电动力学第三章-余飞(完整版)
- 格式:ppt
- 大小:7.50 MB
- 文档页数:163
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
第三章电磁相互作用的基本规律目录:习题3.1 带电粒子在电磁场中的运动规律 (2)习题3.2 电磁场在外场作用下的运动规律 (2)习题3.3 电磁场的能动张量定理 (20)习题3.4 电磁场的角动量张量定理 (24)习题3.5 介质中的Maxwell方程组 (25)习题3.6 介质中电磁场能-动量与角动量定理 (39)习题3.8 波动方程 (50)习题3.9 平面电磁波的偏振 (55)习题3.10 电磁场的螺旋度 (58)规范不变性的内容都空了,没有处理。
最后两节也没有处理,不过本身做的很详细。
其他都好好看了。
习题3.11. 试证作用量 int 0bp p free a S S S m cds eA dx μμ⎡⎤=+=-⎣⎦⎰在()1U 规范变换 ()111A UA U iU U eμμμ--'=+∂ 下不变。
式中()exp U ie χ∈证明:2. 将带电粒子的加速度用它的速度以及电场强度和磁感强度表示出来解:加速度定义:dva dt =由于()03/20002122d m v dp dv d v dv m m v ma m v dt dt dt dt cdt γγγγ--⎛⎫⎛⎫==+=+-⋅ ⎪ ⎪⎝⎭⎝⎭所以5/25/222dp vv vv ma ma ma I a M dt c c γγ--⎛⎫⎛⎫=+⋅=⋅+=⋅ ⎪ ⎪⎝⎭⎝⎭ 而dpe E v B dt⎡⎤=-+⨯⎣⎦ 所以1a e E v B M -⎡⎤=-+⨯⋅⎣⎦ 其中5/22vv M m I c γ-⎛⎫=+ ⎪⎝⎭ ,是一个二阶张量 习题3.21. 证明由式(3.2.2)定义的电荷密度与式(3.2.3)定义的三维电流密度满足连续性方程。
证明:由式(3.2.2)知电荷密度为3()()()()l l lx Q x x ρδ=-∑由式(3.2.3)知三维电流密度为()33()()()()()()()l l l l l l ldx dx dx j x Q x x Q x x dt dt dt ρδδ==-=-∑∑有33()()()()()()3()()()()()()l l l l l l l l l l l lx x x x dx Q Q t t x dt x x dx Q x dt δδρδ∂-∂-∂==⋅∂∂∂∂-=⋅-∂∑∑∑而()3()()(())l l l ldx j Q x x dt δ∇⋅=∇⋅-∑由于()l dx dt 与x 无关,故3()()()()l l l ldx x x j Q dt x δ∂-∇⋅=⋅∂∑所以0j tρ∂+∇⋅=∂2. 试证:直至A μ的一阶导数,除开一个常数因子,电磁场场强张量的对偶张量是在(1)U 规范变换下不变的唯一的一个二阶赝张量。
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。