量子力学(第六章)
- 格式:ppt
- 大小:1.77 MB
- 文档页数:71
第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m Mr p-==∙μ (1) 总动量1p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121pMP m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m R ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’)总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m u R p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p mMr p p R -⨯++⨯=)2)(1(p r P R ⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。
总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛+=+=μμ2122222122112222122222m m p P u m pPm m um m p P u m pPm m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p Pm m m Pm m m μ2222pMP +=(4’)[从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、P 和L 的算术表示式r i p ∇-= R i P ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m mMi p m p mMp ∇-∇-=-=(1)其中 1111z k y j x ir ∂∂+∂∂+∂∂=∇,而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111,同理,y YM m y ∂∂+∂∂=∂∂11zZM m z ∂∂+∂∂=∂∂11;(利用上题(17)(18)式。
第六章 角动量初步6-1 分别用球坐标和直角坐标证明zL ˆ是厄米算符 6-2 试证明:ϕθϕθψ33sin )(),,(i e r f r =为2ˆL 和zL ˆ的共同本征函数,并求相应的本征值。
说明当体系处于此状态时,yx L L ˆ,ˆ有无确定值。
6-3 设体系处在102111Y C Y C +=ψ的状态中,试:(1)将此波函数归一化;(2)求力学量2L的测量值及相应的几率;(3)求力学量z L 的可能值及相应的几率;(4)x L 和y L 的可能值及相应的几率。
6-4 设在2ˆL 和z L ˆ的共同表象中,算符y L 的矩阵表示为⎪⎪⎪⎭⎫⎝⎛--=0000022i i i i L y ,求它的本征值和归一化的本征函数,并将它表示成m Y 1的线性叠加。
6-5 求粒子处在态lm Y 时,轨道角动量的x 分量和y 分量的平均值x L 和y L ,并证明)(2)()(2222m l l L L y x -+=∆=∆ 6-6 设体系处于zL ˆ的本征态lm Y ,求证轨道角动量沿与z 轴成θ角方向上的分量的平均值为θcos m 了。
6-7 设体系处于某一状态,在该状态中测量力学量L 2 得到的值是22 ,测量力学量zL ˆ得到的值为 -,求测量力学量x L 和y L 的可能值。
6-8 求L 2 ,x L 的共同本征函数,限定222 =L 。
6-9 对于11Y ,求x L 的取值及相应的几率。
6-10 试证明:(1){}x r L L r i L x x L x )ˆˆ()ˆˆ(ˆˆˆˆ22 ⨯-⨯=- (2){}xx x x p L L p i L p p L )ˆˆ()ˆˆ(ˆˆˆˆ22 ⨯-⨯=- 6-11 证明: (1)p i p L L pˆ2ˆˆˆˆ =⨯+⨯ (2)⎥⎦⎤⎢⎣⎡=⨯-⨯p L p L L p i ˆ,ˆ)ˆˆˆˆ(2 6-12 证明:p r i p r p r L∙+∙-=2222)(ˆ,进而证明rr r r Lr p ∂∂∂∂-=2222221ˆ1ˆ6-13 对于(z L L ˆ,ˆ2)的共同本征态),(ϕθlm Y ,计算2x L 和2yL 的平均值,以及y x L L ∆∆,,验证测不准关系。
第六章:中心力场[1]质量分别为 m 1,m 2的两个粒子组成的体系,质心座标及相对座R标r为:R =212211m m r m r m ++ (1)r 12r r r-= (2)试求总动量21p p P+=及总角动量21l l L +=在R ,r表象中的算符表示。
1. [解] (a )合动量算符21p p P+=。
根据假设可以解出1r ,2r令21m m m +≡ : r m m R r121-= (3)r m m R r212+= (4)设各个矢量的分量是),,(1111z y x r ,),(22,22z y x r ,),,(z y x r和),,(Z Y X R 。
为了计算动量的变换式先求对1x , 2x 等的偏导数:xX m m x x x X x X x ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂1111 (5)xX m m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂2222 (6) 关于1y ∂∂,2y ∂∂,1z ∂∂,2z ∂∂ 可以写出与(5)(6)类似的式子,因而: )()(212^1^^2^1^x x i p p p p P x x x x ∂∂+∂∂=+=+==Xi x X m m x X m m i ∂∂=∂∂+∂∂+∂∂-∂∂ )(21 RiZ i k Y i j X i i P ∇=∂∂+∂∂+∂∂= ^(b)总角动量)(2211^2^1^∇⨯+∇⨯=+=r r il l Lx x r r iL )(2211^∇⨯+∇⨯==)()(2222111y z z y i z z y i ∂∂-∂∂+-∂∂ 利用(3),(4),(5),(6): ))({(12^zZ m m y m m Y i L x ∂∂-∂∂-=))((12y Y m m z m m Z ∂∂-∂∂-- ))((21zZ m m y m m Y ∂∂+∂∂++ )})((21yY m m z m m Z ∂∂+∂∂+- =)()({1y Z z Y Y Z Z Y m m i ∂∂-∂∂-∂∂-∂∂ )()(221y z z y m m Y z Z y m m m ∂∂-∂∂+∂∂-∂∂-)()(2yZ z Y Y Z Z Y m m ∂∂-∂∂+∂∂-∂∂+)}()(2221yz z y m m Y z Z y m m m ∂∂-∂∂+∂∂-∂∂+=)}(){(yz z y Y Z Z Yi∂∂-∂∂+∂∂-∂∂ =x r R r iR i )(∇⨯+∇⨯因而 r R r iR i L ∇⨯+∇⨯=^[2]证明r r r ∂∂+=∇1],[212,∇=∇],[212r(证明)第一式ψ)(2122∇-∇r r =))((21222222222ψz y x zy x ++∂∂+∂∂+∂∂ )(21222222222zy x z y x ∂∂+∂∂+∂∂++-ψψψ但xz y x z y x x z y x x∂∂+++++=++∂∂ψψψ222222222)( 22222222()(z y x x x z y x x ++∂∂=++∂∂ψψ+)222xzy x ∂∂++ψ =232222222)())((z y x x x xz y x ++-+∂∂++ψψψ+2222223222)(xz y x z y x x x∂∂+++++∂∂ψψ即2222222222x z y x z y x x ∂∂++-++∂∂ψψ=232222222)(2z y x x zy x x x++-+++∂∂ψψψ同样写出关于y,z 的式子,相加得:22222222{21)(21zy x zz y y x xr r ++∂∂+∂∂+∂∂=∇-∇ψψψψ+}3222zy x ++-ψψ=r z r z y r y x r x ψψψψ+∂∂+∂∂+∂∂ =ψ)1(rr +∂∂ 因ψ是任意函数,因而第一式得证。