(2)求复合函数单调区间的一般步骤:①确定函数的定义域;②求简单函数
的单调区间;③依据“同增异减”确定原函数的单调区间.
(3)单调区间只能用区间表示,不能用不等式或集合表示,当函数有多个单
调区间时,不能用并集符号“∪”表示.
对点训练2(1)(2021山东聊城高三月考)已知函数f(x)的图象如图所示,则函
间是(- ,0),(0, ).
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)如果f(-1)<f(2),那么函数f(x)在[-1,2]上单调递增.( × )
(2)若函数f(x)在区间(1,2]和(2,3)上均单调递增,则函数f(x)在区间(1,3)上单
调递增.( × )
22
21
f(x1)-f(x2)= +1 − +1
2
1
=
2(1 -2 )
.
(1 +1)(2 +1)
2(1 -2 )
因为-1<x1<x2,所以 x1-x2<0,x1+1>0,x2+1>0,于是( +1)( +1)<0,即 f(x1)-f(x2)<0,
2
1
故 f(x1)<f(x2).
令t=4x-x2,则y=log3t,由于y=log3t是(0,+∞)上的增函数,t=4x-x2在(-∞,2)上单
调递增,在(2,+∞)上单调递减,故函数f(x)的单调递增区间是(0,2),单调递减
区间是(2,4).
方法总结求函数单调区间的方法及注意点
(1)求单调区间的常用方法:①定义法;②图象法;③导数法.
微点拨函数单调性定义的等价形式