2Feb. 2010

基于混合粒子群算法的PID 参数寻优

基于混合粒子群算法的PID参数寻优 曹志松,朴英 (清华大学航天航空学院,北京 100084) 摘要: 提出一种将单纯形法SM与粒子群算法PSO结合的混合粒子群算法HPSO。通过对3种常用测试函数进行优化和比较,结果表明HPSO比PSO和SM都更容易找到全局最优解。然后用HPSO优化算法对某涡扇发动机PID控制中的参数进行优化并将结果与混合遗传算法HGA的结果进行比较,结果表明HPSO在找寻最优解效率上好于HGA。且算法实现简单,具有很高的可靠性,是一种PID控制参数寻优的有效方法。 关键词: 粒子群优化算法; 单纯形算法; 航空发动机; PID控制; 遗传算法 中图分类号:TP391 文献标识码:B Optimization Methodology of PID Parameters for Aeroengines Based on Hybrid PSO CAO Zhi-song, PIAO Ying (School of Aerospace, Tsinghua University, Beijing 100084, China) Abstract: A hybrid particle swarm optimization algorithm (HPSO) was proposed based on PSO and simplex method (SM). HPSO, PSO and SM are used to resolve three widely used test functions’ optimization problems. Results show that HPSO has greater efficiency and better performance than PSO and SM. HPSO is used to optimize the aeroengine PID controller parameters, and the result indicates that HPSO can obtain the optimum solutions more easily than HGA. Although very easy to implement, this HPSO is an efficient way to optimize the PID controller parameters. Key words: particle swarm optimization(PSO); simplex algorithm(SM); aeroengine; PID control; genetic algorithm(GA) 1 引言 工程实际中的条件优化问题本质上可以转换为函数优化问题,对于函数优化问题,现有许多成熟的解决方法,如间接寻优法, 梯度法, 爬山法等。而在工程上单纯形法、专家整定法应用较广, 虽然两者都具有良好的寻优特性, 但却存在着一些弊端, 单纯形法对初值比较敏感, 容易陷入局 部最优解, 造成寻优失败, 专家整定法则需要太多的经验, 不同的目标函数对应不同的经验,而整理知识库又是一项长时间的工程。为了解决这一问题可以采用具有全局搜索能力的算法来解决,如遗传算法GA,粒子群算法PSO等。 PSO算法是美国Kennedy和Eberhart博士受鸟群觅食行为的启发,于1995年提出的一种生物进化算法[1]。PSO算法简单,易于实现。但是它的局部搜索能力比较差,不能有效求解高维、复杂的工程问题。本文提出了一种将单纯形法SM与粒子群算法PSO结合的混合粒子群算法HPSO。它将SM有机地融入PSO中,不但可以减少计算规模,而且有效的增强了PSO算法的局部搜索能力,提高了算法的鲁棒性能。 2 HPSO算法 PSO是一新兴的全局优化方法,但是它的局部搜索能力比较差,不能有效求解高维、复杂的工程问题,将PSO与局部搜索技术结合起来;在搜索过程中,以PSO的优化结果作为局部搜索的起点、利用局部搜索的结果指导PSO的搜索方向,双方有机的结合,达到提高搜索效率的目的。SM是确定性的单目标优化方法, SM利用n维空间中的n+1个顶点的多面体的反射、内缩、缩边等性质进行优化,从一个优良的初始点出发,可以迅速地得到单目标的局部最优解[2]。HPSO算法将SM方法和PSO方法混合,形成优势互补,在优化n维变量时,从PSO搜索的结果中选择包含最优粒子在内的空间位置互不相同的n+1个粒子作为SM的顶点、再用SM搜索若干步,并用搜索后的各顶点代替当前适应值最差的n+1个粒子,然后进行PSO的下一步搜索。 另外,通过分析标准PSO算法可知,当w较大时,PSO算法具有全局收敛性,但运算量很大;

粒子群优化算法介绍及matlab程序

粒子群优化算法(1)—粒子群优化算法简介 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物。 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化 第一次更新位置

第二次更新位置 第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

粒子群优化算法(2)—标准粒子群优化算法 在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。这个公式就是粒子群算法中的位置速度更新公式。下面就介绍这个公式是什么。在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。这个时候我们的每个粒子均为二维,记粒子P1=(x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。这里n 为粒子群群体的规模,也就是这个群中粒子的个数,每个粒子的维数为2。更一般的是粒子的维数为q ,这样在这个种群中有n 个粒子,每个粒子为q 维。 由n 个粒子组成的群体对Q 维(就是每个粒子的维数)空间进行搜索。每个粒子表示为:x i =(x i1,x i2,x i3,...,x iQ ),每个粒子对应的速度可以表示为v i =(v i1,v i2,v i3,....,v iQ ),每个粒子在搜索时要考虑两个因素: 1. 自己搜索到的历史最优值 p i ,p i =(p i1,p i2,....,p iQ ),i=1,2,3,....,n ; 2. 全部粒子搜索到的最优值p g ,p g =(p g1,p g2,....,p gQ ),注意这里的p g 只有一个。 下面给出粒子群算法的位置速度更新公式: 112()()()()k k k k i i i i v v c rand pbest x c rand gbest x ω+=+??-+??-, 11k k k i i i x x av ++=+. 这里有几个重要的参数需要大家记忆,因为在以后的讲解中将会经常用到,它们是: ω是保持原来速度的系数,所以叫做惯性权重。1c 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。2c 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。()rand 是[0,1]区间内均匀分布的随机数。a 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设置为1。这样一个标准的粒子群算法就介绍结束了。下图是对整个基本的粒子群的过程给一个简单的图形表示。 判断终止条件可是设置适应值到达一定的数值或者循环一定的次数。 注意:这里的粒子是同时跟踪自己的历史最优值与全局(群体)最优值来改变自己的位置预速度的,所以又叫做全局版本的标准粒子群优化算法。

图像拼接算法及实现(一).

图像拼接算法及实现(一) 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this

相关主题
文本预览
相关文档 最新文档