2007线性代数试卷A
- 格式:doc
- 大小:141.00 KB
- 文档页数:5
共 6 页第 1 页二、单项选择题(每小题3分,共12分)(1). 设两个非零矩阵,满足,则必有,B A 0B =A (A) 的列向量组线性相关. (B) 的列向量组线性无关.A A (C) 的列向量组线性相关. (D) 的列向量组线性无关. 【 】B B (2). 曲线绕轴旋转一周所形成旋转面的名称是22220x y z ⎧-=⎨=⎩x (A) 单叶双曲面. (B) 双叶双曲面. (C)椭圆面. (D) 抛物面. 【 】(3). 已知3阶矩阵的特征值为1,2,3,则必相似于对角矩阵A *A I -(A); (B);(C); (D); 【 012⎛⎫ ⎪ ⎪ ⎪⎝⎭125-⎛⎫ ⎪- ⎪ ⎪⎝⎭512-⎛⎫ ⎪ ⎪ ⎪⎝⎭125⎛⎫ ⎪ ⎪ ⎪⎝⎭】(4).设矩阵,则=111023004A -⎛⎫ ⎪= ⎪ ⎪⎝⎭1*12A -⎛⎫ ⎪⎝⎭ (A). (B) . (C) . (D) . 【 12A 14A 18A 116A 】三、(12分) 设方阵满足,其中,求矩阵.B 22I =+*A B B 111111111A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭B共 6 页 第 2 页四、(12分) 已知直线,直线.11:232x y z L -==--2312:212x y z L -++==-(1)记的方向向量为,求过且与平行的平面的方程.i L (1,2)i a i = 1L 12a a ⨯ π (2)求与的交点.并写出与的公垂线的方程.2L π1L 2L 五、(12分) 、取何值时,线性方程组a b 12341202011231011114423x x x a x a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭有唯一解、无解、有无穷多解?并在有无穷多解时,求出该方程组的结构式通解.共 6 页 第 3 页六、(12分). 设二次型,222123123121223(,,)4()f x x x x x x x x x x x x =++++-(1) 写出二次型的矩阵;123(,,)f x x x =T x Ax A (2) 求一个正交矩阵,使成对角矩阵;P AP P 1-(3) 写出在正交变换下化成的标准形.f Py x =七、 (12分) 设矩阵的全部特征值之积为24.12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭A =(1) 求的值; a (2) 讨论能否对角化,若能,求一个可逆矩阵使为对角阵。
诚信应考,考试作弊将带来严重后果!华南理工大学期末考试《 线性代数-2007》试卷A注意事项:1. 考前请将密封线内填写清楚;2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:开(闭)卷;一、单项选择题(每小题2分,共30分)。
1.设矩阵,则下列矩阵运算无意义的是【 】A . BAC B. ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2–E =0,其中E 是n 阶单位矩阵,则必有 【 】A. A=A -1B. A=-EC. A=ED. det(A)=13.设A 为3阶方阵,且行列式det(A)= ,则 【 】A. 14-B. 14C. 1-D. 1 4.设A 为n 阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它n-1个行向量的线性组合D. 任意一个行向量都是其它n-1个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 3121,,a a a a +6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】A.03221= b b a a B.02121≠ b b a a C. 332211b a b ab a == D. 02131= b b a a9.方程组⎪⎩⎪⎨⎧=++=++=++ax x x x x x x x x 32132132123 3 12 12 有解的充分必要的条件是 【 】A. a=-3B. a=-2C. a=3D. a=210. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1+η3,η1+η2+η3 11. 已知非齐次线性方程组的系数行列式为0,则【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12. n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni i n a a a a C. 121{(,,,)|1}n a a a a = D. }1|),,,{(121∑==n i inaa a a14. 下列矩阵中为正交矩阵的是【 】A. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1- 1 01 1 00 0 1 B. ⎥⎦⎤⎢⎣⎡1- 22 151C. 1 -10 -1⎡⎤⎢⎥⎣⎦D. 1 00 -1⎡⎤⎢⎥⎣⎦15.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。
武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共12分)1、 2;2、 1;3、 21t ≠;4、k >二、选择题(每小题3分,共12分)1、 A ;2、 C ;3、 B ;4、 D 三、解答题(每小题9分,共36分)1、11(2,,)(2,,)1100011111100100020012000200011i in i n i n r r r r n nn n n D n nn n nn n==+++---=-------…..…(4分)()(1)(2)(1)1122000001(1)1(1)(1)()(1)1222000n n n n n n n n n n n n n n nn n n n -------+++=⋅=⋅⋅-⋅-=⋅⋅---...….(9分)2、记 121624,1713A A ---⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭,则121,1A A =-=;…..…………………………………..…..……...(4分)又1112767637,111112A A -----⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以1760011000037012A --⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭-。
………………………...(9分)3、由题意有010100001A B ⎛⎫⎪= ⎪ ⎪⎝⎭,100011001B C ⎛⎫⎪= ⎪ ⎪⎝⎭,……………..…………………………………………...(4分) 于是 010100100011001001A C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以011100001X ⎛⎫⎪= ⎪ ⎪⎝⎭。
……….……………………………………...(9分)4、()123403481011,,,21043211αααα⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭~1011034801220244-⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭~10110122002200-⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭~10000104001100⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭………...(4分) 则()1234,,,3R αααα=,且123,,ααα线性无关,所以123,,ααα即为1234,,,αααα的一个极大无关组,(7分) 且412304αααα=+-;…………………………………………………………………………………..………...(9分) 或者取124,,ααα,312404αααα=+-;还可以取134,,ααα,2341144ααα=+四、解()2111,1111tA b t t tt -⎛⎫⎪=-- ⎪ ⎪-⎝⎭~2223110110111t tt t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪+-++⎝⎭~ 22321101100(1)(2)1t tt t t t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪-+---+⎝⎭…………………………….…………..………...(4分) 所以当12t t ≠-≠且时,方程组有唯一解;…………………………………..…………………………….……...(6分) 当2t =时,(),A b ~112403360001-⎛⎫⎪-- ⎪ ⎪⎝⎭()(),32R A b R A =≠=,所以方程组无解。
2007级线性代数试题和答案 A 卷2007级线性代数期末试题答案一、填空题(每小题4分、本题共28分)1.设A *是n 阶方阵A 的伴随矩阵,行列式2A =,则*2A = .2n n n 12 2|=22222n -=⨯=n-1**n-1n-1解应填因为行列式|2A |A |=|A|2.设4阶方阵A 和B 的伴随矩阵为A *和B *,且它们的秩分别为3)(=A r ,4)(=B r ,则秩=)(**B A r .()()()()****** 1.14 1.r A r B B r A B r A ====解应填由题设可知,,的可逆矩阵,故 3.设n 维向量(,0,,0,)T x x α=,其中0x <;又设矩阵T A E αα=-,且11T A E xαα-=+,则x = .()()()()()2-1-12 -12111- --111----21 -1-201111-22-12-11012T T T T T T TT T T T T T TT T x AA E E E x x x E E x x x x E x x AA E x x x x x x x x x x αααααααααααααααααααααααααααααααα=⎛⎫=+=+ ⎪⎝⎭=+=+⎛⎫=+ ⎪⎝⎭=≠+=+=+==解应填 因为,而 由及可知 故或-10-1x x =<=,又由可得4.已知n 阶方阵()ij n nA a ⨯=,12,,n ααα⋅⋅⋅,是A 的列向量组,行列式0A =,伴随矩阵*O A ≠,则齐次线性方程组*0A x =的通解为 .解 应填α =111221...n i i n i k k k ααα--+++ ,其中 121n i i i ααα⋅⋅⋅- 是向量组 12n ααα⋅⋅⋅的极大线性无关组, 121n k k k ⋅⋅⋅- 是任意常数。
因为|A|=0,A *≠0 所以秩r(A)=n-1,因此,向量组12n ααα⋅⋅⋅的秩r(12n ααα⋅⋅⋅)=n-1,由此又可知线性方程组A *x=0的基础解系含n-1个解,12n ααα⋅⋅⋅的极大线性无关组含n-1个向量,而A *A= A *(12n ααα⋅⋅⋅)=|A|E=0即A *=0(j=1 n) ,亦即12n ααα 都是A *x=0 的解,故12n ααα的极大线性无关组可作为A *x=0 的基础解系。
全国2007年7月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 是3阶方阵,且|A |=21-,则|A -1|=( A ) A .-2 B .21- C .21 D .22.设A 为n 阶方阵,λ为实数,则=||A λ( C )A .||A λB .||||A λC .||A n λD .||||A n λ 3.设A 为n 阶方阵,令方阵B =A +A T ,则必有( A ) A .B T =B B .B =2A C .B B T -= D .B =04.矩阵A =⎪⎪⎭⎫ ⎝⎛--1111的伴随矩阵A *=( D ) A .⎪⎪⎭⎫ ⎝⎛--1111 B .⎪⎪⎭⎫ ⎝⎛--1111 C .⎪⎪⎭⎫ ⎝⎛--1111 D .⎪⎪⎭⎫ ⎝⎛--1111 5.下列矩阵中,是初等矩阵的为( C )A .⎪⎪⎭⎫ ⎝⎛0001B .⎪⎪⎪⎭⎫ ⎝⎛--100101110C .⎪⎪⎪⎭⎫ ⎝⎛101010001D .⎪⎪⎪⎭⎫ ⎝⎛001300010 6.若向量组)0,1,1(1+=t α,)0,2,1(2=α,)1,0,0(23+=t α线性相关,则实数t =( B )A .0B .1C .2D .3A .A 中的4阶子式都不为0B .A 中存在不为0的4阶子式C .A 中的3阶子式都不为0D .A 中存在不为0的3阶子式8.设3阶实对称矩阵A 的特征值为021==λλ,23=λ,则秩(A )=( B )A .0B .1 C .2 D .39.设A 为n 阶正交矩阵,则行列式=||2A ( C )A .-2B .-1C .1D .210.二次型),,(y x z y x f -=的正惯性指数p 为( B )A .0B .1C .2D .3二、填空题(本大题共10小题,每小题2分,共20分) 11.设矩阵A =⎪⎪⎫ ⎛1121,则行列式=||T AA __1__.13.设矩阵A =⎪⎪⎭⎫ ⎝⎛21,B =⎪⎪⎭⎫ ⎝⎛21,则=B A T __5__. 32112=3α⎪⎭⎫ ⎝⎛-211,1,1. 15.矩阵A =⎪⎪⎪⎭⎫ ⎝⎛6131的行向量组的秩=__2__.16.已知向量组)1,1,1(1=α,)0,2,1(2=α,)0,0,3(3=α是R 的一组基,则向量)3,7,8(=β在这组基下的坐标是)1,2,3(.17.已知方程组⎩⎨⎧=+-022121tx x 存在非零解,则常数t =__2__. 18.已知3维向量)1,3,1(-=α,)4,2,1(-=β,则内积=),(βα__1__.19.已知矩阵A =⎪⎪⎪⎭⎫ ⎝⎛x 01010101的一个特征值为0,则x =__1__.20.二次型323121232221321822532),,(x x x x x x x x x x x x f +-+++=的矩阵是⎪⎪⎪⎭⎝-541431.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=210121012的值.解:4)26(2123210121230210121012=+--=---=--=. 22.设矩阵A =⎪⎪⎭⎫ ⎝⎛3512,B =⎪⎪⎭⎫ ⎝⎛0231,求矩阵方程XA =B 的解X .解:⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛=252610022501101220016101210013512),(E A⎪⎪⎭⎫ ⎝⎛--→25131001,⎪⎪⎭⎫ ⎝⎛--=-25131A ,⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛==-26512251302311BA X . 23.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121,问a 为何值时,(1)秩(A )=1;(2)秩(A )=2.解:⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121→⎪⎪⎪⎭⎫ ⎝⎛--900000003121a →⎪⎪⎪⎭⎫ ⎝⎛--000090003121a .(1)9=a 时,秩(A )=1;(2)9≠a 时,秩(A )=2.24.求向量组1α=⎪⎪⎪⎭⎫ ⎝⎛-111,2α=⎪⎪⎪⎭⎫ ⎝⎛531,3α=⎪⎪⎪⎭⎫ ⎝⎛626,4α=⎪⎪⎪⎭⎫ ⎝⎛-542的秩与一个极大线性无关组. 解:=),,,(4321αααα⎪⎪⎪⎭⎫ ⎝⎛--565142312611→⎪⎪⎪⎭⎫ ⎝⎛--3126028402611→⎪⎪⎪⎭⎫ ⎝⎛--142014202611→⎪⎪⎪⎭⎫ ⎝⎛--000014202611→⎪⎪⎪⎭⎫ ⎝⎛--0000142041222→⎪⎪⎪⎭⎫ ⎝⎛-000014205802→⎪⎪⎪⎭⎫ ⎝⎛-00002/12102/5401, 秩为2,1α,2α是一个极大线性无关组.25.求线性方程组⎪⎩⎪⎨⎧=++=+=++362232234232132321x x x x x x x x 的通解.解:⎪⎪⎪⎭⎫ ⎝⎛=362232203421),(b A →⎪⎪⎪⎭⎫ ⎝⎛---322032203421→⎪⎪⎪⎭⎫ ⎝⎛000032203421→⎪⎪⎪⎭⎫ ⎝⎛000032200201→⎪⎪⎪⎭⎫ ⎝⎛00002/31100201,⎪⎪⎩⎪⎪⎨⎧=-=-=333231232x x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛11202/30k .26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=1630310104A ,求可逆矩阵P 及对角矩阵D ,使得D AP P =-1. 解:2)1)(2(31104)1(1630310104||-+=--+-=-----+=-λλλλλλλλλA E , 特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-----=-00013050300013001531300000511210510513630510102A E λ ⎪⎪⎪⎭⎫ ⎝⎛-→0003/1103/501,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=3332313135x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫ ⎝⎛-=13/13/51α; 对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛----=-0000000210210210210630210105A E λ,⎪⎩⎪⎨⎧==-=3322212x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫ ⎝⎛-=0122α,⎪⎪⎪⎭⎫ ⎝⎛=1003α.令⎪⎪⎪⎭⎫ ⎝⎛--=101013/1023/5P ,⎪⎪⎪⎭⎫ ⎝⎛-=100010002D ,则P 是可逆矩阵,使D AP P =-1. 四、证明题(本大题6分)27.设向量组1α,2α线性无关,证明向量组211ααβ+=,212ααβ-=也线性无关. 证:设02211=+ββk k ,即0)()(212211=-++ααααk k ,0)()(221121=-++ααk k k k .由1α,2α线性无关,得⎩⎨⎧=-=+002121k k k k ,因为021111≠-=-,方程组只有零解,所以1β,2β线性无关.本资料由广州自考网收集整理,更多自考资料请登录 下载考试必看:自考一次通过的秘诀!。
2007华南农业⼤学线性代数期末考试试卷A华南农业⼤学期末考试试卷( A 卷)2006-2007学年第2学期考试科⽬:线性代数考试类型:(闭卷)考试时间: 120 分钟学号姓名年级专业⼀、填空题 (本题共有30分, 每⼩题3分)1. 已知12011302001A =??,则1A -= .2. 设A 为4阶⽅阵,且1A =,则3A =________.3. 已知1(2,3,4,5)T α=,2(3,4,5,6)T α=,3(4,5,6,7)T α=,4(5,6,7,8)T α=,则向量组{}1234,,,αααα的秩为 .4. 设A 是n 阶⽅阵,且满⾜250A A E +-=, 则()12A E -+=_________.5. 已知⽅程组12312112323121x a x a x +=??????-⽆解,则实数a =___________.6. 设123(1,1),(2,1,2),(0,1,2)T T T x ααα==-=,当x 时,123,,ααα线性⽆关.7. 设向量(2,3,4,1),(1,3,2,)x αβ==-,且αβ与正交,则x = .8. 若4阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则⾏列式1B E --= __________ .9. ⼆次型()2123213,,2f x x x x x x =+的负惯性指标为 .10. 在MA TLAB 软件中,inv(A ) 表⽰求__________.⼆、单项选择题(本题共21分,每⼩题3分) 1. 设n 维向量α和β的模分别是4和8,α与β的距离是则α与β的夹⾓为()(A )3π(B )3π- (C )23π(D )23π-2. 设A 为5阶⽅阵,且()4R A =,12,ββ是0Ax =的两个不同的解向量,则0Ax =的通解为()(A )1k β(B )2k β(C)12()k ββ+ (D )12()k ββ-3. 下列命题中与命题“n 阶⽅阵A 可逆”不等价...的是()(A )0A ≠ (B )A 的列向量组线性⽆关 (C )⽅程组0Ax =有⾮零解(D )A 的⾏向量组线性⽆关4. 已知12324369Q t ??=,P 为3阶⾮零矩阵,且满⾜PQ =0,则()(A )6t =时P 的秩必为1 (B )6t =时P 的秩必为2 (C )6t ≠时P 的秩必为1(D )6t ≠时P 的秩必为25. 当下列哪⼀个命题成⽴时,n 阶⽅阵A 与B 相似()(A )A B =(B )()()R A R B =(C )A 与B 有相同的特征值(D )A 与B 有相同的特征值,且n 个特征值各不相同6. 设321 , ,ααα是齐次线性⽅程组0=Ax 的基础解系,则下列向量组不能..作为0=Ax 的基础解系的是()(A )11213,ααααα++,(B )123123,αααααα+++,(C )112123,αααααα+++,(D )121331,αααααα++-,7. 设A 与B 均是n 阶正定矩阵,**,A B 分别为A ,B 的伴随矩阵,则下列矩阵必为正定矩阵的是()(A )**3A B + (B )**A B (C )**12k A k B +(12k k ,为任意常数)(D )**A B -三、计算n阶⾏列式211121112nD=LLM M M ML的值. (本题8分)四、设线性⽅程组1231232123(1)0(1)(1)x x xx x xx x xλλλλλ+++=+++=+++=-,当λ等于何值时,⽅程组(1)有惟⼀解;(2)⽆解;(3)有⽆穷多解,并⽤基础解系表⽰⽅程组的通解. (本题12分)五、设有向量(0,4,2,5)T α=,1(1,2,3,1)T β=,2(2,3,1,2)T β=,3(3,1,2,2)T β=-,问α可否表⽰成1β,2β,3β的线性组合?若可以,请给出⼀种表达式. (本题9分)六、证明若n 阶⽅阵A 满⾜2430A A E -+=,则A 的特征值只能是1或3.(本题8分)七、已知⼆次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准型22212325f y y y =++,求参数a 及所⽤的正交变换矩阵.(本题12分)。
07年考研数学试题(线性代数)第一篇:07年考研数学试题(线性代数)07年考研数学试题(线性代数)选择题(每小题4分)⎡2-1-1⎤⎢⎥1.(07010804、07021004、07030804、07040804)设矩阵A=-12-1,⎢⎥⎢⎣-1-12⎥⎦⎡100⎤⎥,则A与B()B=⎢010⎢⎥⎢⎣000⎥⎦(A)合同,且相似;(B)合同,但不相似;(C)不合同,但相似;(D)合同,但不相似;2.(07020904、07030704、07040704)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()(A)α1-α2,α2-α3,α3-α1 ;(B)α1+α2,α2+α3,α3+α1;(C)α1-2α2,α2-2α3,α3-2α1 ;(D)α1+2α2,α2+2α3,α3+2α1.二、填空题(每小题4分)⎡0⎢03.(07011504、07021604、07030504、07041504)设矩阵A=⎢⎢0⎢⎣0秩为.三、解答题 100001000⎤0⎥⎥,则 A3 的1⎥⎥0⎦⎧x1+x2+x3=0⎪4.(07012111、07022311、07032111、07042111)设线性方程组⎨x1+2x2+ax3=0①⎪2⎩x1+4x2+ax3=0与方程 x1+2x2+x3 = a-1② 有公共解,求a的值及所有公共解.5.(07012211、07022411、07032211、07042211)设3阶对称矩阵A的特征值为λ1 = 1,λ2 =2,λ3 =-2 ;向量α1=(1,-1,1)是A的属于λ1 的一个特征向量,记 TB = A5-4A3 + E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.第二篇:考研数学一线性代数公式1、行列式1.n行列式共有n2个元素,展开后有n!项,可分解为2n行列式;2.行列式的重要公式:①、主对角行列式:主对角元素的乘积;n(n-1)②、副对角行列式:副对角元素的乘积⨯ (-1)③、上、下三角行列式(④、 ◤◥ = ◣2;):主对角元素的乘积;n(n-1)2和◢:副对角元素的乘积⨯ (-1)ACOB=AOCB;、CBAO=OBAC=(-1)mγn⑤、拉普拉斯展开式:=ABAB⑥、范德蒙行列式:大指标减小指标的连乘积; 3.证明①、A=0的方法:;③构造齐次方程组Ax=0A=-A,证明其有非零解;④证明r(A)<n⑤证明0是其特征值;2、矩阵1.是n阶可逆矩阵:⇔A≠0(是非奇异矩阵);A⇔⇔⇔⇔⇔⇔r(A)=nA(是满秩矩阵)有非零解;的行(列)向量组线性无关;=0齐次方程组Ax∀b∈Rn,Ax=b总有唯一解;A与E等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;TAA⇔⇔⇔⇔AAA是正定矩阵;的行(列)向量组是Rn的一组基;是Rn中某两组基的过渡矩阵;=AA=AE*A2.对于n阶矩阵A:AA*3.(A-1无条件恒成立;-1)=(A)TT**-1(A-1)T=(A)**T(A)*T=(A)-1T*-1(AB)=BAT(AB)=BA*(AB)=B-1A4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均A、B可逆:若⎛A1 A=⎝A2O⎫⎪⎪⎪⎪As⎭-1,则:Ⅰ、A=A1A2ΛAs ;Ⅱ、A-1⎛A1 =⎝-1-1A2OAs⎫⎪O⎭-1-1-1⎫⎪⎪⎪⎪⎪⎭;⎛A②、⎝O⎛A④、⎝OO⎫⎪B⎭C⎫⎪B⎭-1⎛A=⎝OO⎫-1⎪B⎭-A-1⎛O;(主对角分块)③、 ⎝BCB-1-1A⎫⎪O⎭-1⎛O=-1⎝A-1B;(副对角分块)O⎫-1⎪B⎭-1⎛A=⎝O-1B⎫⎪⎭⎛A;(拉普拉斯)⑤、⎝CO⎫⎪B⎭⎛A=-1-1⎝-BCA;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个m⨯n矩阵A,总可经过初等变换化为标准形,其标准形是唯一确定的:F⎛Er=⎝OO⎫⎪O⎭m⨯n;等价类:所有与A等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A、B,若r(A) =r(B) ⇔ AγB;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(A , E) γ (E , X),则A可逆,且X②、对矩阵(A,B)做初等行变化,当Ar=AE-1;就变成A-1变为时,BB,即:(A,B) ~ (E,A-1B);rc③、求解线形方程组:对于n个未知数n个方程Ax=b,如果(A,b)γ(E,x),则A可逆,且x=A-1b;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;⎛λ1②、Λ=⎝λ2O⎫⎪⎪⎪⎪λn⎭,左乘矩阵A,λi乘A的各行元素;右乘,λi乘A的各列元素;③、对调两行或两列,符号E(i,5.矩阵秩的基本性质:①、0≤r(Am⨯n)≤min(m⑥、r(A+j),且E(i,j)-1⎛=E(i,j),例如:1⎝⎫⎪⎪1⎪⎭-1⎛=1 ⎝⎫⎪⎪1⎪⎭;,n);②、r(A)=r(A)T;③、若AγB,则r(A)=r(B);④、若P、Q可逆,则;(※)r(A)=r(PA)=r(AQ)=r(PAQ);(可逆矩阵不影响矩阵的秩)⑤、max(r(A),r(B))≤;(※)⑦、r(AB)≤min(r(A),r(B))r(A,B)≤r(A)+r(B)B)≤r(A)+r(B)⨯n;(※)⑧、如果A是m矩阵,B是n⨯s矩阵,且AB=0n=0,则:(※)Ⅰ、B的列向量全部是齐次方程组AXⅡ、r(A)+r(B)≤解(转置运算后的结论);;⑨、若A、B均为n阶方阵,则r(AB)≥r(A)+r(B)-n6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;⎛1②、型如 00⎝a10c⎫⎪b⎪1⎪⎭的矩阵:利用二项展开式;③、利用特征值和相似对角化:7.伴随矩阵:⎧n⎪①、伴随矩阵的秩:r(A*)=⎨1⎪⎩0r(A)=n r(A)=n-1r(A)<n-1*-1*;②、伴随矩阵的特征值:Aλ(AX=λX,A=AA ⇒ AX=AλX);③、A*=AA-1、A*=An-18.关于A矩阵秩的描述:①、r(A)=n,A中有n阶子式不为0,n+1阶子式全部为0;(两句话)②、r(A)<n,A中有n阶子式全部为0;③、r(A)≥n,A中有n阶子式不为0;9.线性方程组:Ax=b,其中A为m⨯n矩阵,则:①、m与方程的个数相同,即方程组Ax=b有m个方程;②、n与方程组得未知数个数相同,方程组Ax=b为n元方程;10.线性方程组Ax=b的求解:①、对增广矩阵B进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;4、向量组的线性相关性11.①、向量组的线性相关、无关⇔Ax=0有、无非零解;(齐次线性方程组)②、向量的线性表出⇔Ax=b是否有解;(线性方程组)③、向量组的相互线性表示⇔AX=B是否有解;(矩阵方程)12.矩阵Am⨯n与Bl⨯n行向量组等价的充分必要条件是:齐次方程组Ax=0和Bx=0同解;(P101例14)13.14.r(AA)=r(A)nT;(P101例15)⇔α=0维向量线性相关的几何意义:;③、α,β,γ线性相关⇔α,β,γ①、α线性相关②、α,β线性相关共面;⇔α,β坐标成比例或共线(平行);15.线性相关与无关的两套定理:若α1,α2,Λ,αs线性相关,则α1,α2,Λ,αs,αs+1必线性相关;若α1,α2,Λ,αs线性无关,则α1,α2,Λ,αs-1必线性无关;(向量的个数加加减减,二者为对偶)若r维向量组A的每个向量上添上n -r个分量,构成n维向量组B:若A线性无关,则B也线性无关;反之若B线性相关,则A也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;16.向量组A(个数为r)能由向量组B(个数为s)线性表示,且A线性无关,则r向量组A能由向量组B线性表示,则r(A)≤向量组A能由向量组B 线性表示⇔AX=Br(B)≤s(二版P74定理7);;(P86定理3)r(A)=r(A,B)有解;⇔(P85定理2)向量组A能由向量组B等价⇔ r(A)=①、矩阵行等价:A~crr(B)=r(A,B)(P85定理2推论)=P1P2ΛPl17.方阵A可逆⇔存在有限个初等矩阵P1,P2,Λ,Pl,使AB⇔PA=B;=0(左乘,P可逆)⇔Ax=0与Bx同解18.19.20.21.②、矩阵列等价:A~B⇔AQ=B(右乘,Q可逆);③、矩阵等价:A~B⇔PAQ=B(P、Q可逆);对于矩阵Am⨯n与Bl⨯n:①、若A与B行等价,则A与B的行秩相等;②、若A与B行等价,则Ax=0与Bx=0同解,且A与B的任何对应的列向量组具有相同的线性相关性;④、矩阵A的行秩等于列秩;若Am⨯sBs⨯n=Cm⨯n,则:①、C的列向量组能由A的列向量组线性表示,B为系数矩阵;②、C的行向量组能由B的行向量组线性表示,AT为系数矩阵;(转置)齐次方程组Bx=0的解一定是ABx=0的解,考试中可以直接作为定理使用,而无需证明;①、ABx=0 只有零解⇒ Bx=0只有零解;②、Bx=0 有非零解⇒ ABx=0一定存在非零解;设向量组Bn⨯r:b1,b2,Λ,br可由向量组An⨯s:a1,a2,Λ,as线性表示为:(P110题19结论)(B=AK)其中K为s⨯r,且A线性无关,则B组线性无关⇔r(K)=r;(B与K的列向量组具有相同线性相关性)(必要性:Θr=r(B)=r(AK)≤r(K),r(K)≤r,∴r(K)=r;充分性:反证法)(b1,b2,Λ,br)=(a1,a2,Λ,as)K=m注:当r=s时,K为方阵,可当作定理使用;22.①、对矩阵Am⨯n,存在Qn⨯m,AQ=Em ⇔r(A)②、对矩阵Am⨯n,存在Pn⨯m,PA=En、Q的列向量线性无关;(P87)、P的行向量线性无关;⇔r(A)=n23.若η*为Ax=b的一个解,ξ1,ξ2,Λ,ξn-r为Ax=0的一个基础解系,则η*,ξ1,ξ2,Λ,ξn-r线性无关5、相似矩阵和二次型1.正交矩阵⇔AA=ET或A-1=AT(定义),性质:⎧1=⎨⎩0i=ji≠j(i,j=1,2,Λn)①、A的列向量都是单位向量,且两两正交,即aiTaj②、若A为正交矩阵,则A-1=AT;也为正交阵,且A=±1;③、若A、B正交阵,则AB也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2.施密特正交化:(a1,a2,Λ,ar) b1=a1;b2=a2-[b1,a2][b1,b1]γb1ΛΛΛ[b1,ar][b1,b1]γb1-[b2,ar][b2,b2]γb2-Λ-[br-1,ar][br-1,br-1]γbr-1br=ar-;3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、A与B等价⇔A经过初等变换得到B;⇔PAQ=B,P、Q可逆;⇔r(A)=r(B),A、B同型;②、A与B 合同⇔CTAC=B,其中可逆;TT⇔xAx与xBx有相同的正、负惯性指数;③、A与B相似⇔P-1AP=B; 5.相似一定合同、合同未必相似;若C为正交矩阵,则CTAC=B⇒AγB,(合同、相似的约束条件不同,相似的更严格); 6.n元二次型xTAx为正定:T⇔A的正惯性指数为n⇔A与E合同,即存在可逆矩阵C,使CAC=E⇔A的所有特征值均为正数;⇔A的各阶顺序主子式均大于0⇒aii>0,A>0;(必要条件)第三篇:2013线性代数考研复习建议2013考研线性代数复习建议2013考研备考已经开始了,网校老师结合往年考研复习情况,也2013年考研的学生们一点建议。
华工2006-2007线性代数试题及解答《 2006线性代数 》试卷A一、填空题(每小题4分,共20分)。
0.已知正交矩阵P 使得100010002T P AP ⎛⎫ ⎪=- ⎪⎪-⎝⎭,则2006()T P A E A P += 1.设A 为n 阶方阵,12,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则det( 2A )=2.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有无数多个解的充分必要条件是:rank(A)=rank(A,B)<n3.4.若向量组α=(0,4,2),β=(2,3,1),γ=(t ,2,3)的秩为2,则t=-85.231511523()5495827x D x xx -=-,则0)(=x D 的全部根为:1、2、-3二、选择题(每小题4分,共20分)1.行列式001010100⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅的值为( c )。
DA , 1,B ,-1C ,(1)2(1)n n -- D ,(1)2(1)n n +-2.对矩阵n m A ⨯施行一次行变换相当于( A )。
A , 左乘一个m 阶初等矩阵,B ,右乘一个m 阶初等矩阵C , 左乘一个n 阶初等矩阵,D ,右乘一个n 阶初等矩阵3.若A 为m ×n 矩阵,()r A r n =<,{|0,}nM X AX X R ==∈。
则( C )。
DA ,M 是m 维向量空间,B , M 是n 维向量空间C ,M 是m-r 维向量空间,D ,M 是n-r 维向量空间4.若n 阶方阵A 满足,2A =0,则以下命题哪一个成立( A )。
DA , ()0r A =,B , ()2n r A =C , ()2n r A ≥,D ,()2n r A ≤5.若A 是n 阶正交矩阵,则以下命题那一个不成立( D )。
A ,矩阵A T 为正交矩阵,B ,矩阵1A -为正交矩阵C ,矩阵A 的行列式是±1,D ,矩阵A 的特征根是±1三、解下列各题(每小题6分,共30分)1.若A 为3阶正交矩阵,*A 为A 的伴随矩阵, 求det (*A )2.计算行列式111111111111a a a a。
全国2007年4月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为3阶方阵,且2||=A ,则=-|2|1A ( D ) A .-4 B .-1 C .1D .44218||2|2|131=⨯==--A A. 2.设矩阵A =(1,2),B =⎪⎪⎭⎫⎝⎛4321,C =⎪⎪⎭⎫ ⎝⎛654321,则下列矩阵运算中有意义的是( B ) A .ACBB .ABC C .BACD .CBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) A .A +A TB .A -A TC .AA TD .A T A)()()(TTTTTTTA A A AA AA A --=-=-=-,所以A -A T为反对称矩阵.4.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d cb a ,则A *=( A ) A .⎪⎪⎭⎫⎝⎛--a cb dB .⎪⎪⎭⎫⎝⎛--a b c dC .⎪⎪⎭⎫⎝⎛--a c b dD .⎪⎪⎭⎫⎝⎛--a b c d 5.矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C ) A .⎪⎪⎭⎫⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫⎝⎛-01311 6.设矩阵A =⎪⎪⎪⎭⎫⎝⎛--50043200101,则A 中( D ) A .所有2阶子式都不为零 B .所有2阶子式都为零 C .所有3阶子式都不为零D .存在一个3阶子式不为零7.设A 为m×n 矩阵,齐次线性方程组Ax =0有非零解的充分必要条件是( A ) A .A 的列向量组线性相关 B .A 的列向量组线性无关 C .A 的行向量组线性相关D .A 的行向量组线性无关Ax =0有非零解⇔n A r <)(⇔ A 的列向量组线性相关.8.设3元非齐次线性方程组Ax=b 的两个解为T )2,0,1(=α,T )3,1,1(-=β,且系数矩阵A 的秩r(A )=2,则对于任意常数k , k 1, k 2,方程组的通解可表为( C ) A .k 1(1,0,2)T+k 2(1,-1,3)TB .(1,0,2)T +k (1,-1,3)TC .(1,0,2)T+k (0,1,-1)TD .(1,0,2)T+k (2,-1,5)TT )2,0,1(=α是Ax=b 的特解,T)1,1,0(-=-βα是Ax =0的基础解系,所以Ax=b 的通解可表为=-+)(βααk (1,0,2)T +k (0,1,-1)T .9.矩阵A =⎪⎪⎪⎭⎫⎝⎛111111111的非零特征值为( B ) A .4B .3C .2D .1111111111)3(111111333111111111||-------=---------=---------=-λλλλλλλλλλλλA E)3(000111)3(2-=-=λλλλλ,非零特征值为3=λ.10.4元二次型413121214321222),,,(x x x x x x x x x x x f +++=的秩为( C ) A .4B .3C .2D .1⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=000000011100001000000000011110001000100011111A ,秩为2. 二、填空题(本大题共10小题,每小题2分,共20分)11.若,3,2,1,0=≠i b a i i 则行列式332313322212312111b a b a b a b a b a b a b a b a b a =__0__. 行成比例值为零. 12.设矩阵A =⎪⎪⎭⎫⎝⎛4321,则行列式|A TA |=__4__.4)2(4321||||||||222=-====A A AA A TT .13.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 有非零解,则其系数行列式的值为__0__.14.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100020101,矩阵E A B -=,则矩阵B 的秩r(B )= __2__. E A B -==⎪⎪⎪⎭⎫⎝⎛000010100,r(B )=2. 15.向量空间V={x =(x 1,x 2,0)|x 1,x 2为实数}的维数为__2__.16.设向量)3,2,1(=α,)1,2,3(=β,则向量α,β的内积),(βα=__10__.17.设A 是4×3矩阵,若齐次线性方程组Ax =0只有零解,则矩阵A 的秩r(A )= __3__. 18.已知某个3元非齐次线性方程组Ax =b 的增广矩阵A 经初等行变换化为:⎪⎪⎪⎭⎫⎝⎛-----→1)1(0021201321a a a A ,若方程组无解,则a 的取值为__0__. 0=a 时,2)(=A r ,3)(=A r .19.设3元实二次型),,(321x x x f 的秩为3,正惯性指数为2,则此二次型的规范形是232221y y y -+.秩3=r ,正惯性指数2=k ,则负惯性指数123=-=-k r .规范形是232221y y y -+. 20.设矩阵A =⎪⎪⎪⎭⎫⎝⎛-300021011a 为正定矩阵,则a 的取值范围是1<a . 011>=∆,0121112>-=-=∆a a,0)1(33021113>-=-=∆a a ⇒1<a .三、计算题(本大题共6小题,每小题9分,共54分)21.计算3阶行列式767367949249323123. 解:0760300940200320100767367949249323123==. 22.设A = ⎪⎪⎪⎭⎫⎝⎛--523012101,求1-A . 解: ⎪⎪⎪⎭⎫⎝⎛--100010001523012101→ ⎪⎪⎪⎭⎫ ⎝⎛---103012001220210101→ ⎪⎪⎪⎭⎫ ⎝⎛---127012001200210101 → ⎪⎪⎪⎭⎫ ⎝⎛---12701200220210202→ ⎪⎪⎪⎭⎫⎝⎛----127115125200010002→ ⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/510010001, =-1A⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/5. 23.设向量组T )1,2,1,1(1-α,T )2,4,2,2(2--α,T )1,6,0,3(3-α,T )4,0,3,0(4-α. (1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.解:=),,,(4321αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛-----4121064230210321→⎪⎪⎪⎪⎪⎭⎫⎝⎛---4440000033000321 →⎪⎪⎪⎪⎪⎭⎫⎝⎛---000330044400321→⎪⎪⎪⎪⎪⎭⎫⎝⎛000110011100321→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110000103021→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110000103001. (1)321,,ααα是一个极大线性无关组;(2)=4α32103ααα++-.24.求齐次线性方程组 ⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫⎝⎛-=11100011110011A →⎪⎪⎪⎭⎫ ⎝⎛--11101010010011→⎪⎪⎪⎭⎫⎝⎛--0101010010011→⎪⎪⎪⎭⎫ ⎝⎛0101010010011,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=55453225210x x x x x x x x x x , 基础解系为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00011,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10101,通解为TTk k )1,0,1,0,1()0,0,0,1,1(21--+-=η.25.设矩阵A =⎪⎪⎭⎫⎝⎛1221,求正交矩阵P ,使AP P 1-为对角矩阵. 解:)3)(1(324)1(1221||22-+=--=--=----=-λλλλλλλλA E ,特征值11-=λ,32=λ.对于11-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛----=-00112222A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛-=111α,单位化为 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-==21211121||1111ααβ; 对于32=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛--=-00112222A E λ,⎩⎨⎧==2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛=112α,单位化为 ⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛==21211121||1222ααβ.令⎪⎪⎪⎪⎭⎫⎝⎛-=21212121P ,则P 是正交矩阵,使⎪⎪⎭⎫⎝⎛-=-30011AP P . 26.利用施密特正交化方法,将下列向量组化为正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111α, ⎪⎪⎪⎪⎪⎭⎫⎝⎛=01012α.解:正交化,得正交的向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==001111αβ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-=012/12/10011210101||),(1211222βββααβ; 单位化,得正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==002/12/1001121||1111ββp ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==06/26/16/1012/12/162||1222ββp . 四、证明题(本大题6分)27.证明:若A 为3阶可逆的上三角矩阵,则1-A 也是上三角矩阵.证:设⎪⎪⎪⎭⎫⎝⎛=33232213121100a a a a a a A ,则⎪⎪⎪⎭⎫⎝⎛==*-3323133222123121111||1||1A A A A A A A A A A A A A , 其中000332312=-=a a A ,0002213=-=a A ,00121123=-=a a A ,所以⎪⎪⎪⎭⎫⎝⎛=-333222312111100||1A A A A A A A A 是上三角矩阵. 全国2007年7月高等教育自学考试线性代数(经管类)试题答案 课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 是3阶方阵,且|A |=21-,则|A -1|=( A )A .-2B .21-C .21 D .22.设A 为n 阶方阵,λ为实数,则=||A λ( C ) A .||A λB .||||A λC .||A n λD .||||A n λ3.设A 为n 阶方阵,令方阵B =A +A T,则必有( A ) A .B T =B B .B =2A C .B B T -=D .B =0B AA A AA AA A BTTTT TTT T=+=+=+=+=)()(.4.矩阵A =⎪⎪⎭⎫⎝⎛--1111的伴随矩阵A *=( D ) A .⎪⎪⎭⎫⎝⎛--1111B .⎪⎪⎭⎫⎝⎛--1111C .⎪⎪⎭⎫⎝⎛--1111D .⎪⎪⎭⎫⎝⎛--1111 5.下列矩阵中,是初等矩阵的为( C ) A .⎪⎪⎭⎫⎝⎛0001B .⎪⎪⎪⎭⎫ ⎝⎛--100101110C .⎪⎪⎪⎭⎫ ⎝⎛101010001D .⎪⎪⎪⎭⎫ ⎝⎛0013000106.若向量组)0,1,1(1+=t α,)0,2,1(2=α,)1,0,0(23+=t α线性相关,则实数t =( B )A .0B .1C .2D .30)1)(1(2111)1(1021011222=-+=++=++t tt ttt ⇒1=t .7.设A 是4×5矩阵,秩(A )=3,则( D ) A .A 中的4阶子式都不为0 B .A 中存在不为0的4阶子式 C .A 中的3阶子式都不为0D .A 中存在不为0的3阶子式8.设3阶实对称矩阵A 的特征值为021==λλ,23=λ,则秩(A )=( B ) A .0 B .1 C .2 D .3A 相似于⎪⎪⎪⎭⎫⎝⎛=200000000D ,秩(A )= 秩(D )=1. 9.设A 为n 阶正交矩阵,则行列式=||2A ( C ) A .-2B .-1C .1D .2A 为正交矩阵,则E A A T =,==22||||A A 1||||||==A A A A T T .10.二次型2.2),,(y x z y x f -=的正惯性指数p 为( B ) A .0 B .1 C .2 D .3二、填空题(本大题共10小题,每小题2分,共20分) 11.设矩阵A =⎪⎪⎭⎫⎝⎛1121,则行列式=||TAA __1__. 1)1(1121||||||||22=-====A AA AATT.12.行列式1694432111中)2,3(元素的代数余子式=32A __-2__.2421132-=-=A .13.设矩阵A =⎪⎪⎭⎫ ⎝⎛21,B =⎪⎪⎭⎫ ⎝⎛21,则=B A T__5__.521)2,1(=⎪⎪⎭⎫ ⎝⎛=B A T.14.已知βααα=+-32125,其中)1,4,3(1-=α,)3,0,1(2=α,)5,2,0(-=β,则=3α⎪⎭⎫ ⎝⎛-211,1,1. ⎪⎭⎫ ⎝⎛-=-=+---=211,1,1)11,2,2(21)]3,0,1(5)1,4,3()5,2,0[(213α 15.矩阵A =⎪⎪⎪⎭⎫⎝⎛-613101的行向量组的秩=__2__. ⎪⎪⎪⎭⎫ ⎝⎛-613101→⎪⎪⎪⎭⎫ ⎝⎛-603001→⎪⎪⎪⎭⎫⎝⎛-003001,秩=2. 16.已知向量组)1,1,1(1=α,)0,2,1(2=α,)0,0,3(3=α是3R 的一组基,则向量)3,7,8(=β在这组基下的坐标是)1,2,3(.设332211αααβx x x ++=,即)0,0,3()0,2,1()1,1,1()3,7,8(321x x x ++=,得⎪⎩⎪⎨⎧==+=++37283121321x x x x x x ,解得⎪⎩⎪⎨⎧===123321x x x . 17.已知方程组⎩⎨⎧=+-=-0202121tx x x x 存在非零解,则常数t =__2__.02211=-=--t t,2=t .18.已知3维向量T )1,3,1(-=α,T )4,2,1(-=β,则内积=),(βα__1__.19.已知矩阵A =⎪⎪⎪⎭⎫⎝⎛x 01010101的一个特征值为0,则x =__1__. 0|0|=-A E ,所以0||=A ,即0111101010101=-==x xx,1=x .20.二次型323121232221321822532),,(x x x x x x x x x x x x f +-+++=的矩阵是⎪⎪⎪⎭⎫⎝⎛--541431112. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=2112112的值. 解:4)26(2123211212302112112=+--=---=--=.22.设矩阵A =⎪⎪⎭⎫ ⎝⎛3512,B =⎪⎪⎭⎫⎝⎛0231,求矩阵方程XA =B 的解X . 解:⎪⎪⎭⎫⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫⎝⎛=252610022501101220016101210013512),(E A ⎪⎪⎭⎫ ⎝⎛--→25131001,⎪⎪⎭⎫ ⎝⎛--=-25131A ,⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛==-26512251302311BA X .23.设矩阵A =⎪⎪⎪⎭⎫⎝⎛---a 363124843121,问a 为何值时,(1)秩(A )=1;(2)秩(A )=2. 解:⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121→⎪⎪⎪⎭⎫ ⎝⎛--90000003121a →⎪⎪⎪⎭⎫⎝⎛--00090003121a . (1)9=a 时,秩(A )=1;(2)9≠a 时,秩(A )=2.24.求向量组1α=⎪⎪⎪⎭⎫ ⎝⎛-111,2α=⎪⎪⎪⎭⎫ ⎝⎛531,3α=⎪⎪⎪⎭⎫ ⎝⎛626,4α=⎪⎪⎪⎭⎫⎝⎛-542的秩与一个极大线性无关组.解:⎪⎪⎪⎭⎫ ⎝⎛--565142312611→⎪⎪⎪⎭⎫ ⎝⎛--3126028402611→⎪⎪⎪⎭⎫ ⎝⎛--142014202611→⎪⎪⎪⎭⎫⎝⎛--00014202611, 秩为2,1α,2α是一个极大线性无关组.25.求线性方程组⎪⎩⎪⎨⎧=++=+=++362232234232132321x x x x x x x x 的通解.解:⎪⎪⎪⎭⎫⎝⎛=362232203421A →⎪⎪⎪⎭⎫ ⎝⎛---322032203421→⎪⎪⎪⎭⎫ ⎝⎛00032203421→⎪⎪⎪⎭⎫⎝⎛00032200201→⎪⎪⎪⎭⎫ ⎝⎛0002/31100201,⎪⎪⎩⎪⎪⎨⎧=-=-=333231232x x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛11202/30k .26.设矩阵⎪⎪⎪⎭⎫⎝⎛--=1630310104A ,求可逆矩阵P 及对角矩阵D ,使得D AP P =-1. 解:2)1)(2(31104)1(163310104||-+=--+-=-----+=-λλλλλλλλλA E ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛-----=-00013050300013001531300000511210510513630510102A E λ ⎪⎪⎪⎭⎫ ⎝⎛-→0003/1103/501,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=3332313135x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫ ⎝⎛-=13/13/51α;对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛----=-0000000210210210210630210105A E λ,⎪⎩⎪⎨⎧==-=3322212x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0122α,⎪⎪⎪⎭⎫⎝⎛=1003α. 令⎪⎪⎪⎭⎫⎝⎛--=101013/1023/5P ,⎪⎪⎪⎭⎫⎝⎛-=100010002D ,则P 是可逆矩阵,使D AP P =-1. 四、证明题(本大题6分)27.设向量组1α,2α线性无关,证明向量组211ααβ+=,212ααβ-=也线性无关. 证:设02211=+ββk k ,即0)()(212211=-++ααααk k ,0)()(221121=-++ααk k k k .由1α,2α线性无关,得⎩⎨⎧=-=+002121k k k k ,因为021111≠-=-,方程组只有零解,所以1β,2β线性无关.全国2007年10月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( D )A .-3B .-1C .1D .3222111c b a c b a ++=2211b a b a +2211c a c a =1+2=3.2.设A 为3阶方阵,且已知2|2|=-A ,则=||A ( B ) A .-1B .41-C .41 D .12|2|=-A ,2||)2(3=-A ,41||-=A .3.设矩阵A ,B ,C 为同阶方阵,则=T ABC )(( B ) A .A T B T C TB .C T B T A TC .C T A T B TD .A T C T B T4.设A 为2阶可逆矩阵,且已知⎪⎪⎭⎫⎝⎛=-4321)2(1A ,则A =( D ) A .2⎪⎪⎭⎫ ⎝⎛4321B .⎪⎪⎭⎫⎝⎛432121C .214321-⎪⎪⎭⎫⎝⎛D .1432121-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-4321)2(1A ,143212-⎪⎪⎭⎫ ⎝⎛=A ,1432121-⎪⎪⎭⎫⎝⎛=A .5.设向量组s ααα,,,21 线性相关,则必可推出( C ) A .s ααα,,,21 中至少有一个向量为零向量 B .s ααα,,,21 中至少有两个向量成比例C .s ααα,,,21 中至少有一个向量可以表示为其余向量的线性组合D .s ααα,,,21 中每一个向量都可以表示为其余向量的线性组合6.设A 为m×n 矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是( A ) A .A 的列向量组线性无关 B .A 的列向量组线性相关 C .A 的行向量组线性无关D .A 的行向量组线性相关Ax=0仅有零解⇔n A r =)(⇔ A 的列向量组线性无关.7.已知21,ββ是非齐次线性方程组Ax =b 的两个不同的解,21,αα是其导出组Ax =0的一个基础解系,21,C C 为任意常数,则方程组Ax =b 的通解可以表为( A ) A .)()(212121121ααC αC ββ++++B .)()(212121121ααC αC ββ+++-C .)()(212121121ββC αC ββ-+++D .)()(212121121ββC αC ββ+++-)(2121ββ+是Ax =b 的特解,211,ααα+是Ax =0的基础解系.8.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3,则=-||1B ( A ) A .121B .71C .7D .12B 相似于⎪⎪⎪⎭⎫⎝⎛300020002,1230020002||==B ,121||||11==--B B .9.设A 为3阶矩阵,且已知0|23|=+E A ,则A 必有一个特征值为( B ) A .23-B .32-C .32D .230|23|=+E A ⇒032=--A E ⇒A 必有一个特征值为32-.10.二次型312123222132142),,(x x x x x x x x x x f ++++=的矩阵为( C )A .⎪⎪⎪⎭⎫ ⎝⎛104012421B .⎪⎪⎪⎭⎫ ⎝⎛100010421C .⎪⎪⎪⎭⎫ ⎝⎛102011211D .⎪⎪⎪⎭⎫ ⎝⎛120211011二、填空题(本大题共10小题,每小题2分,共20分)11.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100012021,B =⎪⎪⎪⎭⎫ ⎝⎛310120001,则A+2B =⎪⎪⎪⎭⎫⎝⎛720252023. 12.设3阶矩阵A =⎪⎪⎪⎭⎫⎝⎛002520310,则=-1)(T A ⎪⎪⎪⎭⎫⎝⎛--002/1130250. →),(E A T⎪⎪⎪⎭⎫ ⎝⎛10010*********200→⎪⎪⎪⎭⎫ ⎝⎛001100010200053021→⎪⎪⎪⎭⎫⎝⎛--00113001020010021→⎪⎪⎪⎭⎫ ⎝⎛---00113025020010001→⎪⎪⎪⎭⎫ ⎝⎛--002/1130250100010001,=-1)(T A ⎪⎪⎪⎭⎫ ⎝⎛--002/1130250.13.设3阶矩阵A =⎪⎪⎪⎭⎫⎝⎛333022001,则A *A =⎪⎪⎪⎭⎫⎝⎛600060006. ==*E A A A ||⎪⎪⎪⎭⎫⎝⎛==6000600066333022001E E . 14.设A 为m ×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,则矩阵B =AC 的秩为__r__. B =AC ,其中C 可逆,则A 经过有限次初等变换得到B ,它们的秩相等. 15.设向量)1,1,1(=α,则它的单位化向量为⎪⎪⎭⎫⎝⎛31,31,31. 16.设向量T )1,1,1(1=α,T )0,1,1(2=α,T )0,0,1(3=α,T )1,1,0(=β,则β由321,,ααα线性表出的表示式为3210αααβ-+=.设332211αααβk k k ++=,即⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001011111110321k k k ,⎪⎩⎪⎨⎧==+=++110121321k k k k k k , ⎪⎩⎪⎨⎧-===101321k k k .17.已知3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+0320320321321321x x x ax x x x x x 有非零解,则a =__2__.02412141121200132132111=-=+=+=-a a a a ,2=a .18.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则1)2(-A 必有一个特征值为41.2=λ是A 的特征值,则41)2(1=-λ是1)2(-A 的特征值.19.若实对称矩阵A =⎪⎪⎪⎭⎫⎝⎛a aa 000103为正定矩阵,则a 的取值应满足30<<a .031>=∆,031322>-==∆aaa ,0)3(00010323>-==∆a a aaa ⇒30<<a .20.二次型2221212122),(x x x x x x f -+=的秩为__2__.⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-=301112111112A ,秩为2. 三、计算题(本大题共6小题,每小题9分,共54分)21.求4阶行列式1111112113114111的值.解:630102010011000100010011020130011111112113114111===.22.设向量)4,3,2,1(=α,)0,2,1,1(-=β,求(1)矩阵βαT ;(2)向量α与β的内积),(βα.解:(1)()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-⎪⎪⎪⎪⎪⎭⎫⎝⎛=08440633042202110,2,1,14321βαT ;(2)50621),(=++-=βα. 23.设2阶矩阵A 可逆,且⎪⎪⎭⎫ ⎝⎛=-21211b ba a A ,对于矩阵⎪⎪⎭⎫⎝⎛=10211P ,⎪⎪⎭⎫⎝⎛=01102P ,令21AP P B =,求1-B.解:⎪⎪⎭⎫ ⎝⎛-=-102111P ,⎪⎪⎭⎫⎝⎛=-011012P , 111121----=P AP B=⎪⎪⎭⎫ ⎝⎛0110⎪⎪⎭⎫ ⎝⎛2121b b a a ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛2121a ab b ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛--12112122a a a b b b .24.求向量组T )3,1,1,1(1=α,T )1,5,3,1(2--=α,T )4,1,2,3(3-=α,T )2,10,6,2(4--=α的秩和一个极大线性无关组.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-----24131015162312311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------85401246041202311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------070070041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛------000070041202311, 秩为3,321,,ααα是一个极大线性无关组.25.给定线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321ax x x x ax x a x x x .(1)问a 为何值时,方程组有无穷多个解;(2)当方程组有无穷多个解时,求出其通解(用一个特解和导出组的基础解系表示).解:(1)⎪⎪⎪⎭⎫⎝⎛---=2112113111aa a A →⎪⎪⎪⎭⎫⎝⎛-----a a a a a 11010103111,1=a 时,方程组有无穷多解;(2)1=a 时,A →⎪⎪⎪⎭⎫⎝⎛-00000002111,⎪⎩⎪⎨⎧==---=33223212x x x x x x x ,通解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-10101100221k k . 26.求矩阵A =⎪⎪⎪⎭⎫⎝⎛------011101110的全部特征值及对应的全部特征向量. 解:10010111)2(1111111)2(1212112111111||--+=+=+++==-λλλλλλλλλλλλλλλA E)2()1(2+-=λλ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫⎝⎛---=-000330211330330211112121211211121112A E λ ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→000110101000110211,⎪⎩⎪⎨⎧===333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛=111α,对应的全部特征向量为αk (k 是任意非零常数);对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000000111111111111A E λ,⎪⎩⎪⎨⎧==--=3322321x x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0111α,⎪⎪⎪⎭⎫⎝⎛-=1012α,对应的全部特征向量为2211ααk k +(21,k k 是不全为零的任意常数). 四、证明题(本大题6分)27.设A 是n 阶方阵,且0)(2=+E A ,证明A 可逆.证:由0)(2=+E A ,得022=++E A A ,E A A =+-)2(2,E A E A =+-)2(.所以A 可逆,且)2(1E A A +-=-.全国2008年1月自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
,考试作弊将带来严重后果!
华南理工大学期末考试(A 卷)
《 2007线性代数 》试卷
1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;
.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =无解的充分必要条件是: .已知可逆矩阵P 使得1sin sin con P AP con θθθθ-⎛⎫=
⎪
-⎝⎭
,则12007
P A P -= .若向量组α=(0,4,t ),β=(2,3,1),γ=(t ,2,3)的秩为2,则t=
. 若A 为2n 阶正交矩阵,*
A 为A 的伴随矩阵, 则*A =
.设A 为n 阶方阵,12,,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则1
n
i i E A λ=-∑
=
选择题(共20分) .将矩阵n m A ⨯的第i 列乘C 加到第j 列相当于对A :
, 左乘一个m 阶初等矩阵, B ,右乘一个m 阶初等矩阵 , 左乘一个n 阶初等矩阵, D ,右乘一个n 阶初等矩阵 .若A 为m ×n 矩阵,B 是m 维 非零列向量,()min{,}r A r m n =<。
集合
{:,}n M X AX B X R ==∈则
,M 是m 维向量空间, B , M 是n-r 维向量空间 ,M 是m-r 维向量空间, D , A ,B ,C 都不对 .若n 阶方阵A ,B 满足,2
2
A B = ,则以下命题哪一个成立
A , A
B =±, B , ()()r A r B =
C , det det A B =±,
D , ()()r A B r A B n ++-≤
4.若A 是n 阶正交矩阵,则以下命题那一个成立:
A ,矩阵1A -为正交矩阵,
B ,矩阵 -1A -为正交矩阵
C ,矩阵*A 为正交矩阵,
D ,矩阵 -*A 为正交矩阵
5.4n 阶行列式111110
100-⋅⋅⋅---⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅的值为:
A , 1,
B ,-1
C , n
D ,-n
三、解下列各题(共30分)
1.求向量513β⎛⎫ ⎪
=- ⎪ ⎪
⎝⎭
,在基1231110,1,1101ααα⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下的坐标。
2.设1020200,
001A AB A B -⎛⎫ ⎪
==- ⎪ ⎪⎝⎭
,求矩阵1B --A
3.计算行列式1335 19925 12727125 18181625
-
-
4.计算矩阵
13409
266310
39693
394120
A
-
⎛⎫
⎪
----
⎪
=
⎪
----
⎪
-
⎝⎭
列向量组生成的空间的一个基。
5. 设
12
02
01
012
...
...
...
......
...
n
n
n
a b b b
b a b b
A b b a b
b b b a
⎛⎫
⎪
⎪
⎪
=
⎪
⎪
⎪
⎝⎭
计算det A
四、证明题(10分)
设12,,,r ξξξ 是齐次线性方程组0AX =的一个基础解系, η不是线性方程组
0AX =的一个解,求证ηηξηξηξ,,,,21+++r 线性无关。
五、(8分)用正交变换化下列二次型为标准型,并写出正交变换矩阵
22
123122313(,,)42f x x x x x x x x x =++-
六、(8分)a 取何值时,方程组
1231231
232325106
x x x a x x x a x x x +-=⎧⎪
-+=⎨⎪+-=⎩ 有无数多个解?并求通解
七、(4分)设矩阵A
,B ,A +B 都是可逆矩阵,证明矩阵11A B --+也是可逆矩
阵。