六年级奥数培训第21讲 面积计算(一)
- 格式:doc
- 大小:201.00 KB
- 文档页数:6
平面图形面积————圆的面积在正方形里的最大圆的面积占所在正方形的面积的3.144 ,而在圆内的最大正方形占所在圆的面积的23.14例题1。
求图中阴影部分的面积(单位:厘米)。
. 练习11.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
答1、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答2、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答1 2. 练习41、如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。
以AC、BC为直径画半圆,两个半圆的交点在AB边上。
求图中阴影部分的面积。
答例题5。
在图中,正方形的边长是10厘米,求图中阴影部分的面积。
.1、求下面各图形中阴影部分的面积(单位:厘米)。
答2、求右面各图形中阴影部分的面积(单位:厘米)。
答3、求右面各图形中阴影部分的面积(单位:厘米)。
答.例题6。
在图的扇形中,正方形的面积是30平方厘米。
求阴影部分的面积。
练习61、如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。
答圆的面积与组合圆积专题训练一、填空题1.算出下面圆内正方形的面积为 .2.右下图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)5.左下图三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. AB 长40厘米, BC 长 厘米6.如右下图,阴影部分的面积为2平方厘米,7.157平方厘米,这个扇形的圆心角是 .度。
8.图中扇形的半径OA=OB=6厘米.45=∠AOB , AC 垂直OB 于C,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.10.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.11.左下图在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)12.右上图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).13.如左下图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π14.如右下图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 .15. 如左下图已知:ABCD 是正方形, ED=DA=AF=2厘米,阴影部分的面积是 .16.右下图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB 是 度.。
面积计算(二)----等积变形1.了解三角形的底、高与面积的关系,会通过分析以上关系解题。
2.能在解题中发现题目中所涉及的几何模型。
3.能在面积计算中熟练运用各定理。
1.推导各个定理的由来和比例公式。
2.理解图形中边长、高与面积的关系,并会在图形中找到这些关系。
3.熟记等积模型、鸟头定理、蝴蝶定理、相似模型适用的条件,以免混淆。
1.等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如图12::S S a b=③夹在一组平行线之间的等积变形,如图A C D B C D S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.例1.如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?_A _B _G _C _E _F _D 练习1.如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为.练习2.在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P点连接,求阴影部分面积.等积模型主要在于理解底边、高与面积的关系,等底则高之比即面积之比,等高则底之比即面积之比。
2.鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△例1.如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBA练习1.如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBA练习2.如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?A BCD E在图形中找到共角三角形时,则可运用鸟头定理,共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
第21讲正方体和长方体知识网络长方体一共有六个面,每个面都是长方形(或正方形),并且相对应的两个面是全等的,所以长方体一共有3对大小相等的面,即相对面的面积相等。
长方体中两个面相交的边叫棱,它共有12条棱,并且相互平行的棱的长度是一样的。
长方体有8个顶点,相交于同一个顶点的三条棱分别叫做长方体的长、宽、高。
长、宽、高相等的长方体叫做正方体,正方体的长、宽、高统称为棱长。
正方体是长方体的特殊情况,它的六个面都是正方体且面积都相等,它的12条棱长的长度也相等。
若长方体的长、宽、高分别用字母a、b、c表示,则其体积V=abc,其表面积为S=2(ab+bc+ca);若正方体的棱长用字母a表示,则其体积其表面积为。
重点·难点本讲主要涉及的问题有:立体图形的计数;立体图形上的最短路线;立体图形的分割与拼凑;立体图形的表面积与体积的计算。
这四个问题是数学竞赛中常见的问题,是本讲的难点。
学法指导针对上述四个问题,我们用相应的方法来求解。
(1)立体图形的计数问题,有一个常用的结论:如果把正方体的每条棱长n等分,那么就将正方体分成个小正方体,而正方体的总个数有。
(2)立体图形上的最短路线问题,一般将立体图形展开在平面上,利用公理“两点之间,直线段最短”来求解。
(3)立体图形的分割与拼凑,类似于平面图形的分割与拼凑,将不规则的立体图形拼凑成规则的或我们比较熟悉的立体图形。
(4)立体图形的表面积与体积的计算,一般是将图形分成几个部分,对各个部分分别求出表面积或体积,再求出总的表面积或体积。
经典例题[例1]把十九个棱长为1厘米的正方体重叠起来,拼成一个立体图形,如图1所示,求这个立体图形的表面积。
思路剖析如果一个立体图形没有被“挖洞”的问题,那么它的表面积应该是从上、下、左、右和前、后六个方向看到的平面图形的面积的总和。
而此立方体图形,从前后、上下、左右分别看到的图形分别如图2所示。
解答由于此立体图形的三个面的投影的面积分别是10平方厘米,8平方厘米,9平方厘米,所以此立体图形表面积为(10+8+9)×2=54(平方厘米)。
第21讲 面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,△ABC 的面积为8平方厘米,AE =ED ,BD=23BC ,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但△AEF 的面积无法直接计算。
由于AE=ED,连接DF ,可知AEF S ∆=EDF S ∆(等底等高),采用移补的方法,将所求阴影部分转化为求△BDF 的面积。
为AE =因为BD=23BC ,所以2BDF DCF S S ∆∆=。
又因ED ,所以ABF S ∆=BDF S ∆=2DCF S ∆。
因此,ABC S ∆=5DCF S ∆ 。
由于ABC S ∆=8平方厘米,所以DCF S ∆=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习1:1.如图,AE =ED ,BC=3BD ,ABC S ∆=30平方厘米。
求阴影部分的面积。
=21平方厘2.如图所示,AE=ED ,DC =13BD ,ABCS ∆米。
求阴影部分的面积。
【例题2】两条对角线把梯形ABCD 分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知BOC S ∆是DOC S ∆的2倍,且高相等,可知:BO =2DO ;从ABDS 与ACD S相等(等底等高)可知:6ABOS=,而△ABO 与△AOD 的高相等,底是△AOD 的2倍。
所以AODS=6÷2=3。
平面图形面积————圆的面积在正方形里的最大圆的面积占所在正方形的面积的3.144 ,而在圆内的最大正方形占所在圆的面积的23.14例题1。
求图中阴影部分的面积(单位:厘米)。
. 练习11.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
答1、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答2、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答1 2. 练习41、如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。
以AC、BC为直径画半圆,两个半圆的交点在AB边上。
求图中阴影部分的面积。
答例题5。
在图中,正方形的边长是10厘米,求图中阴影部分的面积。
.1、求下面各图形中阴影部分的面积(单位:厘米)。
答2、求右面各图形中阴影部分的面积(单位:厘米)。
答3、求右面各图形中阴影部分的面积(单位:厘米)。
答.例题6。
在图的扇形中,正方形的面积是30平方厘米。
求阴影部分的面积。
练习61、如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。
答圆的面积与组合圆积专题训练一、填空题1.算出下面圆内正方形的面积为 .2.右下图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)5.左下图三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. AB 长40厘米, BC 长 厘米6.如右下图,阴影部分的面积为2平方厘米,7.157平方厘米,这个扇形的圆心角是 .度。
8.图中扇形的半径OA=OB=6厘米.45=∠AOB , AC 垂直OB 于C,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.10.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.11.左下图在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)12.右上图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).13.如左下图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π14.如右下图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 .15. 如左下图已知:ABCD 是正方形, ED=DA=AF=2厘米,阴影部分的面积是 .16.右下图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB 是 度.。
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?后面前面右面左面下面上面【考点】长方体与正方体 【难度】1星 【题型】解答【巩固】右图中共有多少个面?多少条棱?例题精讲长方体与正方体(一)【例 2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【例 3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【考点】长方体与正方体【难度】2星【题型】解答【例 4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【考点】长方体与正方体【难度】2星【题型】解答【关键词】奥林匹克,初赛,10题【例 5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【考点】长方体与正方体【难度】2星【题型】解答【例 6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【考点】长方体与正方体【难度】2星【题型】解答【例 7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【例 8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【考点】长方体与正方体【难度】3星【题型】解答【关键词】小学生数学报图1 图2 图3 图4【例 9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【考点】长方体与正方体 【难度】4星 【题型】解答 【关键词】迎春杯【例 10】 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米.68766【考点】长方体与正方体 【难度】3星 【题型】填空【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【例 11】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【考点】长方体与正方体 【难度】3星 【题型】解答【巩固】如右图,一个正方体形状的木块,棱长l 米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【考点】长方体与正方体 【难度】3星 【题型】解答【巩固】一个表面积为256cm 的长方体如图切成27个小长方体,这27个小长方体表面积的和是 2cm .【考点】长方体与正方体【难度】3星【题型】填空【关键词】走美杯,六年级,初赛【例 12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【例 13】有n个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n为多少?【考点】长方体与正方体【难度】3星【题型】解答【例 14】边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【考点】长方体与正方体【难度】3星【题型】解答【例 15】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【考点】长方体与正方体【难度】3星【题型】解答【例 16】由六个棱长为1的小正方体拼成如图所示立体,它的表面积是.【考点】长方体与正方体【难度】3星【题型】填空【例 17】将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
面积计算(一)专题简析:计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
例题1。
已知图18-1中,三角形ABC 的面积为8平方厘米,AE =ED ,BD=23 BC ,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF 的面积无法直接计算。
由于AE=ED,连接DF ,可知S △AEF =S △EDF (等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF 的面积。
因为BD=23 BC ,所以S △BDF =2S △DCF 。
又因为AE =ED ,所以S △ABF =S △BDF =2S △DCF 。
因此,S △ABC =5 S △DCF 。
由于S △ABC =8平方厘米,所以S △DCF =8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习11、 如图18-2所示,AE =ED ,BC=3BD ,S △ABC =30平方厘米。
求阴影部分的面积。
2、 如图18-3所示,AE=ED ,DC =13 BD ,S △ABC =21平方厘米。
求阴影部分的面积。
3、 如图18-4所示,DE =12AE ,BD =2DC ,S △EBD =5平方厘米。
求三角形ABC 的面积。
AB CFD E18-2ABCFE D18-1 ABCFED 18-3CB D EF 18-4例题2。
两条对角线把梯形ABCD 分割成四个三角形,如图18-5所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S △BOC 是S △DOC 的2倍,且高相等,可知:BO =2DO ;从S △ABD 与S △ACD相等(等底等高)可知:S △ABO 等于6,而△ABO 与△AOD 的高相等,底是△AOD 的2倍。
第18讲:面积计算(一)本讲中,我们将学习如何计算图形的面积。
面积是一个图形所占据的平面区域的大小。
对于各种形状的图形,我们有不同的方法来计算它们的面积。
首先,我们来学习如何计算矩形的面积。
矩形是一种有四个直角的四边形。
它的两条相对边是平行的,并且相等。
要计算矩形的面积,只需要用长方形的长和宽相乘即可。
假设一个矩形的长为10cm,宽为5cm,那么它的面积就是10cm × 5cm = 50cm²。
接下来,我们学习如何计算正方形的面积。
正方形是一种特殊的矩形,它的四条边都相等,并且都是直角。
正方形的面积可以直接用边长的平方来计算。
假设一个正方形的边长为8cm,那么它的面积就是8cm × 8cm = 64cm²。
除了矩形和正方形,我们还可以计算其他形状的图形的面积。
比如三角形。
要计算三角形的面积,我们需要知道它的底边和高。
三角形的底边是三角形的一条边,而高是从底边垂直地延伸到与底边所在直线平行的一条线段。
三角形的面积等于底边乘以高的一半。
假设一个三角形的底边长为6cm,高为4cm,那么它的面积就是 6cm × 4cm ÷ 2 = 12cm²。
另一个常见的图形是圆形。
圆形由一个圆心和等长的半径组成。
要计算圆形的面积,我们需要知道圆的半径。
圆的面积等于半径的平方乘以圆周率π(pi)。
圆周率是一个无限不循环小数,我们可以使用近似值3.14来计算。
假设一个圆形的半径为5cm,那么它的面积就是5cm ×5cm × 3.14 ≈ 78.5cm²。
最后,我们来计算一些更复杂的图形的面积,比如长方形和圆形组合的图形。
要计算这样的图形的面积,我们需要将图形拆分成更简单的形状,计算它们各自的面积,然后将它们相加。
例如,假设一个图形是一个长宽分别为10cm和5cm的长方形,上面有一个半径为3cm的圆形。
我们可以将这个图形分解为一个长方形和一个圆形,它们的面积分别为10cm ×5cm = 50cm² 和3cm × 3cm × 3.14 ≈ 28.26cm²。
- 1 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
- 1 -
第21讲 面积计算(一)
一、知识要点
计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练
【例题1】已知如图,△ABC 的面积为8平方厘米,AE =ED ,BD=2
3
BC ,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但△AEF 的面积无法直接计算。
由于AE=ED,连接DF ,可知
AEF S ∆=EDF S ∆(等底等高),采用移补的方法,将
所求阴影部分转化为求△BDF 的面积。
因为BD=2
3BC ,所以2BDF DCF S S ∆∆=。
又因为
AE =ED ,所以ABF S ∆=BDF S ∆=2DCF S ∆。
因此,ABC S ∆=5DCF S ∆ 。
由于ABC S ∆=8平方厘米,所以DCF S ∆=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习1:
1.如图,AE =ED ,BC=3BD ,ABC S ∆=30平方厘米。
求阴影部分的面积。
- 2 -
2.如图所示,AE=ED ,DC =1
3
BD ,ABC S ∆=21平方厘米。
求阴影部分的面
积。
【例题2】两条对角线把梯形ABCD 分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?
【思路导航】已知BOC S ∆是DOC S ∆的2倍,且高相等,可知:BO =2DO ;从ABD S 与ACD S 相等(等底等高)可知:6ABO S = ,而△ABO 与△AOD 的高相等,底是△AOD 的2倍。
所以AOD S = 6÷2=3。
因为ABD S 与ACD S 等底等高 所以6ABO S =
因为BOC S ∆是DOC S ∆的2倍 所以ABO S 是AOD S 的2倍 所以AOD S = 6÷2=3。
答:6ABO S = ,3AOD S = . 练习2:
1.两条对角线把梯形ABCD 分割成四个三角形,已知两个三角形的面积,求另两个三角形的面积是多少?
2.已知,梯形ABCD 中,24AOD S cm = ,AO =1
3
OC ,求梯形ABCD 的面积。
O
D
C
B
A
- 3 -
B
A 【例题3】四边形ABCD 的对角线BD 被E 、F 两点三等分,且四边形AECF 的面积为15平方厘米。
求四边形ABCD 的面积。
【思路导航】由于E 、F 三等分BD ,所以△ABE 、△AEF 、△AFD 是等底等高的三角形,它们的面积相等。
同理,△BEC 、△CEF 、△CFD 的面积也相等。
由此可知,△ABD 的面积是△AEF 面积的3倍,△BCD 的面积是△CEF 面积的3倍,从而得出四边形ABCD 的面积是四边形AECF 面积的3倍。
15×3=45(平方厘米) 答:四边形ABCD 的面积为45平方厘米。
练习3:
1.四边形ABCD 的对角线BD 被E 、F 、G 三点四等分,且四边形AECG 的面积为15平方厘米。
求四边形ABCD 的面积。
2.已知四边形ABCD 的对角线被E 、F 、G 三点四等分,且阴影部分面积为15平方厘米。
求四边形ABCD 的面积。
【例题4】如图所示,BO =2DO ,阴影部分的面积是4平方厘米。
那么,梯形ABCD 的面积是多少平方厘米?
【思路导航】因为BO =2DO ,取BO 中点E ,连接AE 。
根据三角形等底等高面积相等的性质,可知DBC CDA S S = ;4COB DOA S S == ,类推可得每个三角形的面积。
所以,
CDO S =4÷2=2(平方厘米) DAB S =4×3=12(平方厘米)
ABCD S 梯形=12+4+2=18(平方厘米)
- 4 -
练习4:
1.如图所示,阴影部分面积是4平方厘米,OC =2AO 。
求梯形面积。
2.已知OC =2AO ,BOC S =14平方厘米。
求梯形的面积。
【例题5】如图所示,长方形ADEF 的面积是16,△ADB 的面积是3,△ACF 的面积是4,求△ABC 的面积。
【思路导航】连结AE 。
仔细观察添加辅助线AE 后,使问题可有如下解法。
由图上看出:△ADE 的面积等
于长方形面积的一半(16÷2)=8。
用8减去3得到△ABE 的面积为5。
同理,用8减去4得到△AEC 的面积也为4。
因此可知△AEC 与△ACF 等底等高,C 为EF 的中点,而△ABE 与△BEC 等底,高是△BEC 的2倍,△BEC 的面积为5÷2=2.5,所以,△ABC 的面积为16-3-4-2.5=6.5。
练习5:
1.如图所示,长方形ABCD 的面积是20平方厘米,△ADF 的面积为5平方厘米,△ABE 的面积为7平方厘米,求△AEF 的面积。
- 5 -
2.如图所示,长方形ABCD 的面积为20平方厘米,ABE S =4平方厘米,AFD S =6平方厘米,求△AEF 的面积。
三、课后作业 家长签字:_________ 得分:
1.如图所示,DE =1
2AE ,BD =2DC ,EBD S =5平方厘米。
求三角形ABC 的面积。
2.已知△AOB 的面积为15平方厘米,线段OB 的长度为OD 的3倍。
求梯形ABCD 的面积。
3.如图所示,求阴影部分的面积(ABCD 为正方形)。
单位:厘米。
6
F
S =6平方厘米。
OC=3AO,求梯形的
面积。
5.如图所示,长方形ABCD的面积为24平方厘米,△ABE、△AFD的面积
均为4平方厘米,求△AEF的面积。
F
B
- 6 -。