2017-2018学年天一大联考(安徽版)高一期末考试数学试题(解析版)
- 格式:doc
- 大小:2.14 MB
- 文档页数:17
滁州市2017-2018学年第一学期高一期末考试数学试卷第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则()A. B. C. D.【答案】D2. 已知角的始边是轴的正半轴,终边经过点,且,则()A. B. C. D.【答案】A【解析】依题意可知,故.3. 计算:()A. 3B. 2C.D.【答案】D【解析】原式.4. 已知向量,若,则()A. B. 9 C. 13 D.【答案】C【解析】由于两个向量垂直,故,故.5. 若幂函数的图象过点,则满足的实数的取值范围是()A. B. C. D.【答案】B【解析】依题意有,,.6. 函数的最大值是()A. B. C. 1 D.【答案】B【解析】,故最大值为.7. 下列函数是奇函数,且在上是增函数的是()A. B. C. D.【答案】B【解析】选项为偶函数,选项为非奇非偶函数.选项在为减函数,在为增函数.选项在上为增函数,符合题意.【点睛】本题主要考查函数的奇偶性和单调性.判断函数的奇偶性,首先判断函数的定义域是否关于原点对称,选项定义域显然不关于原点对称,故为非奇非偶函数.然后计算,化简后看等于还是.函数的单调性中是对钩函数,在不是递增函数.8. 若,是第二象限角,则()A. B. C. D.【答案】C【解析】由于角为第二象限角,故,所以,,故【点睛】本题主要考查同角三角函数的基本关系式,考查二倍角公式和两角差的正弦公式.首先根据角的正弦值和所在的象限,求得角的余弦值,然后利用二倍角公式求得的正弦值和余弦值,最后利用两角差的正弦公式展开所求式子,代入已知数值即可求得最后结果.9. 函数的零点为,则()A. B. C. D.【答案】C【解析】,,故函数的零点在区间.10. 在平行四边形中,是中点,是中点,若,则()A. B. C. D.【答案】A【解析】连接,由于为中点,故.11. 曲线,曲线,下列说法正确的是()A. 将上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移个单位,得到B. 将上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向左平移个单位,得到C. 将上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移个单位,得到D. 将上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向左平移个单位,得到【答案】B【解析】由于,故首先横坐标缩小到原来得到,再向左平移个单位得到.故选.12. 若不等式对任意的恒成立,则的取值范围是()A. B. C. D.【答案】D【解析】当时,原不等式化为,不恒成立,排除,故选.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13. 若,则__________.【答案】【解析】分子分母同时除以得,解得,故.14. ,则__________.【答案】【解析】,,故原式.15. 若函数在是单调函数,则实数的取值范围是__________.【答案】【解析】由于函数为二次函数,对称轴为,只需对称轴不在区间上即可,即或,解得.【点睛】本题主要考查二次函数单调区间的知识.对于二次函数来说,它的单调区间主要由开口方向和对称轴来决定.当开口向上时,左减右增,当开口向下是,左增右减.本题中由于题目只需要区间上的单调函数,不需要递增还是递减,故只需对称轴不在给定区间内即可. 16. 已知函数在区间内单调递减,则的最大值为__________.【答案】1【解析】,根据单调性有,解得,故,解得,当时,................三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知集合.(1)求;(2)若,求实数的取值范围.【答案】(1);(2)【解析】【试题分析】(1)首先求得,由此求得的值.(2),由于,故,解得.【试题解析】解:,(1);(2)∵,∴,∵,∴,∴.18. 已知向量.(1)若与共线,求的值;(2)记,求的最大值和最小值,及相应的的值.【答案】(1)(2)当时,取得最大值2;当时,取得最小值-1.【解析】【试题分析】(1)利用两个向量共线,则有,解方程求得的值.(2)利用向量坐标运算化简,进而求得的最大值和最小值,及相应的的值. 【试题解析】解:(1)∵与共线,∴,∴,∵,∴;(2),∵,∴,∴,∴,当即时,取得最大值2;当,即时,取得最小值-1.19. 已知函数的图象过点.(1)若,求实数的值;(2)当时,求函数的取值范围.【答案】(1)(2)【解析】【试题分析】(1)将点代入函数,由此求得的值,进而得出的表达式.解方程,可求得实数的值.(2)将分离常数,得到,它在上为减函数,在区间端点取得最小值和最大值.由此求得函数的值域.【试题解析】解:(1),∴,,∴,∴;(2),显然在与上都是减函数,∵,∴在上是减函数,∵,∴.20. 函数的部分图象如图所示.(1)求的值;(2)求图中的值及函数的递增区间.【答案】(1)(2)【解析】【试题分析】(1)根据图像最大值求得,根据可求得,在根据图像上一个点,可求得的值.(2)利用求出,利用周期为可求得的值.将代入余弦函数的单调递增区间,求得的范围即函数的递增区间.【试题解析】解:(1)由图知,∴,∴,又,∴,且,∴;(2)由(1)知,由,∴,由得,∴的单调增区间为.21. 已知都是锐角,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】【试题分析】先求得、、和的值.(1)利用求得的值;(2)利用求得的值.【试题解析】解:因为都是锐角,所以,且,所以,(1);(2).【点睛】本题主要考查同角三角函数关系,考查两角和与差的正弦、余弦公式,考查化归与转化的数学思想方法.先根据题目所给定两个角是锐角和两个正弦值,求得相应的余弦值和倍角的余弦值和正弦值.然后将所求角转化为已知角,最后利用两角和与差的公式求解出结果.22. 已知函数.(1)求证:是奇函数;(2)判断的单调性,并证明;(3)已知关于的不等式恒成立,求实数的取值范围.【答案】(1)见解析(2)见解析(2)【解析】【试题分析】(1)定义域为关于原点对称,判断故函数为奇函数.(2)函数在定义域的两个区间上都是减函数.利用定义法,计算,由此判断出函数的单调性.(3)根据函数的单调性和奇偶性,将原不等式转化为即,解不等式得.【点睛】本题主要考查函数奇偶性的判断,考查利用定义法求函数单调性,考查利用函数的奇偶性和单调性求参数的取值范围.判断函数的奇偶性首先要求出函数的定义域,看定义域是否关于原点对称,然后再判断与的关系,进而判断函数的奇偶性.定义法判断函数的单调性,需计算的值来判断.【试题解析】(1)证明:由,得,∵,∴是奇函数;(2)解:的单调减区间为与没有增区间,设,则.∵,∴,∴,∴,∴,∴在上是减函数,同理,在上也是减函数;(3)是奇函数,∴,∴化为,又在上是减函数,∴,∴,即.。
安徽省芜湖市2017-2018学年高一上学期期末考试数 学(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第I 卷(选择题)一、单选题1.设全集是实数集,,,则图中阴影部分所表示的集合是( )A.B.C.D.2.已知,则等于( )A.B.C.D.3.点P 从()1,0出发,弧长到达Q 点,则Q 点的坐标为( )A.B.C.D. 4.将函数()sin 2y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( )A. 34πB. 4π C. 0 D. 4π-5.某购物网站在2017年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后〕满300元时可减免100元”.小淘在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为( )A. 1B. 2C. 3D. 46.单位圆O 中一条弦AB 长为则·AB OB =( )A. 1B.C. 2D. 无法确定7.已知,,,则( )A.B.C.D.8.在正方形ABCD 中,点E 是DC 的中点,点F 是BC 上靠近B 的三等分点. 若EF mAB nAD =+,则23m n -=( )A. 1B. 2C. 3D. 4 9.已知cos sin 6a a π⎛⎫-+= ⎪⎝⎭,则7sin 6a π⎛⎫+ ⎪⎝⎭的值为( ) A.12B. C. 45- D. 12- 10.2cos 04442x x m π--≥对于,33x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则实数m 的取值范围是( )A. ,-∞(B. ,⎛-∞ ⎝⎦C. ⎣D. )∞ 11.下列4个函数中: ①20171y x =-;(0a >且1a ≠);(0a >且1a ≠) 其中既不是奇函数,又不是偶函数的是( ) A. ① B. ②③ C. ①③ D. ①④12.定义在R 上的函数若关于x 的方程()()210f x mf x m ⎡⎤-+-=⎣⎦ (其中2m >)有n 个不同的实根1x ,2x ,…, n x ,则()12n f x x x ++=( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号卷二、填空题13.集合{}|20M x Nx =∈-≤≤的子集个数为__________. 14的值域是 .15__________.16.电流强度(安)随时间秒变化的函数的图象如下图所示,则当,秒时,电流强度是__________.17.已知向量,,若向量与的夹角为钝角,则的取值范围为______.三、解答题18.求值: 19.已知集合{}2|320,A x R ax x a R =∈-+=∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来.20.已知锐角αβ,满足()tan sin2αββ-=,求证: tan tan 2tan2αββ+=.21(1)求sin α的值; (2)求β的值.22.在已知函数,(其中,,)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为)求的解析式;(2)当时,求的值域;(3)求在上的单调区间.23.若非零函数对任意实数,均有,且当时,;(1)求证;(2)求证为减函数;(3)当时,解不等式.安徽省芜湖市2017-2018学年高一上学期期末考试数 学 (A )答 案1.C 【解析】或,由韦恩图知阴影部分表示的集合为,又,,故选C.2.A 【解析】令,又,即,故选A. 3.C【解析】点P 从()1,0出发,Q 点,C. 4.B【解析】试题分析:由题意得sin 2sin 284y x x ππϕϕ⎛⎫⎛⎫⎛⎫=++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称,所以()(),,424k k Z k k Z πππϕπϕπ+=+∈=+∈ ϕ的一个可能取值为4π,选B. 考点:三角函数图像变换 【思路点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数y =Asin(ωx +φ),x ∈R 是奇函数⇔φ=kπ(k ∈Z);函数y =Asin(ωx +φ),x ∈R 是偶函数⇔φ=kπ+(k ∈Z);函数y =Acos(ωx +φ),x ∈R 是奇函数⇔φ=kπ+(k ∈Z);函数y =Acos(ωx +φ),x ∈R 是偶函数⇔φ=kπ(k ∈Z); 5.C【解析】试题分析:为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单金额不少于500.因此每张订单至少11件,所以最少需要下的订单张数为3张,最多下的订单张数为4张.当下的订单张数为3张时,所需钱数为()48420.6300909.6⨯⨯-=元,而下的订单张数为4张时(购入44件),所需钱数为()48440.6400867.2⨯⨯-=元.由于条件限制不许多买,所以选C. 考点:函数实际应用 6.A【解析】单位圆O 中一条弦AB 长为则222+,OA OB AB OAB =∆ 是等腰直角三角形,所以AB 与OB 成的角为, 2·21AB OB=⨯=,故选 A. 7.D 【解析】,即,,即,,故选D.【 方法点睛】本题主要考查指数函数的性质、对数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.【解析】在正方形ABCD 中,点E 是DC 的三等分点,故1212EF EC CF AB CB AB AD =+=+=-, 故选C. 9.C【解析】由题意可得:3cos sin cos sin 62265ππααααα⎛⎫⎛⎫-+=+=+=⎪ ⎪⎝⎭⎝⎭ 则:74sin sin 665ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭. 本题选择C 选项.10.B【解析】试题分析:因为21cos2cos 44422222xx x x x+-=-=23x π⎛⎫+ ⎪⎝⎭,所以原不等式等价于min 23x m π⎤⎛⎫≤+⎪⎥⎝⎭⎦在,33x ππ⎡⎤∈-⎢⎥⎣⎦恒成立.因为6232x πππ≤+≤23x π⎛⎫+ ⎪⎝⎭∈⎣,所以m ≤,故选B . 考点:1、倍角公式;2、两角和的正弦公式;3、正弦函数的性质.【方法点睛】解决恒成立问题的关键是将其进行等价转化,使之转化为函数的最值问题,或者区间上的最值问题,使问题得到解决.具体转化思路为:若不等式()f x A >在区间D 上恒成立,则等价于在区间D 上()f x 的最小值大于A ;若不等式()f x B <在区间D 上恒成立,则等价于在区间D 上()f x 最大值小于B . 11.C【解析】其中①不过原点,不可能为奇函数,直线20171y x =-不关于y 轴对称,所以函数不是偶函数,①符合题意;②由得20072007x -<<,则则()()f x f x-=-,即函数()f x是奇函数,②不合题意;③中定义域不关于原点对称,则即不是奇函数,又不是偶函数,③符合题意;④,则,则()f x为偶函数,④不合题意,故选C.【方法点睛】本题主要考查函数的奇偶性,属于中档题.判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法,()()f x f x-=±(正为偶函数,负为减函数);(2)和差法,()()=0f x f x-±(和为零奇函数,差为零偶函数);(3)作商法,(1为偶函数,1-为奇函数)12.C的图象,如图,由图可知函数()f x的图象关于,xe=对称,解方程方程()()210f x mf x m⎡⎤-+-=⎣⎦,得()1f x=或()1f x m=-,()1f x=时有三个根,132=2,x x e x e+=,()1f x m=-时有两个根452x x e+=,所以关于x的方程()()210f x mf x m⎡⎤-+-=⎣⎦共有五个根,123x x x+++455x x e+=,)(5x f+=故选C.【方法点睛】本题主要考查函数的图象与性质以及函数与方程思想、数形结合思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.13.2【解析】因为集合{}{}|200M x N x=∈-≤≤=,所以集合M子集有两个:空集与{}0,故答案为2.14【解析】,所以()1g x≠-,所以函数考点:函数的值域.15.4【解析】故当时,函数()f x 取得最小值为4,故答案为4.16.-5(安)【解析】由图象可知,函数,为五点中的第二点,,,,当秒时,安,故答案为(安).【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点) 时;“第二点”(即图象的“峰点”) 时;“第三点”(即图象下降时与轴的交点) 时;“第四点”(即图象的“谷点”) 时;“第五点”时.17.【解析】向量与的夹角为钝角,,向量,,,解得,当向量与的夹角是时,也满足,此时不满足夹角为钝角,设,则有,解得的取值范围是,故答案为.18.-7【解析】试题分析:直接根据对数的运算法则,化简求解即可得到()5l o g9523333333332l o g2l o g2l o g3l o g252l o g25l o g22l o g33l o g--+-=-++-=-.试题解析:原式()5log952333332log2log2log3log25=--+-33332log25log22log33log29=-++-297=-=-.19.(12)0a=时,【解析】试题分析:(1)有由A是空集,可得方程2320ax x-+=无解,故980a∆=-<,由此解得a的取值范围;(2)若A中只有一个元素,则0a=或980a∆=-=,求出a的值,再把a的值代入方程2320ax x-+=,解得x的值,即为所求.试题解析:(1)要使A为空集,方程应无实根,应满足0,{0.a≠∆<解得(2)当0a=时,方程为一次方程,当0a≠,方程为一元二次方程,使集合A只有一个元素的条件是0∆=,∴0a=时,20.见解析【解析】试题分析:由推导出t a nt a n后能够证明tan tan2tan2αββ+=.试题解析:证明:因为()tan sin2αββ-=,整理得:21.(1(2【解析】试题分析:(1)根据已知条件首先求得tanα的值,再根据同角三角函数的基本关系建立关于sinα,cosα的方程组,即可求解;(2)结合题意,考虑到()βαβα=+-,故可利用两角和的正弦公式,计算sinβ的值,即可求解.试题解析:(1;(2)由(1又∵,∴(0,)βαπ-∈,∴考点:1.同角三角函数基本关系;2.三角恒等变形.22.(1)(2)(3)在上单调递增,在上单调递减【解析】试题分析:(1)根据最低点纵坐标可求得;由轴上相邻的两个交点之间的距离可求得函数周期,从而可得的值;进而把点代入即可求得,把代入即可得到函数的解析式;(2)根据的范围进而可确定当的范围,根据正弦函数的单调性可求得函数的最大值和最小值,从而可确定函数的值域(3)由,得,从而可得在上单调递增,结合该函数的最小正周期,可得在上单调递减.试题解析:()由最低点为得.由轴上相邻两个交点之间的距离为,得,即,∴.由点在图象上得,即,故,∴又,∴.故.(2)∵,∴当,即时,取得最大值2;当,即时,取得最小值-1,故的值域为.(3)由的单调性知,即时,单调递增,所以在上单调递增,结合该函数的最小正周期,在上单调递减.23.(1)见解析(2)见解析(3)【解析】试题分析:(1),又∵,∴.;(2)设,根据,由(1)得,结论得证;(3)计算,原不等式转化为,结合(2)得:,可得. 试题解析:(1),又∵,∴.(2)设,则,又∵为非零函数∴,由(1)得,∴为减函数.(3)解:由,,得.原不等式转化为,结合(2)得:,∴,故不等式的解集为.【方法点睛】本题主要考查函数函数单调性的证明与应用,属于中档题.利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取;(2)作差;(3)判断的符号(往往先分解因式,再判断各因式的符号),可得在已知区间上是增函数,可得在已知区间上是减函数.。
安徽省黄山市2017-2018学年高一下学期期末数学试卷一、选择题(共10小题,每小题5分,满分50分)1.下列说法正确的是()A.某人打靶,射击10次,击中7次,那么此人中靶的概率为0.7B.一位同学做掷硬币试验,掷6次,一定有3次“正面朝上”C.某地发行福利彩票,回报率为47%,有人花了100元钱买彩票,一定会有47元的回报D.概率等于1的事件不一定为必然事件2.若等比数列{a n}满足log3a1+log3a2+…+log3a10=10,则a2a9+a4a7的值为()A.9B.18 C.27 D.2+log353.某化工厂为预测某产品的销售量y,需要研究它与某原料有效成分含量x之间的相关关系,现取了8对观测值,计算得:x i=48,y i=144,回归直线方程为=a+2.5x,则当x=10时,y的预测值为()A.28 B.27.5 C.26 D.254.关于数列3,9,…,2187,…,以下结论正确的是()A.此数列不是等差数列,也不是等比数列B.此数列可能是等差数列,也可能是等比数列C.此数列可能是等差数列,但不是等比数列D.此数列不是等差数列,但可能是等比数列5.如图所示的程序框图中,若输入x的值为10,则输出的x与k的值的和为()A.179 B.173 C.90 D.846.抛掷质地均匀的甲、乙两颗骰子,设出现的点数分别为a、b,则满足<|b﹣a2|<6﹣a 的概率为()A.B.C.D.7.若△ABC中,a=2bcosC,且sin2B+sin2C=2sin2A,则该三角形一定为()A.等腰直角三角形B.等腰钝角三角形C.等边三角形D.不存在这样的三角形8.已知关于x的方程(n+1)x2+mx﹣=0(m,n∈R+)没有实数根,则关于x的方程4x2﹣4x+m+n=0有实数根的概率是()A.B.C.D.9.设{a n}是等差数列,{b n}是等比数列,且a1=b1,a2015=b2015,则()A.a1008>b1008B.a1008≥b1008C.a1008<b1008D.以上答案均有可能10.已知下列不等式①x2﹣4x+3<0;②x2﹣6x+8<0;③2x2﹣9x+a<0,且使不等式①②成立的x也满足③,则实数a的取值范围是()A.a≥B.a≤10 C.a≤9 D.a≥﹣4二、填空题(共5小题,每小题5分,满分25分)11.如图是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1、a2,则它们的大小关系是.12.将△ABC的三个内角A、B、C所对的边依次记为a、b、c,若B=2A,且∈(,),则A的取值范围是.13.如图,对于所给的算法中,若执行循环体的次数为1000,则原程序语言中实数a的取值范围是.14.在数列{a n}中,a2=,(n+2)a n+1=na n,则数列{a n}的前n项的和S n等于.15.给出下列:①若等比数列{a n}的前n项和为S n,则S100,S200﹣S100,S300﹣S200成等比数列;②将三进制数201102(3)化为八进制数,结果为1014(8);③已知等差数列{a n},{b n}的前n项和分别为A n,B n,且满足=,则=;④用秦九韶算法求多项式f(x)=7x3+3x2﹣5x+11在x=2时的值,在运算过程中,一定会出现数值221;⑤等差数列{a n}中,S n是它的前n项之和,且,则S6<S7,S8<S7,则S9一定小于S6,且S7一定是S n中的最大值.其中正确的是(把你认为正确的序号都填上).三、解答题(共6小题,满分75分)16.某班的全体学生(共50人)参加数学测试(百分制),成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100],依此表可以估计这次测试成绩的中位数为70分.(1)求表中a,b的值;(2)请估计该班本次数学测试的平均分.17.将△ABC的三个内角A、B、C所对的边依次记为a、b、c,若a,+1是方程x2﹣(b+﹣1)x+b=b的两根,且2cos(A+B)=1.(Ⅰ)求角C的度数;(Ⅱ)求边c的长;(Ⅲ)求△ABC边AB上的高CD的长.18.已知函数f(x)=x2+(2+lga)x+lgb满足f(﹣1)=﹣2,且对于任意x∈R,f(x)≥2x 成立.(Ⅰ)求实数a,b的值;(Ⅱ)若函数f(x)在区间[m,3m+4]上的最大值不大于6,求m取值范围.19.甲、乙两人在相同的条件下各射靶10次,每次射靶成绩均为整数(单位:环),如图所示(Ⅰ)填写下表:平均数方差中位数命中9环及以上甲 1.2 7乙 3(Ⅱ)请从四个不同的角度对这次测试进行分析:①从平均数与方差相结合的角度分析偏离程度;②从平均数与中位数相结合的角度分析谁的成绩好些;③从平均数和命中9环以上的次数看谁的成绩好些;④从折线图上两人射击命中环数及走势分析谁更有潜力.20.电视台与某广告公司签约播放两部影片集,其中影片集甲每集播放时间为19分钟(不含广告时间,下同),广告时间为1分钟,收视观众为60万;影片集乙每集播放时间为7分钟,广告时间为1分钟,收视观众为20万,广告公司规定每周至少有6分钟广告,而电视台每周只能为该公司提供不多于80分钟的节目时间(含广告时间).(Ⅰ)问电视台每周应播放两部影片集各多少集,才能使收视观众最多;(Ⅱ)在获得最多收视观众的情况下,影片集甲、乙每集可分别给广告公司带来a和b(万元)的效益,若广告公司本周共获得3万元的效益,记S=+为效益调和指数(单位:万元),求效益调和指数的最小值.21.定义:如果一个数列的任意连续三项均能构成一个三角形的三边长,那么称此数列为“三角形”数列.已知数列{a n}满足a n=dn2(d>0).(Ⅰ)试判断数列{a n}是否是“三角形”数列,并说明理由;(Ⅱ)在数列{b n}中,b1=1,前n项和S n满足3S n+1﹣3=2S n.(1)证明:数列{b n}是“三角形”数列;(2)设d=1,数列{}的前n项和为T n,若不等式T n+()n•﹣9<0对任意的n∈N*恒成立,求实数a的取值范围.安徽省黄山市2014-2015学年高一下学期期末数学试卷一、选择题(共10小题,每小题5分,满分50分)1.下列说法正确的是()A.某人打靶,射击10次,击中7次,那么此人中靶的概率为0.7B.一位同学做掷硬币试验,掷6次,一定有3次“正面朝上”C.某地发行福利彩票,回报率为47%,有人花了100元钱买彩票,一定会有47元的回报D.概率等于1的事件不一定为必然事件考点:概率的意义.专题:综合题;概率与统计;简易逻辑.分析:对四个分别进行判断,即可得出结论.解答:解:A、某人打靶,射击10次,击中7次,那么此人中靶的频率为0.7,是一个随机事件,错误;B是一个随机事件,一位同学做掷硬币试验,掷6次,不一定有3次“正面朝上”,错误;C是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D正确,比如说,在0和5之间随机取一个实数,这个数不等于3.35264的概率是1,但不是必然事件.故选:D.点评:本题考查的真假判断,考查学生分析解决问题的能力,比较基础.2.若等比数列{a n}满足log3a1+log3a2+…+log3a10=10,则a2a9+a4a7的值为()A.9B.18 C.27 D.2+log35考点:等比数列的性质.专题:等差数列与等比数列.分析:由等比数列的性质和真数大于零得,a1a10=a2a9=a3a8=a4a7=a5a6>0,利用对数的运算化简方程求出a1a10的值,即可求出a2a9+a4a7的值.解答:解:由等比数列的性质和真数大于零得,a1a10=a2a9=a3a8=a4a7=a5a6>0,∵log3a1+log3a2+…+log3a10=10,∴log3(a1a2…a10)=10,则a1a2…a10=310,即=310,解得a1a10=9,∴a2a9+a4a7=18,故选:B.点评:本题考查等比数列的性质,对数的真数大于零,以及对数的运算性质的应用,属于中档题.3.某化工厂为预测某产品的销售量y,需要研究它与某原料有效成分含量x之间的相关关系,现取了8对观测值,计算得:x i=48,y i=144,回归直线方程为=a+2.5x,则当x=10时,y的预测值为()A.28 B.27.5 C.26 D.25考点:线性回归方程.专题:概率与统计.分析:先求出横标和纵标的平均数,写出样本中心点,结合已知的线性回归方程,把样本中心点代入求出a的值,进而可得x=10时,y的预测值.解答:解:∵x i=48,y i=144,=6,=18,∴这组数据的样本中心点是(6,18),∵回归直线方程为=a+2.5x,把样本中心点代入得a=3,∴回归直线方程为=3+2.5x,当x=10时,=3+2.5×10=28,故选:A点评:本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.关于数列3,9,…,2187,…,以下结论正确的是()A.此数列不是等差数列,也不是等比数列B.此数列可能是等差数列,也可能是等比数列C.此数列可能是等差数列,但不是等比数列D.此数列不是等差数列,但可能是等比数列考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:根据等差数列、等比数列的性质验证即得结论.解答:解:一方面∵=729,∴该数列有可能是以首项和公比均为3的等比数列;另一方面∵=363,∴该数列有可能是以首项为3、公差为6的等比数列;故选:B.点评:本题考查等差、等比数列的判定,注意解题方法的积累,属于基础题.5.如图所示的程序框图中,若输入x的值为10,则输出的x与k的值的和为()A.179 B.173 C.90 D.84考点:程序框图.专题:图表型;算法和程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环结构计算并X值,当X>115时,输出x及对应的变量K的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.解答:解:模拟执行程序框图,可得x=10,k=0x=21,k=1不满足条件x>115,x=43,k=2不满足条件x>115,x=87,k=3不满足条件x>115,x=175,k=4满足条件x>115,退出循环,输出x=175,k=4,则输出的x与k的值的和为179.故选:A.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.6.抛掷质地均匀的甲、乙两颗骰子,设出现的点数分别为a、b,则满足<|b﹣a2|<6﹣a 的概率为()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:本题是一个古典概型,试验发生包含的总的基本事件有36种,满足条件的事件需要进行讨论若a=1时,若a=2时,把两种情况相加得到共有7种情况满足条件,根据古典概型概率公式得到结果.解答:解:由题意知本题是一个古典概型,∵试验发生包含的总的基本事件有36种,满足条件的事件需要进行讨论若a=1时,b=2,3,4,5;若a=2时,b=1,2,6;∴7种情况满足条件,∴概率为P=,故选C点评:这是一个典型的古典概型的概率问题,2015届高考中占有极其重要的地位,近几年2015届高考种,每年都出现,是一个必得分题目.7.若△ABC中,a=2bcosC,且sin2B+sin2C=2sin2A,则该三角形一定为()A.等腰直角三角形B.等腰钝角三角形C.等边三角形D.不存在这样的三角形考点:正弦定理;余弦定理.专题:解三角形.分析:由sinA=2sinBcosC,可得sin(B﹣C)=0,B=C,结合正弦定理及已知等式可得a=b=c,从而得解.解答:解:由a=2bcosC,可得:sinA=2sinBcosC,可得sin(B+C)=2sinBcosC,即sinBcosC+cosBsinC=2sinBcosC,∴sin(B﹣C)=0,∴B=C,故△ABC为等腰三角形.在△ABC中,∵2sin2A=sin2B+sin2C,∴2sin2A=2sin2B=2sin2C,∴由正弦定理可得a=b=c,综上,△ABC为等边三角形.故选:C.点评:本题主要考查正弦定理、两角和的正弦公式的应用,属于中档题.8.已知关于x的方程(n+1)x2+mx﹣=0(m,n∈R+)没有实数根,则关于x的方程4x2﹣4x+m+n=0有实数根的概率是()A.B.C.D.考点:几何概型.专题:概率与统计.分析:首先由题意分别求出m,n满足的条件,利用几何概型公式,因为由两个变量,所以选择面积比求概率.解答:解:关于x的方程(n+1)x2+mx﹣=0(m,n∈R+)没有实数根,则△=m2+(n+1)(n﹣1)<0,即m2+n2<1;对应区域的面积为,关于x的方程4x2﹣4x+m+n=0有实数根,则△=16﹣16(m+n)≥0,即m+n≤1,对应区域面积为,由几何概型的概率公式得到于x的方程4x2﹣4x+m+n=0有实数根的概率是:;故选D.点评:本题考查了几何概型的概率求法;关键是明确概率模型以及求出满足条件的事件测度,利用公式解答.9.设{a n}是等差数列,{b n}是等比数列,且a1=b1,a2015=b2015,则()A.a1008>b1008B.a1008≥b1008C.a1008<b1008D.以上答案均有可能考点:等差数列的通项公式;基本不等式;等比数列的通项公式.专题:等差数列与等比数列.分析:通过等差、等比中项可知a 1008=(a1+a2015)、b1008==,对a1、a2015的正负进行讨论即可.解答:解:∵a1=b1,a2015=b2015,∴a1008=(a1+a2015),b1008==,当a1、a2015均为负数时,显然a1008<0<b1008;当a 1、a2015均为正数时,(a1+a2015)≥,即a1008≥b1008;当a 1、a2015均为正数且a1≠a2015时,(a1+a2015)>,即a1008>b1008;综上所述:三种情况都会发生,故选:D.点评:本题是一道数列与不等式的综合题,考查等差中项、等比中项、基本不等式等基础知识,考查分类讨论的思想,注意解题方法的积累,属于中档题.10.已知下列不等式①x2﹣4x+3<0;②x2﹣6x+8<0;③2x2﹣9x+a<0,且使不等式①②成立的x也满足③,则实数a的取值范围是()A.a≥B.a≤10 C.a≤9 D.a≥﹣4考点:一元二次不等式的解法.专题:计算题.分析:联立①②,解得2<x<3.由于2<x<3也满足③2x2﹣9x+a<0,可得③的解集非空且(2,3)是③解集的子集,即可得到a的范围,从而得到答案.解答:解:联立①②得,即,解得2<x<3.∵2<x<3也满足③2x2﹣9x+a<0,∴③的解集非空且(2,3)是③解集的子集.由f(x)=2x2﹣9x+a<0,∴f(2)=8﹣18+a≤0,且f(3)=18﹣27+a≤0,解得a≤9.故选:C.点评:本题考查了不等式组的解法、集合之间的关系,考查了推理能力和计算能力,属于中档题.二、填空题(共5小题,每小题5分,满分25分)11.如图是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1、a2,则它们的大小关系是a2>a1.考点:茎叶图.专题:图表型.分析:由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,根据样本平均数的计算公式,代入数据可以求得甲和乙的平均分,把两个平均分进行比较,得到结果.解答:解:由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,代入数据可以求得甲和乙的平均分,a1=+80=84,a2=+80=85,∴a2>a1故答案为a2>a1.点评:本题考查茎叶图:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫茎叶图.12.将△ABC的三个内角A、B、C所对的边依次记为a、b、c,若B=2A,且∈(,),则A的取值范围是.考点:正弦定理.专题:解三角形.分析:根据二倍角的正弦公式、正弦定理化简可得cosA=,结合条件和余弦函数的性质求出角A的范围.解答:解:∵B=2A,∴由正弦定理得:,则,由sinA≠0得,cosA=,∵∈(,),∴cosA=∈(,),又0<A<π,则A∈,故答案为:.点评:本题考查二倍角的正弦公式,正弦定理,以及余弦函数的性质,注意内角的范围,属于中档题.13.如图,对于所给的算法中,若执行循环体的次数为1000,则原程序语言中实数a的取值范围是1000≤a<1001.考点:循环结构.专题:图表型;算法和程序框图.分析:根据框图的流程依次写出每次循环得到的s,i的值,第999次循环i=1000,此时,不满足条件1000>a,继续循环,第1000次循环时i=1001,此时,1001满足条件1001>a,退出循环,输出s的值,即可得到实数a的取值范围.解答:解:由框图的流程得:第1次循环s=0+1,i=2;第2次循环s=0+1+2,i=3;第3次循环s=0+1+2+3,i=4;…第999次循环s=0+1+2+…+999,i=1000;此时,不满足条件1000>a,继续循环,第1000次循环s=0+1+2+…+1000,i=1001;此时,1001满足条件1001>a,退出循环,输出s的值.综上可得:1000≤a<1001.故答案为:1000≤a<1001.点评:本题考查了由程序语句判断执行循环体的次数,根据框图的流程依次计算程序运行的结果是解答此类问题的常用方法,属于基础题.14.在数列{a n}中,a2=,(n+2)a n+1=na n,则数列{a n}的前n项的和S n等于.考点:数列的求和.专题:点列、递归数列与数学归纳法.分析:通过对(n+2)a n+1=na n变形可知=,进而=、=、…、=,累乘即得通项a n=2(﹣),累加即得结论.解答:解:∵(n+2)a n+1=na n,∴=,∴=,=,…=,累乘得:===2(﹣),又∵a2=,∴a1=3a2=3•=1,∴a n=2(﹣),∴S n=2(1﹣+﹣+…+﹣)=2(1﹣)=,故答案为:.点评:本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.15.给出下列:①若等比数列{a n}的前n项和为S n,则S100,S200﹣S100,S300﹣S200成等比数列;②将三进制数201102(3)化为八进制数,结果为1014(8);③已知等差数列{a n},{b n}的前n项和分别为A n,B n,且满足=,则=;④用秦九韶算法求多项式f(x)=7x3+3x2﹣5x+11在x=2时的值,在运算过程中,一定会出现数值221;⑤等差数列{a n}中,S n是它的前n项之和,且,则S6<S7,S8<S7,则S9一定小于S6,且S7一定是S n中的最大值.其中正确的是②③⑤(把你认为正确的序号都填上).考点:的真假判断与应用.专题:阅读型;等差数列与等比数列.分析:可举公比﹣1,即可判断①;分别将三进制数、八进制数改写成十进制数,即可判断②;设出A n=2kn2,B n=kn(n+3),求出通项,计算即可判断③;将f(x)=7x3+3x2﹣5x+11=x(x(7x+3)﹣5)+11,即可判断④;由题意可得a7=S7﹣S6>0,a8=S8﹣S7<0,即公差d<0,即可判断⑤.解答:解:对于①,若等比数列{a n}的公比为﹣1,则S100=0,S200﹣S100=0,S300﹣S200=0不成等比数列,故①错;对于②,三进制数201102(3)=2×35+0×34+1×33+1×32+0×31+2×30=524,1014(8)=1×83+0×82+1×8+4=524,故②对;对于③,由=,可设A n=2kn2,B n=kn(n+3),即有a n=2k+4k(n﹣1)=4kn﹣2k,b n=4k+2k(n﹣1)=2kn+2k,则==,故③对;对于④,f(x)=7x3+3x2﹣5x+11=x(x(7x+3)﹣5)+11,则v0=7,v1=7×2+3=17,v2=17×2﹣5=29,v3=29×2+11=69,故④错;对于⑤,由S6<S7,S8<S7,即有a7=S7﹣S6>0,a8=S8﹣S7<0,即公差d<0,则a1>0,…,a7>,a8<0,…,则S7一定是S n中的最大值,且S9﹣S8+S8﹣S7+S7﹣S6=a9+a8+a7=3a8<0,即有S9<S6.故⑤对.故答案为:②③⑤.点评:本题考查等差数列和等比数列的通项和求和公式的运用,考查三进制与八进制的关系,以及秦九韶算法的特点,属于中档题和易错题.三、解答题(共6小题,满分75分)16.某班的全体学生(共50人)参加数学测试(百分制),成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100],依此表可以估计这次测试成绩的中位数为70分.(1)求表中a,b的值;(2)请估计该班本次数学测试的平均分.考点:众数、中位数、平均数;频率分布直方图.专题:概率与统计.分析:(1)根据频率分布直方图,和频率=,即可求出,(2)根据平均数定义即可求得.解答:解:(1)由中位数为70可得0.005×20+0.01×20+a×10=0.5,解得a=0.02,又20(0.005+0.01+0.02+b)=1,解得b=0.015,(2)该班本次数学测试的平均成绩估计值为30×0.1+50×0.2+70×0.4+90×0.3=68分.点评:本题题考查了学生的识图及计算能力,频率分布直方图的性质,及平均数的定义,属于基础题.17.将△ABC的三个内角A、B、C所对的边依次记为a、b、c,若a,+1是方程x2﹣(b+﹣1)x+b=b的两根,且2cos(A+B)=1.(Ⅰ)求角C的度数;(Ⅱ)求边c的长;(Ⅲ)求△ABC边AB上的高CD的长.考点:余弦定理;正弦定理.专题:解三角形.分析:(Ⅰ)由2cos(A+B)=1,利用三角形内角和定理可得cosC=﹣,从而可求得C=120°.(Ⅱ)由韦达定理可得,解得a,b,利用余弦定理即可求c 的值.(Ⅲ)由正弦定理可得:,解得sinA,从而可求高CD=bsinA的值.解答:(本题满分为12分)解:(Ⅰ)∵2cos(A+B)=1,∴cosC=﹣,可得C=120°…4分(Ⅱ)∵a,+1是方程x2﹣(b+﹣1)x+b=b的两根,∴,解得:a=,b=,∴由余弦定理可得:c2=a2+b2﹣2abcosC=10,∴解得:c=…8分(Ⅲ)由正弦定理可得:,解得:sinA=,∴高CD=bsinA=()=…12分点评:本题主要考查了正弦定理,余弦定理,韦达定理的应用,考查了计算能力,属于基本知识的考查.18.已知函数f(x)=x2+(2+lga)x+lgb满足f(﹣1)=﹣2,且对于任意x∈R,f(x)≥2x 成立.(Ⅰ)求实数a,b的值;(Ⅱ)若函数f(x)在区间[m,3m+4]上的最大值不大于6,求m取值范围.考点:利用导数求闭区间上函数的最值.专题:函数的性质及应用;不等式的解法及应用.分析:(Ⅰ)利用对数的运算法则及对于任意x∈R二次函数f(x)﹣2x≥0恒成立问题与判别式△的关系即可解出;(Ⅱ)求出f(x)的对称轴,由m<3m+4,可得m>﹣2,判断f(x)的单调性,可得f(x)的最大值为f(3m+4),最大值不大于6,解不等式即可得到m的范围.解答:解:(Ⅰ)由f(﹣1)=﹣2知,lgb﹣lga+1=0①,∴a=10b②.又对于任意x∈R,f(x)≥2x恒成立,即f(x)﹣2x≥0恒成立,则x2+x•lga+lgb≥0恒成立,故△=lg2a﹣4lgb≤0,将①式代入上式得:lg2b﹣2lgb+1≤0,即(lgb﹣1)2≤0,故lgb=1,即b=10,代入②得,a=100;故a=100,b=10.(Ⅱ)由(Ⅰ)可知,f(x)=x2+4x+1=(x+2)2﹣3的对称轴为x=﹣2,由m<3m+4,可得m>﹣2,所以函数f(x)在[m,3m+4]上为单调递增函数,于是最大值为f(3m+4)=(3m+6)2﹣3≤6,解得﹣2<m≤﹣1.即m的取值范围是(﹣2,﹣1].点评:熟练掌握对数的运算法则、二次函数恒成立问题与判别式△的关系、把恒成立问题等价转化、二次函数的单调性等是解题的关键.19.甲、乙两人在相同的条件下各射靶10次,每次射靶成绩均为整数(单位:环),如图所示(Ⅰ)填写下表:平均数方差中位数命中9环及以上甲 1.2 7乙 3(Ⅱ)请从四个不同的角度对这次测试进行分析:①从平均数与方差相结合的角度分析偏离程度;②从平均数与中位数相结合的角度分析谁的成绩好些;③从平均数和命中9环以上的次数看谁的成绩好些;④从折线图上两人射击命中环数及走势分析谁更有潜力.考点:极差、方差与标准差;频率分布折线图、密度曲线;众数、中位数、平均数.专题:概率与统计.分析:(I)运用折线对应的数据判断,填写表格.(II)求解平均数,方差,中位数,众数,根据数字特征的意义判断分析.解答:解:(I)填充后的表格如下:平均数方差中位数命中9环及以上甲7 1.2 7 1乙7 5.4 7.5 3(Ⅱ)①甲,乙的平均数为7,但是S2甲<S乙2,说明甲的析偏离程度小,乙的析偏离程度大;②甲,乙的水平相同,而乙的中位数比甲大,可预见乙射击环数优秀次数比甲多,所以乙的成绩比甲好些.③甲,乙的水平相同,乙命中9环以上的次数比甲多2次,可知以的射击成绩绩好些.④从折线图上,乙的成绩基本成上升趋势,而甲的成绩在平均线上波动不大,说明乙的状态在上升,有潜力可挖.点评:本题考察了综合运用数据,结合折线,表格等分析数据得出数字特征,解决分析问题,判断需要的答案.20.电视台与某广告公司签约播放两部影片集,其中影片集甲每集播放时间为19分钟(不含广告时间,下同),广告时间为1分钟,收视观众为60万;影片集乙每集播放时间为7分钟,广告时间为1分钟,收视观众为20万,广告公司规定每周至少有6分钟广告,而电视台每周只能为该公司提供不多于80分钟的节目时间(含广告时间).(Ⅰ)问电视台每周应播放两部影片集各多少集,才能使收视观众最多;(Ⅱ)在获得最多收视观众的情况下,影片集甲、乙每集可分别给广告公司带来a和b(万元)的效益,若广告公司本周共获得3万元的效益,记S=+为效益调和指数(单位:万元),求效益调和指数的最小值.考点:简单线性规划的应用.专题:不等式的解法及应用.分析:(1)设片集甲、乙分别播放x,y集,则有,要使收视观众最多,则只要z=60x+20y最大即可.(2)由题意得:2a+5b=3,则(2a+5b)=1,利用“1”的代换,结合基本不等式,求效益调和指数的最小值.解答:解:(Ⅰ)设片集甲乙分别播放x,y集,由题意得到,要使收视观众最多,只要z=60x+20y最大即可,作出可行域,如图由解得A(),所以满足题意的最优解为(2,5),z max=60×2+20×5=220,故电视台每周片集甲播出2集,片集乙每周播出5集,其收视观众最多;(Ⅱ)由题意得:2a+5b=3,则S==≥27,当且仅当a=,b=时取等号,所以效益调和指数的最小值为27万元.点评:本题主要考查了用平面区域二元一次不等式组,考查基本不等式的运用,以及简单的转化思想和数形结合的思想,属中档题.21.定义:如果一个数列的任意连续三项均能构成一个三角形的三边长,那么称此数列为“三角形”数列.已知数列{a n}满足a n=dn2(d>0).(Ⅰ)试判断数列{a n}是否是“三角形”数列,并说明理由;(Ⅱ)在数列{b n}中,b1=1,前n项和S n满足3S n+1﹣3=2S n.(1)证明:数列{b n}是“三角形”数列;(2)设d=1,数列{}的前n项和为T n,若不等式T n+()n•﹣9<0对任意的n∈N*恒成立,求实数a的取值范围.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)通过a n=dn2直接计算出前三项的值,利用a1+a2<a3即得结论;(Ⅱ)(1)利用(3S n+1﹣3)﹣(3S n﹣3)=(2S n)﹣(2S n﹣1)(n≥2)可知=,进而b n>b n+1>b n+2,通过计算可知b n+1+b n+2>b n,进而可得结论;(2)通过b n=、a n=n2可知=n,利用错位相减法可知T n=9﹣3(n+3),进而[﹣3(n+3)]<0恒成立,问题转化为求3(n2+3n)的最小值,计算即得结论.解答:(Ⅰ)结论:数列{a n}不是“三角形”数列.理由如下:∵a n=dn2(d>0),∴a1=d,a2=4d,a3=9d,∵a1+a2<a3,∴a1、a2、a3不能构成一个三角形的三边,∴数列{a n}不是“三角形”数列;(Ⅱ)(1)证明:∵3S n+1﹣3=2S n,∴(3S n+1﹣3)﹣(3S n﹣3)=(2S n)﹣(2S n﹣1)(n≥2),整理得:3b n+1=2b n,即=,∵b1=1,∴3(b1+b2)﹣3=2b1,∴b2=1﹣b1=1﹣=,∴=,∴=(n∈N*),∴数列{b n}为单调递减数列,即b n>b n+1>b n+2,又∵b n+1+b n+2﹣b n=+﹣=×()=×>0,即b n+1+b n+2>b n,∴b n+1、b n+2、b n能构成一个三角形的三边,∴数列{b n}是“三角形”数列;(2)解:由(1)知b n=,∵d=1,a n=dn2(d>0),∴a n=n2,∴==nb n=n,∴T n=1+2+3+…+n,∴T n=1+2+…+(n﹣1)+n,∴T n=1+++…+﹣n=﹣n=3[1﹣]﹣n,∴T n=9[1﹣]﹣3n=9﹣3(n+3),∵不等式T n+()n•﹣9<0对任意的n∈N*恒成立,∴[﹣3(n+3)]<0恒成立,∴a<3(n2+3n)min,∵n≥1,∴3(n2+3n)min=12,∴a<12.点评:本题是一道关于数列与不等式的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.。
2017-2018学年安徽省天一大联考高一(下)期末数学试卷(A卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)9°=()A.B.C.D.2.(5分)下列选项中,与向量(1,﹣2)垂直的单位向量为()A.(4,2)B.(﹣2,1)C.D.3.(5分)某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为;④中部地区学生小张被选中的概率为A.①④B.①③C.②④D.②③4.(5分)将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()A.81B.83C.无中位数D.84.55.(5分)一个盒子中装有红、黄、蓝三种颜色的球各5个,从中任取3个球.事件甲:3个球都不是红球;事件乙:3个球不都是红球;事件丙:3个球都是红球;事件丁:3个球中至少有1个红球,则下列选项中两个事件互斥而不对立的是()A.甲和乙B.甲和丙C.乙和丙D.乙和丁6.(5分)已知在边长为2的正方形内,有一月牙形图形,向正方形内随机地投射100个点,恰好有15个点落在了月牙形图形内,则该月牙形图形的面积大约是()A.3.4B.0.3C.0.6D.0.157.(5分)若锐角α满足,则=()A.B.C.D.38.(5分)已知△ABC满足﹣=k×(其中k是非零常数).则△ABC的形状是()A.正三角形B.钝角三角形C.直角三角形D.等腰三角形9.(5分)如图所示的程序框图,若输入的x的值为a(a∈R),则输出u=()A.a B.﹣a C.|a|D.﹣|a|10.(5分)函数在区间[﹣3,5]上的所有零点之和等于()A.﹣2B.0C.3D.211.(5分)设非零向量,夹角为θ,若||=2||,且不等式|2|≥|+λ|对任意θ恒成立,则实数λ的取值范围为()A.[﹣1,3]B.[﹣1,5]C.[﹣7,3]D.[5,7]12.(5分)=()A.B.C.D.1二、填空题:本题共4小题,每小题5分,共20分13.(5分)从1~10这十个自然数中任选一个数,该数为质数的概率为.14.(5分)数据x1,x2,…,x n的平均数是3,方差是1,则数据5﹣x1,5﹣x2,…,5﹣x n 的平均数和方差之和是.15.(5分)如图是出租汽车计价器的程序框图,其中x表示乘车里程(单位:km),S表示应支付的出租汽车费用(单位:元).有下列表述:①在里程不超过3km的情况下,出租车费为8元;②若乘车8.6km,需支付出租车费20元;③乘车xkm的出租车费为8+2(x﹣3)④乘车xkm与出租车费S的关系如图所示:S(单位:元)则正确表述的序号是.16.(5分)如图为函数f(x)=A sin(2x+φ)(A>0,|φ|≤)的部分图象,对于任意的x1,x2∈[a,b],若f(x1)=f(x2),都有f(x1+x2)=,则φ等于.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知向量=(2,3),=(1,﹣1).(Ⅰ)若实数m,n满足m+n=(5,10),求m+n的值;(Ⅱ)若(+λ)∥(λ+),求实数λ的值.18.(12分)某企业根据供销合同生产某种型号零件10万件,规定:零件长度(单位:毫米)在区间(99,101]内,则为一等品;若长度在(97,99]或(101,103]内,则为二等品;否则为不合格产品.现从生产出的零件中随机抽取100件作样本,其长度数据的频率分布直方图如图所示.(Ⅰ)试估计该样本的平均数;(Ⅱ)根据合同,企业生产的每件一等品可获利10元,每件二等品可获利8元,每件不合格产品亏损6元,若用样本估计总体,试估算该企业生产这批零件所获得的利润.19.(12分)某中学每周定期举办一次数学沙龙,前5周每周参加沙龙的人数如表:(Ⅰ)假设x与y线性相关,求y关于x的回归直线方程;(Ⅱ)根据(Ⅰ)中的方程预测第8周参加数学沙龙的人数.附:对于线性相关的一组数据(x i,y i)(i=1,2,…,n),其回归方程为y=bx+a.其中b=,a=.20.(12分)函数的最小正周期为π,点为其图象上一个最高点.(Ⅰ)求f(x)的解析式;(Ⅱ)将函数f(x)图象上所有点都向左平移个单位,得到函数g(x)的图象,求g (x)在区间上的值域.21.(12分)甲乙两人玩卡片游戏:他们手里都拿着分别标有数字1,2,3,4,5,6的6张卡片,各自从自己的卡片中随机抽出1张,规定两人谁抽出的卡片上的数字大,谁就获胜,数字相同则为平局.(Ⅰ)求甲获胜的概率.(Ⅱ)现已知他们都抽出了标有数字6的卡片,为了分出胜负,他们决定从手里剩下的卡片中再各自随机抽出1张,若他们这次抽出的卡片上数字之和为偶数,则甲获胜,否则乙获胜.请问:这个规则公平吗,为什么?22.(12分)如图所示,扇形OAB中,,OA=1,矩形CDEF内接于扇形OAB.点G为的中点,设∠COG=x,矩形CDEF的面积为S.(Ⅰ)若,求S;(Ⅱ)求S的最大值.2017-2018学年安徽省天一大联考高一(下)期末数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【考点】G4:弧度制.【解答】解:9°=9×=.故选:B.【点评】本题考查了角度制化为弧度制的应用问题,是基础题.2.【考点】9T:数量积判断两个平面向量的垂直关系.【解答】解:在A中,∵向量(4,2)的模为=2≠1,不是单位向量,故A 错误;在B中,∵向量(﹣2,1)的模为=,不是单位向量,故B错误;在C中,∵(1,﹣2)•(,)=﹣≠0,故C错误;在D中,∵(1,﹣2)•(﹣,)=0,向量(﹣,)的模为=1,∴向量(1,﹣2)垂直的单位向量为(﹣,),故D正确.故选:D.【点评】本题考查命题真假的判断,考查与已知向量垂直的单位向量的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.【考点】B3:分层抽样方法.【解答】解:在①中,用分层抽样的方法分别抽取东部地区学生:100×=48人,中部地区学生:100×=32人,西部地区学生20人:100×=20人,故①正确;在②中,因为学生层次差异较大,且学生数量较多,应该利用分层抽样,故②错误;在③中,西部地区学生小刘被选中的概率为=,故③正确;在④中,中部地区学生小张被选中的概率为=,故④错误.故选:B.【点评】本题考查命题真假的判断,考查分层抽样、简单随机抽样、概率性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.【考点】BA:茎叶图.【解答】解:由茎叶图得这些数据从小到大依次为:78,81,83,86,93,95,∴这些数据的中位数是:=84.5.故选:D.【点评】本题考查中位数的求法,考查中位数、茎叶图的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.【考点】C4:互斥事件与对立事件.【解答】解:一个盒子中装有红、黄、蓝三种颜色的球各5个,从中任取3个球.事件甲:3个球都不是红球;事件乙:3个球不都是红球;事件丙:3个球都是红球;事件丁:3个球中至少有1个红球,在A中,甲和乙能同时发生,不是互斥事件,故A错误;在B中,甲和丙是互斥而不对立事件,故B正确;在C中,乙和丙是对立事件,故C错误;在D中,乙和丁能同时发生,不是互斥事件,故D错误.故选:B.【点评】本题考查互斥而不对立事件的判断,考查互斥事件、对立事件的定义等基础知识,是基础题.6.【考点】CF:几何概型.【解答】解:设月牙图形的面积为S,由边长为2的正方形面积为4,且=,解得S=0.6,∴月牙图形的面积大约是0.6.故选:C.【点评】本题考查了利用面积比计算几何概型的概率问题,是基础题.7.【考点】GS:二倍角的三角函数.【解答】解:由锐角α满足,得,则====.故选:A.【点评】本题考查三角函数的化简求值,考查同角三角函数基本关系式及倍角公式的应用,是中档题.8.【考点】GZ:三角形的形状判断.【解答】解:△ABC中,﹣=k×(其中k是非零常数),如图所示;∴﹣=k×(﹣),∴+k=k+,∴(+k)=(k+),又、不共线,∴+k=k+=0,∴||=||,∴△ABC是等腰三角形.故选:D.【点评】本题考查了平面向量的线性运算问题,是基础题.9.【考点】EF:程序框图.【解答】解:若输入的x值为a,当a≤0时,y=2a,则y=log2y=a,当a>0时,y=2﹣a,则y=log2y﹣a=﹣a,则输出u=﹣|a|,故选:D.【点评】本题主要考查程序框图的识别和判断,根据条件结构进行求解即可.10.【考点】57:函数与方程的综合运用.【解答】解:函数=0,x∈[﹣3,5].∴(x﹣1)=kπ,解得x=3k+1,k∈Z.令k=﹣1,0,1,可得x=﹣2,1,4.∴函数在区间[﹣3,5]上的所有零点之和=﹣2+1+4=3.故选:C.【点评】本题考查了函数零点、三角函数求值、方程的解法,考查了推理能力与计算能力,属于中档题.11.【考点】9P:平面向量数量积的坐标表示、模、夹角.【解答】解:∵非零向量,夹角为θ,若||=2||,=2,不等式|2|≥|+λ|对任意θ恒成立∴,∴,整理可得,(13﹣λ2)+(8﹣4λ)cosθ≥0恒成立,∵cosθ∈[﹣1,1],∴,∴,∴﹣1≤λ≤3故选:A.【点评】本题主要考查了向量数量积的运算法则,恒成立问题的处理,函数思想的应用.12.【考点】GP:两角和与差的三角函数.【解答】解:=======.故选:A.【点评】本题考查三角函数的化简求值,考查两角和与差的三角函数,是中档题.二、填空题:本题共4小题,每小题5分,共20分13.【考点】CB:古典概型及其概率计算公式.【解答】解:从1~10这十个自然数中任选一个数,基本事件总数n=10,该数为质数包含的基本事件个数m=4,∴该数为质数的概率为p==0.4.故答案为:0.4.【点评】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.14.【考点】BC:极差、方差与标准差.【解答】解:根据题意,若数据x1,x2,…,x n的平均数是3,即(x1+x2+……+x n)=3,方差是1,即[(x1﹣3)2 +(x2﹣3)2+……+(x n﹣3)2]=1;则数据5﹣x1,5﹣x2,…,5﹣x n的平均数=[(5﹣x1)+(5﹣x2)+……(5﹣x n)]=5﹣(x1+x2+……+x n)=5﹣3=2,其方差S2=[(5﹣x1﹣2)2 +(5﹣x2﹣2)2+……+(5﹣x n﹣2)2]=[(x1﹣3)2 +(x2﹣3)2+……+(x n﹣3)2]=1,故数据5﹣x1,5﹣x2,…,5﹣x n的平均数和方差之和为2+1=3;故答案为:3.【点评】本题考查数据的平均数、方差的计算,关键是掌握平均数、方差的计算公式,属于基础题.15.【考点】EF:程序框图.【解答】解:由已知中程序框图可得:①在里程不超过3km的情况下,出租车费为8元,正确;②若乘车8.6km,此时按9km收取费用,需支付出租车费20元,正确;③乘车xkm的出租车费为8+2(x﹣3)只在x为整数时成立,不正确④乘车xkm与出租车费S的关系如图所示:S(单位:元),不正确故答案为:①②【点评】本题考查的知识点是程序框图,分段函数的应用,难度中档.16.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【解答】解:由三角函数的最大值可知A=2,不妨设=m,则x1+x2=2m,由三角函数的性质可知:2m+φ=2kπ+,k∈Z,则:f(x1+x2)=2sin[2(x1+x2)+φ]=2sin(2×2m+φ)=2sin[2×(2m+φ)﹣φ]=2sin[2×(2kπ+)﹣φ]=2sin[4kπ+π﹣φ]=2sinφ=,则sinφ=,结合|φ|≤,故,φ=.故答案为:.【点评】本题主要考查了由y=A sin(ωx+φ)的部分图象确定其解析式,考查了数形结合思想的应用,属于基础题.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.【考点】96:平行向量(共线).【解答】解:(Ⅰ)由题意得m+n=(2m+n,3m﹣n)=(5,10)∴,解得,∴m+n=2.(Ⅱ)+λ=(2+λ,3﹣λ),λa+b=(2λ+1,3λ﹣1)•∵(+λ)∥(λ+),∴(2+λ)(3λ﹣1)=(3﹣λ)(2λ+1)解得λ=±1.【点评】本题考查了向量共线定理及其向量坐标运算性质,考查了推理能力与计算能力,属于基础题.18.【考点】B8:频率分布直方图.【解答】解:(Ⅰ)由频率分布直方图可得各组的频率分别为0.02,0.18,0.38,0.30,0.10,0.02.平均数估计值是96×0.02+98×0.18+100×0.38+102×0.30+104×0.10+106×0.02=100.68.(Ⅱ)由题意知,一等品的频率为0.38,二等品的频率为0.48,不合格产品的频率为0.14.用样本估计总体,一等品约有3.8万件,二等品约有4.8万件,不合格产品约有1.4万件.故该企业生产这批零件预计可获利润3.8×10+4.8×8﹣1.4×6=68万元.【点评】本题主要考查了频率分布直方图,着重考查了频率分布直方图的理解和频率计算公式等知识,属于基础题.19.【考点】BK:线性回归方程.【解答】解:(Ⅰ),,以y关于x的回归直线方程是y=3x+9.(Ⅱ)当x=8时,由回归方程可得y=3×8+9=33,即第8周参加数学沙龙的人数预计为33人.【点评】本题考查线性回归分析,考查运算能力.20.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【解答】解:(Ⅰ)因为函数的最小正周期为π,得,解得ω=2;又点为其图象上一个最高点,得A=2,所以;又因为,所以;所以;(Ⅱ)由题意得,当时,;因为y=sin x在区间上单调递增,在区间上单调递减,且,,,所以g(x)在区间上的值域为(﹣1,2].【点评】本题考查了三角函数的图象与性质的应用问题,也考查了函数图象平移应用问题,是基础题.21.【考点】CC:列举法计算基本事件数及事件发生的概率.【解答】解:(Ⅰ)两人各自从自己的卡片中随机抽出一张,所有可能的结果有36种,分别为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),其中事件“甲获胜”包含的结果有15种,分别为:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5).所以甲获胜的概率为p=(Ⅱ)两人各自从于里剩下的卡片中随机抽出一张,所有可能的结果有25种,分别为:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),其中卡片上的数字之和为偶数的结果有13种,分别为:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).根据规则,甲获胜的概率为,则乙获胜的概率为,所以这个规则不公平.【点评】本题考查概率的求法,考查考查概率的性质、古典概型的概率计算等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.22.【考点】GP:两角和与差的三角函数.【解答】解:(Ⅰ)如图所示,设OG与CF,DE分别交于M,N两点,由已知得CM=ND=OC sin x=sin x,CF=2CM=2sin x.OM=OC cos x=cos x,,∴.故,∴.当时,;(Ⅱ)∵,∴,当且仅当,即时,S取得最大值.【点评】本题考查三角函数模型和三角两数的性质,考查应用意识,是中档题.。
滁州市2017-2018学年第一学期高一期末考试数学试卷第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,4,1,2,3A B ==,则A B = ( )A .{}3,4B .{}1,2C .{}2,3,4D .{}123,4,,2. 已知角α的始边是x 轴的正半轴,终边经过点()3,4-,且4si n 5α=,则t a n α=( ) A .43-B .34-C .43D .343. 计算:114333122x x x -⎛⎫+= ⎪⎝⎭( )A . 3B . 2C .2x +D .12x +4. 已知向量()()3,2,2,a b x ==,若a b ⊥ ,则23a b -= ( )A ..9 C. 13 D .5. 若幂函数()af x x =的图象过点()4,2,则满足()11f x ->的实数x 的取值范围是( )A .()0,1B .()2,+∞ C. ()1,1- D .(),2-∞ 6.函数()()1sin cos 32f x x x ππ⎛⎫=++- ⎪⎝⎭的最大值是 ( ) A .43 B .23 C. 1 D .137.下列函数是奇函数,且在()0,+∞上是增函数的是 ( )A .21x y x +=B .21x y x-= C. 22x x y -=+ D .lg 1y x =+8. 若3sin 4α=,α是第二象限角,则sin 24πα⎛⎫-= ⎪⎝⎭( )A .16.16- C. 16 D .116-9.函数33x y x =+的零点为0x ,则 ( ) A .031,4x ⎛⎫∈--⎪⎝⎭ B .031,42x ⎛⎫∈-- ⎪⎝⎭ C. 011,24x ⎛⎫∈-- ⎪⎝⎭ D .01,04x ⎛⎫∈- ⎪⎝⎭10. 在平行四边形ABCD 中,E 是CD 中点,F 是BE 中点,若AF mAB nAD =+,则( )A .31,42m n == B .13,44m n == C. 11,22m n == D .13,24m n ==11.曲线1:sin C y x =,曲线2:cos2C y x =,下列说法正确的是 ( ) A .将1C 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移4π个单位,得到2C B .将1C 上所有点横坐标缩小到原来的12,纵坐标不变,再将所得曲线向左平移4π个单位,得到2C C. 将1C 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移2π个单位,得到2C D .将1C 上所有点横坐标缩小到原来的12,纵坐标不变,再将所得曲线向左平移2π个单位,得到2C 12.若不等式()2log 14x a x +≥对任意的()0,x ∈+∞恒成立,则a 的取值范围是 ( ) A .(],0-∞ B .1,4⎛⎤-∞ ⎥⎝⎦ C. [)0,+∞ D .1,4⎡⎫+∞⎪⎢⎣⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.若cos 2sin cos ααα=+,则tan 2α= .14. ()()4log 1,01,0x x f x x x ⎧+≥=⎨-<⎩,则()()11f f -+= .15.若函数()2231y x a x =+-+在[]1,3是单调函数,则实数a 的取值范围是 .16.已知函数()()2cos 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间2,63ππ⎡⎤⎢⎥⎣⎦内单调递减,则ω的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或. (1)求,A B A B ;(2)若()R C C A ⊆,求实数a 的取值范围.18.已知向量()([]cos ,sin ,,0,a x x b x π==∈.(1)若a 与b共线,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值,及相应的x 的值.19.已知函数()31x f x x a+=+的图象过点()1,4-. (1)若()210f x =,求实数x 的值;(2)当[]5,1x ∈-时,求函数()f x 的取值范围. 20.函数()()cos 20,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示. (1)求,,A ωϕ的值;(2)求图中,a b 的值及函数()f x 的递增区间.21.已知,αβ都是锐角,()14sin ,sin 235ααβ=-=. (1)求cos β的值;(2)求()sin αβ-的值.22. 已知函数()3131x x f x +=-.(1)求证:()f x 是奇函数; (2)判断()f x 的单调性,并证明;(3)已知关于t 的不等式()()222310f t t f t -++--<恒成立,求实数t 的取值范围.试卷答案一、选择题1-5: DADCB 6-10:BBCCA 11、12:BD二、填空题13. 13-14. 52 15. 31,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭16.1 三、解答题17.解:{}{}|13,|3A x x B x x =≤≤=<, (1){}{}|13,|3A B x x A B x x =≤<=≤ ;(2)∵{}|,1C x x a x a =≤≥+或,∴{}|1R C C x a x a =<<+, ∵()R C C A ⊆,∴113a a ≥⎧⎨+≤⎩,∴[]1,2a ∈.18.解:(1)∵a 与bsin 0x x -=,∴tan x =[]0,x π∈,∴3x π=;(2)()cos 2sin 6f x a b x x x π⎛⎫===+ ⎪⎝⎭ ,∵[]0,x π∈,∴7,666x πππ⎡⎤+∈⎢⎥⎣⎦,∴1sin 126x π⎛⎫-≤+≤ ⎪⎝⎭,∴()12f x -≤≤, 当62x ππ+=即3x π=时,()f x 取得最大值2;当766x ππ+=,即x π=时,()f x 取得最小值-1.19.解:(1)()1141f a==-+,∴2a =-, ()222223110,3110202x f x x x x +==+=--,∴22721,3x x ==,∴x = (2)()()3273173222x x f x x x x -++===+---, 显然()f x 在[)2,+∞与(),2-∞上都是减函数, ∵[](]5,1,2-⊆-∞,∴()f x 在[]5,1-上是减函数, ∵()()77532,13471f f -=+==+=---,∴()[]4,2f x ∈-. 20.解:(1)由图知2452,23123A T πππω⎛⎫===+ ⎪⎝⎭,∴1ω=,∴()()2cos 2f x x ϕ=+, 又52,0312f f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, ∴5cos 1,cos 036ππϕϕ2⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,且2πϕ<,∴3πϕ=-;(2)由(1)知()2cos 23f x x π⎛⎫=-⎪⎝⎭,由512a T ππ-==, ∴()7,02cos 1123a b f ππ⎛⎫=-==-= ⎪⎝⎭, 由()2223k x k k Z ππππ-≤-≤∈得()36k x k k Z ππππ-≤≤+∈,∴()f x 的单调增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 21.解:因为,αβ都是锐角()14sin ,sin 235ααβ=-=,所以cos 3α==,且()30,2,cos 24225πππααβαβ<<-<-<-=,所以227sin 22sin cos 2cos sin 99αααααα===-=,(1)()()()21cos cos 22cos 2cos 2sin 2sin 215βααβααβααβ+=--=-+-=⎡⎤⎣⎦;(2)()()()()3sin sin 2sin 2cos cos 2sin 15αβαβααβααβα-=--=---=⎡⎤⎣⎦. 22.(1)证明:由310x-≠,得0x ≠,∵()()31133113x xxxf x f x --++-===---, ∴()f x 是奇函数;(2)解:()f x 的单调减区间为(),0-∞与()0,+∞没有增区间, 设120x x <<,则()()()()()()()21121221121212121212233313133313331313131313131x x x x x x x x x x x x x x x x xx f x f x --+++----++-=-==------ .∵120x x <<,∴21331x x>>, ∴2112330,31,310x x x x->-->,∴()()120f x f x ->,∴()()12f x f x >, ∴()f x 在()0,+∞上是减函数, 同理,()f x 在(),0-∞上也是减函数;(3)()f x 是奇函数,∴()()2211f t f t --=-+,∴()()222310f t t f t -++--<化为()()22231f t t f t -+<+,又()()22223120,10,t t t t f x -+=-+>+>在()0,+∞上是减函数,∴22231t t t -+>+,∴1t <,即(),1t ∈-∞.。
2017~2018学年度第二学期期末考试高一数学(全卷满分:150 分 考试用时:120分钟)一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.己知a b R ∈、且a b >,则下列不等关系正确的是( ) A .22a b > B .a b < C .ab>1 D .33a b > 2.已知10<<x ,则(33)x x -取最大值时x 的值为() A .13 B .12 C .34 D .233.在ABC ∆中,角A B C 、、所对的边分别为a ,b ,c ,若a =1,3=b ,30A = ,则角B 等于( )A .60°或120°B .30°或150°C .60°D .120° 4.直线l 过点()1,2-且与直线2340x y -+=垂直,则l 的方程是() A .3210x y +-= B .3270x y ++= C .2350x y -+=D .2380x y -+=5.中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还。
”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了() A .192里B .96里C .48里D .24里6. 等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1 D .a 5=17.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ). A .S n =2a n -1 B .S n =3a n -2 C .S n =4-3a n D .S n =3-2a n8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α( )A .B .CD .9. 一个棱长为1的正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则该几何体的体积为( )A . 12B . 13C .23D .5610.在正四棱锥(底面为正方形,顶点在底面的正投影为正方形的中心)ABCD P -中,2=PA ,直线PA 与平面ABCD 所成的角为︒60,E 为PC 的中点,则异面直线PA 与BE 所成角为( )A.90 B.60 C.45 C.3011.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,0)∪(3,+∞)C .(-4,1)D .(-∞,-1)∪(4,+∞)12.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P -ABC 为鳖臑,P A ⊥平面ABC ,P A =AB =2,AC =4,三棱锥P -ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .8π B .12π C .20π D .24π二、填空题:本大题共4小题,每小题5分。
2017~2018学年第一学期期末联考高一数学试题本试卷共4页,22小题,满分150分,考试用时120分钟。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一项是符合题目要求的.1.若,,且,则A. B. C. D.2.下列四组函数中,表示相同函数的一组是A. B.C. D.3.下列函数中,值域为的偶函数是A. B. C. D.4.下列函数在其定义域内既是奇函数,又是增函数的是A. B. C. D.5.设,则的大小关系是A. B. C. D.6.函数的零点所在的一个区间是A. B. C. D.7.设函数A. B. C. D.8.函数的图象的大致形状是A B C D9.直线与圆交点的个数为A. 2个B. 1个C. 0个D. 不确定10.圆与圆的位置关系是A. 相离B. 外切C. 相交D. 内切11. 设是两个不同的平面,是一条直线,以下命题正确的是A. 若,则B. 若,则C.若,则D. 若,则12.某几何体的三视图如图所示,它的体积为A.B.C.D.第Ⅱ卷 (非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.计算 .14.经过,两点的直线的倾斜角是 .15.若函数在区间上的最大值比最小值大,则 . 16.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 .三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知的三个顶点(1)求边上高所在直线的方程;(2)求的面积.18.(本小题满分12分)如图,在直三棱柱中,已知,,设的中点为,.EDBA CC1 A1第12题图求证:(1);(2).19. (本小题满分12分)已知函数.(1)根据定义证明:函数在上是增函数;(2)根据定义证明:函数是奇函数.20.(本小题满分12分)如图,在三棱锥中,.(1)画出二面角的平面角,并求它的度数;(2)求三棱锥的体积.第20题图21. (本小题满分12分)在平面直角坐标系中,圆经过三点.(1)求圆的方程;(2)若圆与直线交于两点,且,求的值.22. (本小题满分12分)已知函数.(1)若,判断函数的零点个数;(2)若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知R 且,,求证:方程在区间上有实数根.2017~2018学年第一学期期末联考高一数学试题参考答案与评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题题号 1 2 3 4 5 6 7 8 9 11112答案 A C D B A B C D A D B C二、填空题.16.;15.;14.;113.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、演算步聚或推理过程.)17.(本小题满分10分)已知的三个顶点⑴求边上高所在直线的方程;⑵求的面积.解(1)设边上高所在直线为,由于直线的斜率…………………….…2分所以直线的斜率.…………………….…3分又直线经过点,所以直线的方程为,…………….…4分即…………………………………………..…4分⑵边所在直线方程为:,即…………………….…5分点到直线的距离,…………………………………7分又………………………9分…………….…10分18.(本小题满分12分)如图,在直三棱柱中,已知,,设的中点为,.求证:⑴; ⑵.证明:⑴在直三棱柱中,平面,且矩形是正方形,………....................……….….................…1分 为的中点,……………….….................................................…2分 又为的中点,,………………….………………3分 又平面,平面,……………..……4分平面.……………………………………………….…5分⑵在直三棱柱中,平面,平面,.………………6分又,平面,平面,,….....7分平面,………………………………………....................................…8分 平面,.…………………....…..................................…9分 矩形是正方形,,……………………...............................…10分 平面,,平面.…….............…11分又平面,.…………………….….................................…12分19.(本小题满分12分)已知函数.⑴根据定义证明:函数在上是增函数;⑵根据定义证明:函数是奇函数.EDBACC 1B 1A 1证明:⑴设任意的,且,…………1分则…………………………2分………………………3分……………………………………………4分,,即,……….…5分又,………………………………….…6分,即,………………7分在上是增函数.……………………………8分⑵,……………………9分,……………………………………………10分…………………………………………11分,即所以函数是奇函数. ……………………………………12分20.(本小题满分12分)如图,在三棱锥中,.⑴画出二面角的平面角,并求它的度数;⑵求三棱锥的体积.解:⑴取中点,连接、,……....................................……....1分,,,…...….........2分且平面,平面,….............................................…...3分是二面角的平面角. ….....................................……....4分在直角三角形中,…...5分在直角三角形中,…...6分是等边三角形,………………….7分…...………………………...8分⑵解法1:,......................9分又平面, 平面平面,且平面平面.............10分 在平面内作于,则平面,..................11分即是三棱锥的高.在等边中,,三棱锥的体积.....................................12分解法2:平面.........9分在等边中,的面积,.......................10分三棱锥的体积...................12分21.(本小题满分12分)在平面直角坐标系中,圆经过三点. ⑴求圆的方程; ⑵若圆与直线交于两点,且求的值.解:⑴因为圆的圆心在线段的直平分线上,所以可设圆的圆心为,………………………….….……1分则有解得…………………2分则圆C 的半径为……………………………3分ODSCBA所以圆C的方程为……………………4分⑵设,其坐标满足方程组:............5分消去,得到方程….....................................…....6分由根与系数的关系可得,…………......8分由于可得,…………………….....................................….....10分又所以………........11分由①,②得,满足故……......................................……………12分22.(本小题满分12分)已知函数.⑴若,判断函数零点个数;⑵若对任意实数,函数恒有两个相异的零点,求实数的取值范围;⑶已知且,,求证:方程在区间上有实数根.解:⑴……………………………………………………1分,………………………………………………2分当时,,函数有一个零点;……………………………3分当时,,函数有两个零点.………………………….…4分⑵已知,则对于恒成立,…………………….…...…6分即恒成立;…………………………………………...…6分所以,……………………………………………………7分从而解得.……………………………………………………...……8分⑶设,则……….…9分……….…10分,……………………………11分在区间上有实数根,……………………………….…12分即方程在区间上有实数根. ……..…12分。
滁州市2017-2018学年第一学期高一期末考试数学试卷第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则()A. B. C. D.【答案】D2. 已知角的始边是轴的正半轴,终边经过点,且,则()A. B. C. D.【答案】A【解析】依题意可知,故.3. 计算:()A. 3B. 2C.D.【答案】D【解析】原式.5. 若幂函数的图象过点,则满足的实数的取值范围是()A. B. C. D.【答案】B【解析】依题意有,,.6. 函数的最大值是()A. B. C. 1 D.【答案】B【解析】,故最大值为.7. 下列函数是奇函数,且在上是增函数的是()A. B. C. D.【答案】B【解析】选项为偶函数,选项为非奇非偶函数.选项在为减函数,在为增函数.选项在上为增函数,符合题意.【点睛】本题主要考查函数的奇偶性和单调性.判断函数的奇偶性,首先判断函数的定义域是否关于原点对称,选项定义域显然不关于原点对称,故为非奇非偶函数.然后计算,化简后看等于还是.函数的单调性中是对钩函数,在不是递增函数.8.9. 函数的零点为,则()A. B. C. D.【答案】C【解析】,,故函数的零点在区间.11. 曲线,曲线,下列说法正确的是()A. 将上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移个单位,得到B. 将上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向左平移个单位,得到C. 将上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移个单位,得到D. 将上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向左平移个单位,得到【答案】B【解析】由于,故首先横坐标缩小到原来得到,再向左平移个单位得到.故选.12. 若不等式对任意的恒成立,则的取值范围是()A. B. C. D.【答案】D【解析】当时,原不等式化为,不恒成立,排除,故选.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.14. ,则__________.【答案】【解析】,,故原式.15. 若函数在是单调函数,则实数的取值范围是__________.【答案】【解析】由于函数为二次函数,对称轴为,只需对称轴不在区间上即可,即或,解得.【点睛】本题主要考查二次函数单调区间的知识.对于二次函数来说,它的单调区间主要由开口方向和对称轴来决定.当开口向上时,左减右增,当开口向下是,左增右减.本题中由于题目只需要区间上的单调函数,不需要递增还是递减,故只需对称轴不在给定区间内即可.16.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知集合.(1)求;(2)若,求实数的取值范围.【答案】(1);(2)【解析】【试题分析】(1)首先求得,由此求得的值.(2),由于,故,解得.【试题解析】解:,(1);(2)∵,∴,∵,∴,∴.18.19. 已知函数的图象过点.(1)若,求实数的值;(2)当时,求函数的取值范围.【答案】(1)(2)【解析】【试题分析】(1)将点代入函数,由此求得的值,进而得出的表达式.解方程,可求得实数的值.(2)将分离常数,得到,它在上为减函数,在区间端点取得最小值和最大值.由此求得函数的值域.【试题解析】解:(1),∴,,∴,∴;(2),显然在与上都是减函数,∵,∴在上是减函数,∵,∴.20. 函数的部分图象如图所示.(1)求的值;(2)求图中的值及函数的递增区间.【答案】(1)(2)【解析】【试题分析】(1)根据图像最大值求得,根据可求得,在根据图像上一个点,可求得的值.(2)利用求出,利用周期为可求得的值.将代入余弦函数的单调递增区间,求得的范围即函数的递增区间.【试题解析】解:(1)由图知,∴,∴,又,∴,且,∴;(2)由(1)知,由,∴,由得,∴的单调增区间为.21.22. 已知函数.(1)求证:是奇函数;(2)判断的单调性,并证明;(3)已知关于的不等式恒成立,求实数的取值范围.【答案】(1)见解析(2)见解析(2)【解析】【试题分析】(1)定义域为关于原点对称,判断故函数为奇函数.(2)函数在定义域的两个区间上都是减函数.利用定义法,计算,由此判断出函数的单调性.(3)根据函数的单调性和奇偶性,将原不等式转化为即,解不等式得.【点睛】本题主要考查函数奇偶性的判断,考查利用定义法求函数单调性,考查利用函数的奇偶性和单调性求参数的取值范围.判断函数的奇偶性首先要求出函数的定义域,看定义域是否关于原点对称,然后再判断与的关系,进而判断函数的奇偶性.定义法判断函数的单调性,需计算的值来判断.【试题解析】(1)证明:由,得,∵,∴是奇函数;(2)解:的单调减区间为与没有增区间,设,则.∵,∴,∴,∴,∴,∴在上是减函数,同理,在上也是减函数;(3)是奇函数,∴,∴化为,又在上是减函数,∴,∴,即.。
安徽省天一大联考2017-2018学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B. C. D.【答案】B【解析】分析:将角度制转化为弧度制即可.详解:由角度制与弧度制的转化公式可知:.本题选择B选项.点睛:本题主要考查角度值转化为弧度制的方法,意在考查学生的转化能力和计算求解能力.2. 下列选项中,与向量垂直的单位向量为()A. B. C. D.【答案】D【解析】分析:由题意逐一考查所给的选项即可.详解:逐一考查所给的选项:,选项A错误;,选项B错误;,选项C错误;,且,选项D正确;本题选择D选项.点睛:本题主要考查向量垂直的充分必要条件,单位向量的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.3. 某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为;④中部地区学生小张被选中的概率为A. ①④B. ①③C. ②④D. ②③【答案】B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生48人、中部地区学生32人、西部地区学生20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为,题中的说法正确;④中部地区学生小张被选中的概率为,题中的说法错误;综上可得,正确的说法是①③.本题选择B选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.4. 将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()。
2017-2018学年天一大联考(安徽版)高一期末考试数学试题一、单选题1.()A. B. C. D.【答案】B【解析】分析:将角度制转化为弧度制即可.详解:由角度制与弧度制的转化公式可知:.本题选择B选项.点睛:本题主要考查角度值转化为弧度制的方法,意在考查学生的转化能力和计算求解能力.2.下列选项中,与向量垂直的单位向量为()A. B. C. D.【答案】D【解析】分析:由题意逐一考查所给的选项即可.详解:逐一考查所给的选项:,选项A错误;,选项B错误;,选项C错误;,且,选项D正确;本题选择D选项.点睛:本题主要考查向量垂直的充分必要条件,单位向量的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.3.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为;④中部地区学生小张被选中的概率为A. ①④B. ①③C. ②④D. ②③【答案】B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生48人、中部地区学生32人、西部地区学生20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为,题中的说法正确;④中部地区学生小张被选中的概率为,题中的说法错误;综上可得,正确的说法是①③.本题选择B选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.4.将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()A. 81B. 83C. 无中位数D. 84.5【答案】D【解析】分析:由题意结合茎叶图首先写出所有数据,然后求解中位数即可.详解:由茎叶图可知,小王6次数学考试的成绩为:,则这些数据的中位数是.本题选择D选项.点睛:茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.5.一个盒子中装有红、黄、蓝三种颜色的球各5个,从中任取3个球.事件甲:3个球都不是红球;事件乙:3个球不都是红球;事件丙:3个球都是红球;事件丁:3个球中至少有1个红球,则下列选项中两个事件互斥而不对立的是()A. 甲和乙B. 甲和丙C. 乙和丙D. 乙和丁【答案】B【解析】分析:由题意逐一考查事件之间的关系即可.详解:由题意逐一考查所给的两个事件之间的关系:A.甲和乙既不互斥也不对立;B.甲和丙互斥而不对立;C.乙和丙互斥且对立;D.乙和丁既不互斥也不对立;本题选择B选项.点睛:“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.6.已知在边长为2的正方形内,有一月牙形图形,向正方形内随机地投射100个点,恰好有15个点落在了月牙形图形内,则该月牙形图形的面积大约是()A. 3.4B. 0.3C. 0.6D. 0.15【答案】C【解析】分析:由题意结合蒙特卡洛模拟的方法整理计算即可求得最终结果.详解:设该月牙形图形的面积大约是,由题意结合蒙特卡洛模拟方法可知:,解得:.本题选择C选项.点睛:本题主要考查几何概型的应用,古典概型的应用等知识,意在考查学生的转化能力和计算求解能力.7.若锐角满足,则()A. B. C. D. 3【答案】A【解析】分析:由题意结合三角函数的性质整理计算即可求得最终结果.详解:由同角三角函数基本关系可知:结合题意可得:.本题选择A选项.点睛:本题主要考查切化弦的方法,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.8.已知满足(其中是常数),则的形状一定是()A. 正三角形B. 钝角三角形C. 等腰三角形D. 直角三角形【答案】C【解析】分析:由题意结合向量的运算法则和平面几何的结论确定△ABC的形状即可.详解:如图所示,在边(或取延长线)上取点,使得,在边(或取延长线)上取点,使得,由题意结合平面向量的运算法则可知:,,而,据此可得:,从而:,结合平面几何知识可知:,而,故.即△ABC为等腰三角形.本题选择C选项.点睛:用平面向量解决平面几何问题时,有两种方法:基向量法和坐标系法,利用基向量的时候需要针对具体的题目选择合适的基向量,建立平面直角坐标系时一般利用已知的垂直关系,或使较多的点落在坐标轴上,这样便于迅速解题.9.如图所示的程序框图,若输入的的值为,则输出()A. B. C. D.【答案】D【解析】分析:由题意结合流程图分类讨论输出的值即可.详解:结合流程图分类讨论:若,则,输出值,若,则,输出值,即输出值为:.本题选择D选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.10.函数在区间上的所有零点之和等于()A. -2B. 0C. 3D. 2【答案】C【解析】分析:首先确定函数的零点,然后求解零点之和即可.详解:函数的零点满足:,解得:,取可得函数在区间上的零点为:,则所有零点之和为.本题选择C选项.点睛:本题主要考查三角函数的性质,函数零点的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.11.设非零向量夹角为,若,且不等式对任意恒成立,则实数的取值范围为()A. B. C. D.【答案】A【解析】分析:由题意首先利用平面向量数量积的运算法则进行化简,然后结合一次函数的性质整理计算即可求得最终结果.详解:不等式等价于:,即,①其中,,将其代入①式整理可得:,由于是非零向量,故:恒成立,将其看作关于的一次不等式恒成立的问题,由于,故:,解得:;且:,解得:;综上可得,实数的取值范围为.本题选择A选项.点睛:本题主要考查平面向量数量积的运算法则,恒成立问题的处理,函数思想的应用等知识,意在考查学生的转化能力和计算求解能力.12.A. B. C. D. 1【答案】A【解析】分析:由题意结合切化弦公式和两角和差正余弦公式整理计算即可求得最终结果.详解:由题意可得:.点睛:本题主要考查两角和差正余弦公式,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.从这十个自然数中任选一个数,该数为质数的概率为__________.【答案】0.4【解析】分析:由题意结合古典概型计算公式整理计算即可求得最终结果.详解:由质数的定义可知:这十个自然数中的质数有:等4个数,结合古典概型计算公式可知该数为质数的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用. 14.数据,,…,的平均数是3,方差是1,则数据,,…,的平均数和方差之和是__________.【答案】3【解析】分析:由题意结合平均数、方差的性质整理计算即可求得最终结果.详解:由题意结合平均数和方差的性质可知:数据,,…,的平均数为:,方差为:,则平均数和方差之和是.点睛:本题主要考查均值的性质、方差的性质等知识,意在考查学生的转化能力和计算求解能力.15.下图是出租汽车计价器的程序框图,其中表示乘车里程(单位:),表示应支付的出租汽车费用(单位:元).有下列表述:①在里程不超过的情况下,出租车费为8元;②若乘车,需支付出租车费20元;③乘车的出租车费为④乘车与出租车费的关系如图所示:则正确表述的序号是__________.【答案】①②【解析】分析:结合流程图逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①在里程不超过的情况下,,则,即出租车费为8元,该说法正确;②由流程图可知,超出的部分的计费方式为向上取整后每公里元,若乘车,,需支付出租车费为:元,该说法正确.当乘车里程为和时,出租车车费均为元,据此可知说法③④错误.综上可得,正确表述的序号是①②.点睛:本题主要考查流程图知识的应用,生活实际问题解决方案的选择等知识,意在考查学生的转化能力和计算求解能力.16.如图为函数的部分图象,对于任意的,,若,都有,则等于__________.【答案】【解析】分析:由题意结合三角函数的性质和函数图象的对称性整理计算即可求得最终结果.详解:由三角函数的最大值可知,不妨设,则,由三角函数的性质可知:,则:,则,结合,故.点睛:本题主要考查三角函数图象的对称性,诱导公式及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题17.已知向量,.(1)若实数满足,求的值;(2)若,求实数的值.【答案】(1)2;(2)【解析】分析:(1)由题意得,据此求解关于m,n的方程组有所以.(2)由题意可得,,结合向量平行的充分必要条件得到关于的方程,解方程可知.详解:(1)由题意得所以解得所以.(2),,·因为,所以解得.点睛:本题主要考查平面向量的坐标运算,向量平行的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.18.某企业根据供销合同生产某种型号零件10万件,规定:零件长度(单位:毫米)在区间内,则为一等品;若长度在或内,则为二等品;否则为不合格产品.现从生产出的零件中随机抽取100件作样本,其长度数据的频率分布直方图如图所示.(1)试估计该样本的平均数;(2)根据合同,企业生产的每件一等品可获利10元,每件二等品可获利8元,每件不合格产品亏损6元,若用样本估计总体,试估算该企业生产这批零件所获得的利润.【答案】(1)100.68;(2)68万元【解析】分析:(1)由频率分布直方图结合平均数计算公式可估计该样本的平均数为100.68.(2)由题意知,一等品的频率为0.38,二等品的频率为0.48,不合格产品的频率为0.14.据此可估计该企业生产这批零件所获得的利润为万元.详解:(1)由频率分布直方图可得各组的频率分别为0.02,0.18,0.38,0.30,0.10,0.02.平均数估计值是.(2)由题意知,一等品的频率为0.38,二等品的频率为0.48,不合格产品的频率为0.14.用样本估计总体,一等品约有3.8万件,二等品约有4.8万件,不合格产品约有1.4万件.故该企业生产这批零件预计可获利润万元.点睛:频率分布直方图问题需要注意:在频率分布直方图中,小矩形的高表示,而不是频率;利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 19.某中学每周定期举办一次数学沙龙,前5周每周参加沙龙的人数如下表:参加人数(1)假设与线性相关,求关于的回归直线方程;(2)根据(1)中的方程预测第8周参加数学沙龙的人数.附:对于线性相关的一组数据,其回归方程为.其中,.【答案】(1);(2)33【解析】分析:(1)由题意结合回归方程计算公式可得,,则线性回归方程为.(2)利用(1)中求得的回归方程结合回归方程的预测作用可得第8周参加数学沙龙的人数预计为33人.详解:(1),,所以关于的回归直线方程是.(2)当时,由回归方程可得,即第8周参加数学沙龙的人数预计为33人.点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.20.函数的最小正周期为,点为其图象上一个最高点.(1)求的解析式;(2)将函数图象上所有点都向左平移个单位,得到函数的图象,求在区间上的值域【答案】(1);(2)【解析】分析:(1)由最小正周期公式可得.由最大值可知,结合三角函数的性质可得,则.(2)由题意得,结合三角函数的性质可知函数在区间上的值域为.详解:(1)因为最小正周期为,得,.点为其图象上一个最高点,得,,又因为,所以.所以.(2)由题意得,当时,.因为在区间上单调递增,在区间上单调递减,且,,,所以在区间上的值域为.点睛:本题主要考查三角函数解析式的求解,函数的平移变换,三角函数值域的求解等知识,意在考查学生的转化能力和计算求解能力.21.甲乙两人玩卡片游戏:他们手里都拿着分别标有数字1,2,3,4,5,6的6张卡片,各自从自己的卡片中随机抽出1张,规定两人谁抽出的卡片上的数字大,谁就获胜,数字相同则为平局.(1)求甲获胜的概率.(2)现已知他们都抽出了标有数字6的卡片,为了分出胜负,他们决定从手里剩下的卡片中再各自随机抽出1张,若他们这次抽出的卡片上数字之和为偶数,则甲获胜,否则乙获胜.请问:这个规则公平吗,为什么?【答案】(1);(2)见解析【解析】分析:(1)由题意列出所有可能的事件,结合古典概型计算公式可知甲获胜的概率为.(2)由古典概型计算公式可知甲获胜的概率为,则乙获胜的概率为,则这个规则不公平.详解:(1)两人各自从自己的卡片中随机抽出一张,所有可能的结果为:,,,共36种,其中事件“甲获胜”包含的结果为:,有15种.所以甲获胜的概率为.(2)两人各自从于里剩下的卡片中随机抽出一张,所有可能的结果为:,共25种.其中卡片上的数字之和为偶数的结果为:,共13种.根据规则,甲获胜的概率为,则乙获胜的概率为,所以这个规则不公平.点睛:本题主要考查古典概型计算公式及其应用,意在考查学生的转化能力和计算求解能力.22.如图所示,扇形中,,,矩形内接于扇形.点为的中点,设,矩形的面积为.(1)若,求;(2)求的最大值.【答案】(1);(2)【解析】分析:(1)设与,分别交于,两点,由几何关系可得,.由矩形面积公式可得,结合三角函数的性质可知时,.(2)结合(1)中矩形的面积表达式可知当时,取得最大值.详解:(1)如图所示,设与,分别交于,两点,由已知得,.,,所以.故,所以,当时,.(2)因为,所以,当且仅当,即时,取得最大值.点睛:本题主要考查三角函数的应用,三角函数的性质,利用三角函数求最值等知识,意在考查学生的转化能力和计算求解能力.。