新型Sip/4032Al复合材料热物理性能研究
- 格式:pdf
- 大小:234.90 KB
- 文档页数:4
聚酰亚胺复合材料力学性能研究聚酰亚胺(PI)是一种具有良好高温稳定性、高强度、高刚度、低膨胀系数、抗热膨胀及化学腐蚀等优异性能的高分子材料,被广泛应用于航空、航天、电子通讯等领域。
近年来,PI基复合材料作为一种新型材料备受瞩目,其可在保持PI基高性能的同时,兼具优异的界面性能和加工性能。
因此,对PI复合材料力学性能的研究显得尤为重要。
其力学性能的研究主要包括材料的力学性能测试、界面力学性能的测试和尺寸效应的研究。
一、材料的力学性能测试PI基复合材料通常采用拉伸、压缩和剪切等多种实验方法进行力学性能评价。
由于PI材料的耐高温性好,因此高温环境下的力学性能测试也十分重要。
例如高温拉伸试验就是一种可以同时测量温度和载荷的方法,该试验对于研究高温下PI 基材料的力学性能、结构演化以及材料的高温损伤具有较大的意义。
另外,随着复合材料应用领域的不断扩大,对材料的疲劳性能也提出了更高的要求。
疲劳性能是复合材料耐久性的重要指标,波形使用、拉伸循环的方式下进行疲劳实验可以评价材料的疲劳性能、寿命以及其耐久性能。
二、界面力学性能测试由于PI基复合材料中最主要的为纤维增强体和基体的界面性能,因此对于界面性的测试显得尤其重要。
复合材料中纤维和基体之间的粘结状态是复合材料力学性能的关键,也是限制复合材料性能提高的重要因素。
一般来说,由于PI材料具有高分子材料的特点,其界面黏接性能较差,因此需要采取合适的方法进行改善。
目前常用的界面性能测试方法为剪切试验、单丝拉伸实验、模板法、化学测试法和小孔微型拉伸试验法等。
其中模板法可以准确测定不同粘结强度的纤维和基体之间的界面粘结强度,这种方法可以给出界面处的粘结强度作为评价界面粘结性的唯一参数。
三、尺寸效应的研究尺寸效应指材料性能与样品尺寸相关的现象。
对于复合材料来说,其高强度的性能使得一些具有微观缺陷的局部变形后很难得到显著的扩展。
因此,尺寸效应是影响复合材料易损性和材料设计的重要因素。
4032铝合金论文:4032铝合金涡旋盘锻件组织性能研究【中文摘要】随着汽车工业的飞速发展,能源短缺与环境污染已成为汽车工业所面临的主要难题。
轻量化已成为汽车行业节能减排的重要目标和手段,铝硅合金做为轻质材料以其优良的性能被广泛用于汽车制造业中,其精密锻造工艺在过去的十几年中得到了广泛而深入的研究,近年来,随着汽车工业对零部件使用性能要求的不断提高,铝硅合金的锻件组织性能控制研究越来越受到人们的关注。
涡旋盘是汽车空调压缩机的核心零件,在使用中要求有良好的静态强度以及耐磨性和塑韧性等,其主要的制造材料是4032铝合金,该合金属于铝硅系合金,其中Si含量在12%左右,以共晶Si形式存在,具有密度小、热膨胀系数小、耐磨性好、热传导性好等优点。
本文首先研究了4032铝合金的原始材料,及其不同热处理工艺下的显微组织变化规律,结果表明,4032铝合金在520℃下固溶3.5h,其强化相颗粒能够基本溶入基底,且Si形貌不会发生明显变化而对材料产生不利影响,在150~165℃时效8~10h,强化相又会再次析出并且不会发生回溶或者Si颗粒粗化长大。
为了制定涡旋盘最佳的热处理工艺,本文进行了4032铝合金的挤压实验,选择了与涡旋盘挤压实验相同的挤压比。
研究了不同时效制度对挤压棒材力学性能的影响,包括拉伸性能、冲击韧性、硬度、耐磨性等的测试,结合涡旋盘实际使用时所需要的性能,发现在165℃时效8~10h,挤压棒材具有比较好的综合机械性能。
本文还对涡旋盘锻件的成形质量进行了研究,分析了实际生产中,涡旋盘存在的涡旋齿高度不一致,表面凹凸不平,流线不顺、露头等缺陷产生的原因,并提出了解决措施。
通过对涡旋盘锻件进行热处理,发现在520℃下固溶3.5h,165℃时效8h的热处理工艺下,涡旋齿显微组织热处理效果较明显。
通过对涡旋盘进行性能测试,证明其能够很好满足使用要求。
【英文摘要】Recently, with the rapidly development of auto industry, people pay moreattention to lighting vehicle, and high silicon aluminum alloy are widely used in automanufacturers because of its excellent mechanical properties. The forging technologyof high silicon aluminum has been researched widely by people, now people beganto research about the microstructures and mechanical properties of forgings.The material of this article researching about is 4032 aluminum alloy which isthe material of scroll in auto air conditioning, this material has good performances instrength, wear and so on. Firstly, this article researched the microstructure evolutionof 4032 alloy by heat treatment. This alloy contains Si 12% which showed granularmorphology, and some secondary phase Mg2Si, Al2Cu which enhance the alloy.Under 520℃solution and keep 3.5 hours, the secondary phases could totallydissolved into Al base and the Si particles wouldn’t grow up. Under 150℃~165℃aging for 8~10 hours, the secondary phases could separate out again and the Siwouldn’t change its morphology.For further define the method of heat treatment to 4032 aluminum alloy, thisarticle made mechanical properties test to the bar of 4032 aluminum allov whichwere heated. The mechanical properties test included: strength, toughness, hardness,wear. Through testing, according the actual work needs of scroll, we founded thealloy has better mechanical properties under 165℃aging 8 hours.Through researching the molding quality of 4032 aluminum allov scroll, wefound that: the height of scroll would be different if the counterpressure wasn’tenough; and the streamline of scroll bended because of the deformation. Addressthese issues above, we analysis the reason and proposed improvements. Then weheated the scroll by 520℃solution 3.5 hours and 165℃aging 8 hours, throughobserving microstructure ,we found the effect of heat treatment is obvious. But wealso found as-cast microstructure in scroll, and part of microstructure had directions.Then we test mechanical properties of scroll, its mechanical properties meet therequirements of scroll, and are nearly to the 4032 aluminum allov bar, so we couldimprove the heat treatment.【关键词】4032铝合金涡旋盘固溶时效性能【英文关键词】4032 aluminum allov Scroll Heat treatment Mechanical property【目录】4032铝合金涡旋盘锻件组织性能研究摘要4-5ABSTRACT5第1章绪论9-201.1 引言91.2 铝硅合金的发展及应用现状9-111.3 铝合金热处理国内外研究现状11-131.4 涡旋盘成形工艺国内外研究现状13-151.5 锻件缺陷及组织性能研究概况15-181.5.1 铝合金锻造过程中常见的缺陷及分析15-171.5.2 有限元模拟在锻造缺陷分析中的应用17-181.5.3 锻件组织性能研究概况181.6 本课题的研究目的和内容18-20第2章试验材料及研究方法20-282.1 试验材料20-252.1.1 荧光成分分析20-212.1.2 X 射线衍射分析21-222.1.3 4032 铝合金原始材料组织分析22-252.2 挤压工艺252.3 热处理实验25-262.4 性能测试实验26-28第3章固溶时效对4032 铝合金显微组织的影响28-403.1 引言283.2 固溶处理制度对4032 铝合金显微组织的影响28-343.2.1 固溶处理方案28-293.2.2 固溶温度对4032 铝合金显微组织的影响29-323.2.3固溶时间对4032 铝合金显微组织的影响32-343.3 时效处理制度对4032 铝合金显微组织的影响34-393.3.1 时效处理方案34-353.3.2 时效温度对4032 铝合金显微组织的影响35-363.3.3 时效时间对4032 铝合金显微组织的影响36-393.4 本章小结39-40第4章 4032 铝合金挤压工艺及性能分析40-544.1 引言404.2 4032 铝合金挤压工艺40-424.3 4032 铝合金挤压棒材性能测试42-504.3.1 时效温度对4032 铝合金挤压棒材性能的影响42-464.3.2 时效时间对4032 铝合金挤压棒材性能的影响46-504.4 4032 铝合金棒材耐磨性研究50-524.5 本章小结52-54第5章 4032 铝合金涡旋盘锻件质量分析54-715.1 引言545.2 涡旋盘尺寸精度分析54-585.2.1 涡旋盘壁厚尺寸精度分析55-565.2.2 涡旋齿高度的尺寸精度分析56-585.2.3 涡旋盘端面平整度分析585.3 涡旋盘形状精度分析58-615.3.1 充填不满缺陷59-605.3.2 表面缺陷分析605.3.3 其他缺陷分析60-615.4 涡旋盘流线分析61-665.4.1 涡旋盘成形过程流线模拟61-645.4.2 涡旋盘实际流线分析64-655.4.3 涡旋盘实际流线与模拟流线的对比65-665.5 涡旋盘组织性能分析66-705.5.1 涡旋盘组织分析66-685.5.2 涡旋盘性能分析68-705.6 本章小节70-71结论71-73参考文献73-78致谢78(本资料素材和资料部分来自网络,仅供参考。
第42卷第11期2023年11月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.11November,2023氧化铝纤维增强氧化铝基复合材料研究进展孙敬伟1,王洪磊1,2,周新贵1(1.国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙㊀410073;2.中南大学轻质高强结构材料重点实验室,长沙㊀410083)摘要:与传统金属材料相比,氧化铝纤维增强氧化铝基(Al 2O 3/Al 2O 3)复合材料因具有比强度高㊁密度低㊁耐高温和抗氧化等特点,已经成为新一代备受国内外学者关注的航空航天热结构复合材料㊂本文介绍了目前常用的氧化铝纤维及其基本性能,总结了Al 2O 3/Al 2O 3复合材料中常用的界面相及其对复合材料性能的影响规律,归纳了Al 2O 3/Al 2O 3复合材料的制备工艺及性能,指出了该材料未来的发展趋势,旨在为国内Al 2O 3/Al 2O 3复合材料的研究提供借鉴和参考,促进Al 2O 3/Al 2O 3复合材料在航空航天领域热端高温部件上的广泛应用㊂关键词:氧化铝;复合材料;纤维;界面相;制备工艺中图分类号:TQ174㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)11-4092-21Research Progress of Al 2O 3Fiber Reinforced Al 2O 3Matrix CompositesSUN Jingwei 1,WANG Honglei 1,2,ZHOU Xingui 1(1.Science and Technology on Advanced Ceramic Fibers and Composites Laboratory,College of Aerospace Science andEngineering,National University of Defense Technology,Changsha 410073,China;2.National Key Laboratory of Scienceand Technology on High-Strength Structural Materials,Central South University,Changsha 410083,China)Abstract :Compared with traditional metal material,Al 2O 3fiber reinforced Al 2O 3matrix (Al 2O 3/Al 2O 3)composites have become a new generation of thermos-structured composites for aerospace that have attracted much attention from scholars all over the world due to their high specific strength,low density,high temperature resistance and oxidation resistance.This paper introduces the commonly used Al 2O 3fibers and their basic properties,summarizes the frequently used interfacial phases in Al 2O 3/Al 2O 3composites and their influence on performance of composites,summarizes the preparation process of Al 2O 3/Al 2O 3composites and their properties,and points out the future development trend of this material,aiming toprovide a reference for the research of Al 2O 3/Al 2O 3composites in China and promote the widespread application of Al 2O 3/Al 2O 3composites in high-temperature components at the hot side of aerospace industry.Key words :Al 2O 3;composite;fiber;interfacial phase;manufacturing process 收稿日期:2023-06-02;修订日期:2023-08-03基金项目:中南大学轻质高强结构材料重点实验室开放课题基金(SYSJJ202104)作者简介:孙敬伟(2000 ),男,硕士研究生㊂主要从事陶瓷基复合材料方面的研究㊂E-mail:sunjingwei0120@通信作者:王洪磊,博士,副教授㊂E-mail:honglei.wang@ 0㊀引㊀言连续纤维增强陶瓷基复合材料具有低密度㊁高强度㊁高模量㊁耐高温和抗磨损等特点[1-4],已被应用于航空航天发动机热端等关键部件[5-7]㊂在发动机实际工况下,高温燃气中的水蒸气会加速航空发动机热端复合材料部件的氧化[8-10],从而减弱复合材料的力学性能和可靠性[11-14]㊂氧化铝纤维增强氧化铝复合材料(简称Al 2O 3/Al 2O 3复合材料)相较于其他陶瓷基复合材料具有较好的抗水蒸气氧化性能[14-17],有效解决了陶瓷基复合材料在特定环境下易氧化的问题,极大拓宽了陶瓷基复合材料在航空航天等领域的应用[16,18-19]㊂目前Al 2O 3/Al 2O 3复合材料作为航空航天领域热端高温部件的新兴候选材料受到了国内外学者的广泛关注[17,20-21]㊂国外对Al 2O 3/Al 2O 3复合材料的研究起步较早,现已对Al 2O 3/Al 2O 3复合材料的制备技术㊁微观结构及第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4093㊀性能展开了系统的基础研究,并进入了工程应用阶段[22-24]㊂美国CHI(Composites Horizons)公司制备的Al2O3/Al2O3复合材料中心锥㊁混合器和核心整流罩部件成功应用到了GE-passport20发动机中,是Al2O3/ Al2O3复合材料在商用航空发动机中最早的应用㊂美国在CLEEN项目[22]中成功制备了Al2O3/Al2O3复合材料中心锥和喷管部件,组成了航空发动机排气部件(中心锥宽1.14m㊁高2.34m,喷管直径1.60m),是迄今为止尺寸最大的Al2O3/Al2O3复合材料航空发动机部件,该部件已完成装机测试,达到TRL(Technology Readiness Level)7水平,进入了最终完善阶段㊂此外美国的罗㊃罗AE3007发动机[25]㊁F414发动机等也都装配了Al2O3/Al2O3复合材料部件㊂德国在HiPOC项目[24,26]成功制备了Al2O3/Al2O3复合材料燃烧室衬套,完成了模拟发动机推力90%的测试,衬套整体保持完整㊂在此基础上,德国DLR[23,27]制备了WHIPOX-Al2O3/ Al2O3复合材料燃烧室衬套,该衬套经10h模拟环境考核后出现裂纹,但部件整体完整,没有出现灾难性破坏㊂同时,Al2O3/Al2O3复合材料也被广泛应用于民用工业领域㊂德国WPS公司[28-29]在Al2O3/Al2O3复合材料部件的工业开发与应用制造方面具有丰富的经验,制备了高温炉部件㊁汽车排气系统㊁陶瓷紧固件和太阳能吸收器等一系列复杂形态Al2O3/Al2O3复合材料部件,其中高温炉部件经500~780ħ的温差热震试验循环107次后未失效,同时,太阳能吸收器热部件的直径可达2.5m,是目前最大的Al2O3/Al2O3复合材料部件㊂受限于高性能Al2O3纤维原材料,我国对Al2O3/Al2O3复合材料的研究起步较晚,虽然近年来在Al2O3/ Al2O3复合材料应用领域取得了一定进展,但仍处于基础研究阶段,尚有许多应用问题需要解决[30-32]㊂本文从氧化铝纤维㊁界面相和复合材料制备工艺的角度出发,重点介绍了Al2O3/Al2O3复合材料制备技术及性能,指出了这一领域未来的发展趋势,期望为国内Al2O3/Al2O3复合材料研究领域的发展提供一些参考㊂1㊀氧化铝连续纤维氧化铝连续纤维的研究始于20世纪70年代,目前只有美国㊁日本㊁德国和中国等国家掌握了其制造技术[33]㊂美国3M公司在1974年首次通过溶胶-凝胶法制备了氧化铝纤维,经过不断优化,推出了Nextel系列氧化铝纤维,其中Nextel610纤维和Nextel720纤维是目前应用最广泛的氧化铝纤维[11,34-35]㊂1.1㊀Nextel610氧化铝纤维Nextel610氧化铝纤维的主要成分为α-Al2O3,含有低于1%(质量分数,下同)的Fe3O4和SiO2,为单相多晶氧化铝纤维㊂在纤维制备过程中,Fe3O4有效提高了α-Al2O3的形核率,降低了α-Al2O3的相变温度, SiO2有效减小了α-Al2O3晶粒的生长速率㊂在Fe3O4和SiO2的共同作用下,氧化铝纤维的烧结温度显著降低且致密度明显上升㊂Nextel610氧化铝纤维是目前室温拉伸强度和拉伸模量最高的氧化铝纤维,但高温处理后纤维中α-Al2O3晶粒迅速长大,纤维缺陷增多,力学性能明显下降㊂Nextel610氧化铝纤维的基础性能如表1所示㊂表1㊀Nextel610氧化铝纤维的基础性能Table1㊀General properties of Nextel610Al2O3fiberTrademark Component Diameter/μm Density/(g㊃cm-3)Tensilestrength/GPaTensilemodulus/GPaFracturestrain/%Nextel61099.0%α-Al2O30.7%Fe3O40.3%SiO210~12 3.90 3.103800.50在高温条件下,Nextel610氧化铝纤维晶粒会显著长大,晶粒生长速率受保温时间影响较大㊂Schmücker 等[36]对Nextel610氧化铝纤维在1300ħ热处理过程中的晶粒长大机制进行了详细研究,发现Nextel610氧化铝纤维中的掺杂元素在α-Al2O3晶界附近偏聚,使得α-Al2O3晶界迁移率降低,α-Al2O3晶粒生长速率较小㊂根据等温生长动力学计算公式(式(1))可得Nextel610氧化铝纤维的生长指数nʈ4,Nextel650和Nextel720氧化铝纤维的生长指数nʈ7㊂但由于Nextel610氧化铝纤维中没有第二相成分抑制晶粒生长, Nextel610氧化铝纤维相较于另外两种氧化铝纤维在高温条件下的晶粒生长速率受保温时间影响较大(如图1所示)㊂根据生长指数n㊁α-Al2O3的晶粒尺寸和温度的关系,计算出了Nextel610氧化铝纤维的晶粒生4094㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图1㊀氧化铝纤维1300ħ热处理后晶粒尺寸与保温时间的关系[36]Fig.1㊀Relationship between grain size and dwell time of Al 2O 3fibers heat-treated at 1300ħ[36]长活化能约为660kJ㊃mol -1㊂D n -D n 0=K (T )ˑt (1)式中:D 为热处理后晶粒尺寸,D 0为原始晶粒尺寸,K为反应常数,t 为热处理时间,n 为生长指数,理想状态下n 为2[37]㊂Nextel 610氧化铝纤维经高温处理后晶粒会显著长大,力学性能下降㊂姜如等[35]对Nextel 610氧化铝纤维在1000~1400ħ进行热处理后发现,纤维经1200ħ热处理后的表面晶粒尺寸明显增大;当热处理温度为1400ħ时,纤维表面缺陷明显增多,纤维经不同温度热处理后的表面形貌如图2所示㊂对不同温度热处理后的纤维进行拉伸强度测试发现,随着热处理温度的升高,纤维的拉伸强度逐渐降低㊂当热处理温度为1200ħ时,纤维的拉伸强度发生突变,强度保留率仅为71.15%㊂不同温度热处理后纤维的晶粒尺寸与拉伸强度关系如图3所示㊂图2㊀不同温度热处理后Nextel 610氧化铝纤维的表面形貌[35]Fig.2㊀Surface morphologies of Nextel 610Al 2O 3fibers heat-treated at different temperatures [35]Nextel 610氧化铝纤维的高温力学性能随测试温度变化显著㊂美国3M 公司[38]报道了Nextel 610氧化铝纤维的高温力学性能,如图4所示㊂由图4可知,Nextel 610氧化铝纤维在1200ħ之前强度较高,强度保留率在95%以上;1300ħ时强度下降明显,强度保留率降低至64%;1400ħ时的强度保留率仅为30.2%㊂这主要是因为Nextel 610氧化铝纤维是单相纤维,在较高的温度下晶粒快速长大,导致强度迅速下降㊂第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4095㊀图3㊀不同温度热处理后Nextel 610氧化铝纤维晶粒尺寸和拉伸强度关系[35]Fig.3㊀Relationship between grain size and tensile strength of Nextel 610Al 2O 3fiber heat-treated at different temperatures[35]图4㊀Nextel 系列氧化铝纤维的高温力学性能[38]Fig.4㊀High temperature mechanical properties of Nextel series Al 2O 3fiber [38]㊀Nextel 610氧化铝纤维的抗蠕变性能较差,在不同环境热处理后其蠕变性能有明显差异㊂Armain 等[39]研究了1100ħ时Nextel 610氧化铝纤维分别在空气和水汽气氛下的蠕变行为,发现当蠕变应力为100MPa 时,Nextel 610氧化铝纤维在两种气氛下的寿命都超过100h,水汽气氛下的蠕变应变为空气气氛下的5倍㊂而当蠕变应力为200~500MPa 时,水汽气氛下的蠕变应变略低于空气气氛下的蠕变应变,Nextel 610氧化铝纤维在不同气氛下的蠕变曲线如图5所示㊂水汽显著增加了Nextel 610纤维的蠕变速率,当蠕变应力为100~500MPa 时,纤维在水汽气氛下的蠕变速率较空气气氛下的蠕变速率高近一个数量级㊂图5㊀1100ħ下Nextel 610氧化铝纤维在不同气氛中的蠕变曲线[39]Fig.5㊀Creep curves of Nextel 610Al 2O 3fiber in different atmosphere at 1100ħ[39]1.2㊀Nextel 720氧化铝纤维Nextel 720氧化铝纤维主要含α-Al 2O 3和SiO 2,其中SiO 2的含量约为15%[35]㊂在纤维烧成过程中SiO 2与α-Al 2O 3反应生成莫来石,莫来石可在α-Al 2O 3晶界处聚集,形成莫来石包围α-Al 2O 3的结构,有效抑制了α-Al 2O 3晶粒的生长,明显提高了纤维的抗蠕变性能㊂Nextel 720氧化铝纤维的性能如表2所示㊂表2㊀Nextel 720氧化铝纤维的基础性能Table 2㊀General properties of Nextel 720A 2O 3fiberTrademark Component Diameter /μm Density /(g㊃cm -3)Tensile strength /GPa Tensile modulus /GPa Fracture strain /%Nextel 72085.0%α-Al 2O 315.0%SiO 210~12 3.40 2.102600.81与Nextel 610氧化铝纤维类似,高温热处理可使Nextel 720氧化铝纤维的晶粒长大,尤其在高于1600ħ的温度下,Nextel 720氧化铝纤维晶粒长大明显㊂Schmücker 等[36]在1500~1700ħ对Nextel 7204096㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图6㊀Nextel 720氧化铝纤维在1500~1700ħ热处理时晶粒尺寸与保温时间的关系[36]Fig.6㊀Relationship between grain size and dwell time of Nextel 720Al 2O 3fiber heat-treated at 1500~1700ħ[36]氧化铝纤维进行热处理,晶粒尺寸随时间的变化如图6所示㊂由图6可以看出,1600ħ以下的氧化铝纤维晶粒长大不明显,1600ħ以上氧化铝纤维晶粒显著长大㊂根据式(1)计算得到1600ħ以下莫来石晶粒的生长指数n ʈ12,1600ħ以上莫来石晶粒的生长指数n ʈ3,均在典型的陶瓷晶粒生长指数区间内[37]㊂因此当热处理温度低于1600ħ时,Nextel 720氧化铝纤维中的晶粒长大主要为α-Al 2O 3晶粒的生长,莫来石晶粒几乎不长大,并且由于莫来石的存在,α-Al 2O 3晶粒的生长受到抑制㊂当热处理温度高于1600ħ时,Nextel 720氧化铝纤维中晶粒长大主要来源于莫来石晶粒的生长㊂高温热处理会对Nextel 720氧化铝纤维的拉伸强度产生显著影响㊂郑周等[31]通过对Nextel 720氧化铝纤维热处理后发现,当热处理温度为1300ħ时,莫来石相由伪四方结构逐渐转变为斜方结构,氧化铝晶体从莫来石晶体中析出㊂观察纤维热处理后的表面形貌发现,1100ħ热处理后纤维表面由颗粒状α-Al 2O 3晶体和条状的莫来石晶体混杂形成,1300ħ热处理后的纤维表面颗粒状α-Al 2O 3晶体显著长大为块状晶体,与条状莫来石晶体镶嵌分布,不同温度热处理后的纤维表面形貌如图7所示㊂对不同温度热处理后的纤维拉伸强度进行测试后发现,随着热处理温度的升高,纤维的拉伸强度逐渐下降㊂1100ħ热处理后纤维室温拉伸强度下降明显,强度保留率为64.48%;1300ħ热处理后的纤维拉伸强度保留率降为54.10%㊂图7㊀不同温度热处理的Nextel 720氧化铝纤维表面形貌[31]Fig.7㊀Surface morphologies of Nextel 720Al 2O 3fiber heat-treated at different temperatures [31]Nextel 720氧化铝纤维的高温力学性能也随测试温度的升高而显著降低㊂美国3M 公司[38]报道了Nextel 720氧化铝纤维的高温力学性能,如图4所示㊂由图4可知,当测试温度低于1200ħ时,Nextel 720氧化铝纤维高温拉伸性能低于Nextel 610氧化铝纤维,这是因为在1200ħ前,Nextel 610氧化铝纤维晶粒长大不明显,纤维拉伸强度保留率较高;当测试温度高于1200ħ时,Nextel 610氧化铝纤维晶粒明显长大,拉伸强度明显下降,而Nextel 720氧化铝纤维晶粒长大不明显,导致Nextel 720氧化铝纤维在1200ħ以上高㊀第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4097温拉伸性能高于Nextel610氧化铝纤维㊂Nextel720氧化铝纤维的抗老化性能优于Nextel610氧化铝纤维㊂根据3M公司的报道[38],Nextel720氧化铝纤维在不同温度下暴露1000h后的拉伸强度和晶粒尺寸关系如图8所示㊂相较于Nextel610氧化铝纤维,Nextel720氧化铝纤维长时间高温暴露后的强度保留率较高,晶粒尺寸增长较缓慢㊂这得益于莫来石相减少了α-Al2O3的晶界滑移,且有助于 钉扎 晶粒,使Nextel720氧化铝纤维的抗热老化性能增强㊂图8㊀不同温度暴露1000h后Nextel720氧化铝纤维拉伸强度和晶粒尺寸[38]Fig.8㊀Tensile strength and grain size of Nextel720fiber exposured1000h at different temperatures[38] Nextel720氧化铝纤维的抗蠕变性能较好,但不同高温环境对Nextel720氧化铝纤维的蠕变性能的影响显著不同㊂Armain等[40]研究了Nextel720氧化铝纤维在空气和水汽气氛下不同温度时的蠕变行为,发现当蠕变应力为400MPa㊁热处理温度为1100ħ时,Nextel720氧化铝纤维在水汽气氛下的蠕变应变约为空气气氛下蠕变应变的2倍㊂当蠕变应力为200MPa㊁热处理温度为1200ħ时,水汽气氛下的蠕变应变为空气气氛下蠕变应变的4~7倍㊂Nextel720氧化铝纤维在不同气氛下的蠕变曲线如图9所示㊂水汽的存在显著增㊀㊀㊀图9㊀不同温度下Nextel720氧化铝纤维在不同气氛中的蠕变曲线[40]Fig.9㊀Creep curves of Nextel720Al2O3fiber in different atmosphere at different temperature[40]4098㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷加了Nextel 720纤维的蠕变速率,当蠕变应力为100~300MPa㊁热处理温度为1200ħ时,水汽气氛下的蠕变速率比空气气氛下的蠕变速率高近一个数量级㊂综上所述,Nextel 610氧化铝纤维成分单一,主要为α-Al 2O 3相,其室温和高温拉伸强度较高,但纤维的单相组成导致其力学性能受温度影响较明显,纤维的高温稳定性和抗蠕变性能差㊂为提高纤维的稳定性和抗蠕变性能,3M 公司在Nextel 610氧化铝纤维的基础上开发了Nextel 720氧化铝纤维㊂Nextel 720氧化铝纤维中主要含有α-Al 2O 3和莫来石两相,相较于Nextel 610氧化铝纤维,Nextel 720氧化铝纤维的室温和高温力学性能较差㊂但由于莫来石相的存在,Nextel 720氧化铝纤维在高温下的晶粒长大速率较小,稳定性和抗蠕变性能较好㊂Nextel 610氧化铝纤维和Nextel 720氧化铝纤维的优缺点如表3所示㊂表3㊀Nextel 610氧化铝纤维和Nextel 720氧化铝纤维的优缺点Table 3㊀Advantages and disadvantages of Nextel 610and Nextel 720Al 2O 3fibersAl 2O 3fiberAdvantage Disadvantage Nextel 610Single phase fiber;high tensile strength Mechanical properties are significantly affected by temperature Nextel 720Good stability;mechanical properties are not significantly affected by temperatureTwo phase fiber;low tensile strength 2㊀界面相在连续纤维增强陶瓷基复合材料中,界面是连接纤维与基体的桥梁,主要承担着传递载荷㊁偏转裂纹㊁消除热应力和阻挡元素扩散的作用,对复合材料的性能有重要影响[41-43]㊂界面相要与纤维和基体间有良好的物理和化学相容性,同时界面相与纤维和基体间的结合强度要适中,这是因为一方面界面相能防止界面结合强度过大导致复合材料发生脆性断裂,降低力学性能[44];另一方面界面相能防止界面结合强度过小导致载荷不能通过界面传递给纤维,减弱纤维的增强作用[45]㊂目前,Al 2O 3/Al 2O 3复合材料中常用的界面相主要为热解碳(PyC)[46-48]㊁氮化硼(BN)[49]和独居石(LaPO 4)[50-51]㊂2.1㊀热解碳(PyC )界面相PyC 具有特殊的层状结构,层与层之间通过范德瓦尔斯力结合,被广泛应用于复合材料界面相材料㊂PyC 与氧化物纤维相容性好,且能有效阻挡纤维和基体间的元素扩散㊂Wang 等[48]采用化学气相沉积(chemical vapor deposition,CVD)工艺于1300ħ在氧化铝纤维表面制备了厚度约为70nm 的PyC 涂层,涂层的微观形貌如图10所示㊂由图可知,PyC 涂层与纤维结合性良好,纤维表面产生了由缺陷和晶粒长大引起的凹凸表面㊂纤维和基体两个组分被约60nm 厚的均匀PyC 涂层分离,没有发生任何界面扩散和反应㊂PyC 涂层具有明显的层状结构,非常有利于裂纹偏转[52],提高复合材料的力学性能㊂PyC 涂层厚度会对纤维的力学性能产生较明显的影响㊂Wang 等[46]采用CVD 法在氧化铝纤维表面制备了不同厚度的PyC 涂层,纤维的截面形貌如图11所示,此外还研究了涂层厚度和结合强度对纤维力学性能的影响㊂结果表明,当涂层厚度较小(0.15μm)时,涂层能够愈合纤维表面缺陷[53],从而提高纤维的拉伸强度㊂随着涂层厚度的增加,纤维的拉伸强度逐渐降低㊂产生这一现象的原因是:1)涂层的柔软性对纤维拉伸强度的影响大于表面缺陷的愈合效果;2)涂层厚度增加需要更长的CVD 时间,长时间高温环境易使纤维强度下降;3)纤维和PyC 涂层的热膨胀系数不同(纤维为5.3ˑ10-6ħ-1,PyC 涂层为2.5ˑ10-6ħ-1),当涂层较厚时,纤维和涂层间出现间隙,界面结合强度较弱㊂受到外力时,裂纹不能偏转,导致应力集中于纤维表面,易使纤维发生断裂㊂PyC 涂层会对复合材料的力学性能产生明显影响㊂Geng 等[47]在氧化铝纤维编织件上制备了PyC 涂层,随后通过溶胶-凝胶法制备了莫来石/Al 2O 3复合材料,有无PyC 涂层的莫来石/Al 2O 3复合材料的断口形貌如图12所示㊂无PyC 涂层的复合材料断口平整,没有纤维拔出现象㊂这说明复合材料在断裂过程中,由于裂纹尖端应力集中导致裂纹直接穿过氧化铝纤维,纤维的增韧机制没有得到发挥㊂有PyC 涂层的复合材料的断口纤维大量拔出,纤维拔出机制吸收了大部分能量,并且在断裂过程中产生沿纤维轴向扩展的裂纹,有效阻止了复合材料发生脆性断裂㊂㊀第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4099图10㊀PyC涂层纤维的微观结构[48]Fig.10㊀Microstructure of PyC coated fiber[48]图11㊀不同厚度PyC涂层纤维的截面形貌[46]Fig.11㊀Cross-section morphologies of PyC coated fibers with different thickness[46]2.2㊀氮化硼(BN)界面相BN具有与PyC类似的层状结构,在复合材料中引入该结构界面相后,当复合材料受到外力时,裂纹可沿界面层间扩展,起到保护纤维和提高复合材料力学性能的作用㊂相较于PyC涂层,BN的抗氧化性能较好,但在高于850ħ的氧化环境下,BN可与O2发生反应生成具有挥发性的B2O3,从而导致界面相消失㊂4100㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图12㊀莫来石/Al2O3复合材料的微观结构[47]Fig.12㊀Microstructure of mullite/Al2O3composites[47]高温热处理会对BN涂层的结晶度产生显著影响㊂Sun等[49]通过CVD工艺在氧化铝纤维表面制备了BN涂层,BN涂层的微观结构如图13所示㊂图13(a)为700ħ下沉积的BN涂层,由图可知涂层与纤维结合良好,BN呈非晶结构㊂图13(b)和13(c)为700ħ下沉积后经1300ħ热处理后的BN涂层,由图可知热处理后的BN涂层结晶度显著提高,具有明显的层状结构,为六方相氮化硼(h-BN)㊂对比图13(a)~(c)可知,高温热处理可以提高BN涂层的结晶度,使其由非晶相BN涂层转变为六方相BN涂层㊂图13㊀BN涂层纤维的微观结构[49]Fig.13㊀Microstructure of BN coated fibers[49]BN涂层的沉积温度会对涂层厚度和涂层纤维的力学性能产生明显影响㊂Sun等[49]以单源氨硼烷为前驱体,采用低温CVD工艺(700~900ħ)在氧化铝纤维表面制备了BN涂层,BN涂层纤维截面的微观形貌如图14所示㊂由图可知,在不同温度下沉积的BN涂层与纤维结合良好,且随着沉积温度的升高,BN涂层的厚度逐渐增加㊂对涂层纤维进行拉伸强度测试后发现,随着沉积温度的升高,涂层纤维的拉伸强度逐渐下降㊂700ħ下沉积涂层后的氧化铝纤维强度保持率为94.9%,900ħ下沉积涂层后的氧化铝纤维强度保持率迅速下降到54.8%㊂纤维拉伸强度下降的原因为:1)涂层沉积过程中的高温使纤维晶粒长大,导致纤维力学性能下降;2)BN涂层和氧化铝纤维的热膨胀系数不同,涂层和纤维在不同的沉积温度下有不同的收缩速率,从而产生残余热应力㊂残余热应力随着沉积温度的升高而升高,从而导致涂层纤维的力学性能随着沉㊀第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4101积温度的升高而下降㊂图14㊀不同温度沉积BN涂层后的纤维截面形貌[49]Fig.14㊀Cross-section morphologies of fibers after deposition of BN coating at different temperatures[49]上述PyC㊁BN两种界面相均起到阻挡元素扩散㊁传递载荷和偏转裂纹等作用,是复合材料中较为常用的界面相,但抗氧化性能较差,在Al2O3/Al2O3复合材料中的应用受到一定限制㊂为解决这一问题,研究人员把目光投向了具有较强抗氧化性的多孔稀土-磷酸盐类材料上,其中应用最广泛的为独居石(LaPO4)界面相㊂2.3㊀独居石(LaPO4)界面相LaPO4的熔点高㊁硬度低,与氧化物纤维和基体相容性好,同时与氧化物纤维和基体结合强度适中,已被用于氧化物/氧化物复合材料中的界面相材料[54]㊂在受到外力时,LaPO4可以通过滑移㊁解离和孪晶等机制有效偏转裂纹,提升复合材料的力学性能㊂LaPO4在高温下会在表面形成一层连续致密的反应层,保护纤维不被高温侵蚀,提高复合材料的稳定性㊂Zhang等[50]以La2O3和磷酸为原料,通过化学共沉淀法和闪烧法制备了LaPO4涂层,该涂层导热系数较低,在1000ħ时的导热系数为1.41W/(m㊃K);稳定性较好,在1400ħ保温100h涂层不受破坏;耐蚀性能好,在700~900ħ的V2O5熔盐中腐蚀4h的腐蚀产物主要为La(P,V)O4,涂层的微观结构变化不大,在1000ħ的V2O5熔盐中腐蚀4h会生成少量的LaVO4,但腐蚀产物仍主要为La(P,V)O4㊂LaPO4涂层的微观结构会对涂层纤维的力学性能产生明显影响㊂Xu等[51]将硝酸镧与植酸混合得到LaPO4前驱体溶液(编号PA f),将硝酸镧与磷酸和柠檬酸混合制备了另一种LaPO4前驱体溶液(编号CA f),采用非匀相沉淀法在35和90ħ下将LaPO4前驱体沉积在氧化铝纤维表面,经600ħ高温处理后得到厚度为500~800nm的LaPO4涂层,涂层纤维的微观形貌如图15所示㊂研究了不同前驱体和沉积温度对纤维强度的影响,分析了涂层纤维的强度退化机理㊂结果表明,在35ħ下沉积的前驱体可以在纤维表面转化为致密的LaPO4涂层,该致密涂层阻止了高温下生成的有害气体排出,导致纤维强度下降[55-56];而采用植酸前驱体可在90ħ获得颗粒细小且堆叠松散的LaPO4涂层,该结构的孔洞分布均匀,有利于有害气体的逸出,使涂层纤维具有最高的拉伸强度㊂通过单纤维拔出测试(示意图如图16所示)发现,90ħ下由柠檬酸前驱体和植酸前驱体在纤维表面制备LaPO4涂层后,纤维与基体间的界面结合强度分别下降了32.5%和46.7%,纤维与基体实现弱界面结合,有助于提高复合材料的力学性能㊂图15㊀LaPO 4涂层纤维的截面形貌[51]Fig.15㊀Cross-section morphologies of LaPO 4coated fibers[51]图16㊀单纤维拔出测试示意图[51]Fig.16㊀Schematic diagram of single fiber pull-out test [51]LaPO 4涂层的厚度会对涂层编织件的稳定性有显著影响㊂Tao 等[54]以LaNO 3和P 2O 5为原料制备了LaPO 4前驱体溶液,采用反复浸渍烧结法在氧化物纤维编织件中制备了厚度为80~300nm 的LaPO 4涂层,涂层的微观形貌如图17所示㊂研究了LaPO 4涂层㊁SiC-SiO 2涂层和LaPO 4-SiC-SiO 2涂层对氧化物纤维编织件柔韧性的影响,其典型力-挠度曲线和氧化物纤维编织件测试前后的照片如图18所示㊂研究发现,具有LaPO 4涂层的氧化物纤维编织件刚度有所增加,但增加的程度很小㊂这说明LaPO 4涂层对氧化物纤维编织件的柔韧性没有明显影响,且对氧化物纤维编织件的高温脆性有一定的缓解作用㊂LaPO 4涂层对高温处理后复合材料的力学性能有明显影响㊂Keller 等[57]制备了Nextel 610/LaPO 4/Al 2O 3复合材料,探究了LaPO 4涂层对高温处理后的复合材料力学性能的影响㊂研究发现,不含LaPO 4涂层的复合材料在1200ħ热处理5h 后拉伸强度下降约70%,复合材料断口几乎没有纤维拔出现象;而含LaPO 4涂层的复合材料经热处理后的拉伸强度下降约36.7%,复合材料断口处有明显的纤维拔出现象(见图19),同时发现纤维拔出现象主要出现在涂层㊁纤维/涂层和涂层/基体界面,这说明LaPO 4涂层与纤维和基体结合力较弱㊂综上所述,PyC 涂层和BN 涂层均具有层状结构,是复合材料中常用的界面相㊂当复合材料受到外力时,PyC 涂层和BN 涂层可通过滑移㊁解离等机制有效偏转裂纹,提高复合材料的力学性能[44,52]㊂但涂层制备工艺复杂且抗氧化性能较差,PyC 涂层在空气中的温度高于400ħ即可被氧化,BN 涂层在空气中的温度高于850ħ即被氧化,限制了涂层在Al 2O 3/Al 2O 3复合材料中的应用㊂LaPO 4涂层与氧化物纤维和基体相容性好,制备工艺简单㊁抗氧化性能较好,被广泛用在Al 2O 3/Al 2O 3复合材料中㊂不同涂层的优缺点如表4所示㊂。
探索 4032 合金棒材生产工艺的研究之路
4032 合金是一种高强度、高韧性的铝合金,具有良好的耐腐蚀性和机械性能,被广泛应用于航空、汽车、电子等领域。
然而,由于4032 合金具有较高的硬度和韧性,因此其生产工艺的研究一直是一个挑战。
材料的选用是生产 4032 合金棒材的第一步。
通常情况下,材料的选用需要考虑合金的化学成分、杂质含量、颗粒度等因素。
在熔炼过程中,需要对原材料进行加热和熔化,以便将其转化为液态合金。
在这个过程中,需要注意控制温度和气氛,以避免氧化和污染。
接下来是铸造环节,这个过程需要将液态合金倒入模具中,并使其凝固成所需形状的棒材。
在这个过程中,需要注意控制冷却速度和模具温度,以避免合金的变形和开裂。
最后是加工环节,这个过程包括切割、磨削、抛光等步骤,以便将棒材加工成所需尺寸和形状。
在这个过程中,需要注意选择合适的工具和工艺参数,以避免加工过程中的热变形和损耗。
除了上述环节外,还需要对生产工艺进行优化,以提高产品质量和生产效率。
例如,可以采用先进的熔炼技术,如真空熔炼、气体保护熔炼等,以减少杂质含量和氧化程度。
此外,还可以采用计算机模拟技术,模拟合金的凝固和变形过程,以预测和优化生产工艺。
第29卷 第6期2009年12月航 空 材 料 学 报J OURNAL OF A ERONAUT ICAL MAT ER I A LSV o l 29,N o 6 D ecember 2009Ti 合金与SiC p /A l 复合材料在无压浸渗同步复合过程中的相容性崔 岩1, 张 磊1,2, 赵会友2(1.北京航空材料研究院先进复合材料国防科技重点实验室,北京100095;2.中国矿业大学(北京)机电与信息工程学院,北京100083)摘要:采用熔铝无压浸渗复合工艺在高体份S i C p /A l 复合材料制备过程中同步复合T i 合金零部件(圆柱体),研究了这种跨宏 微观尺度、超混杂铝基复合材料的微观组织及性能,特别是Si C p /A l 复合材料与T i 合金零部件之间的相容性。
结果表明,复合材料性能优异、组织致密,Si C 颗粒分布均匀、无偏聚现象。
S i C p /A l 复合材料与T i 合金之间的界面结合非常紧密,T i 元素向铝合金基体一侧有一定距离的扩散,并且出现了可增强界面结合的连续、无缺陷的界面反应物薄层,SE M 和XRD 分析表明界面反应产物为A l 2T ,i 界面剪切强度超过200M P a ,完全可以满足在复合材料中的T i 合金零部件处加工装配孔的要求。
关键词:铝基复合材料;无压浸渗;界面;T i 合金;相容性;结合强度DO I :10 3969/j i ssn 1005 5053 2009 6 009中图分类号:TB331 文献标识码:A 文章编号:1005 5053(2009)06 0043 05收稿日期:2009 05 11;修订日期:2009 09 15基金项目:国家863项目(2007AA03Z544)及航空科学基金项目(20075221001)作者简介:崔岩(1969 ),男,研究员,博士,主要从事金属基复合材料研究。
高体份( 50%)S i C p /A l 复合材料具有优异的结构承载功能、卓越的热控功能以及独特的防共振功能,它的比模量可以达到铝合金和钛合金的三倍、热膨胀系数比钛合金还低、热导率则远高于铝合金、平均谐振频率比铝、钛、钢三大金属结构材料高出60%以上,这种结构/功能一体化的综合性能优势使得该新型材料在航空航天精密仪器结构件、微电子器件封装元件等领域有着广阔的应用前景[1~3]。
精密成形工程第15卷第12期表面改性技术研究现状甘国强1,韩震2,鲍建华1,WOLFGANG Pantleon3(1.合肥工业大学材料科学与工程学院,合肥 230009;2.中国兵器科学研究院宁波分院,浙江宁波 315000;3.丹麦技术大学,哥本哈根 2800)摘要:SiC颗粒增强铝基复合材料因具有高的比强度、比刚度、耐磨性及较好的高温稳定性而被广泛应用于航空航天、电子、医疗等领域,但由于SiC颗粒高熔点、高硬度的特点以及SiC颗粒与铝基体间存在界面反应,碳化硅铝基复合材料存在加工性差、界面结合力不足等问题,已无法满足航天等领域对材料性能更高的要求,因此开展如何改善基体与颗粒之间界面情况的研究对进一步提升复合材料综合性能具有重要的科学意义。
结合国内外现有研究成果,总结了SiC颗粒与铝基体界面强化机制、界面反应特点、表面改性技术原理及数值建模的发展现状,结果表明,现有经单一表面改性方法处理后的增强颗粒对铝基复合材料性能的提升程度有限,因此如何采用新的手段使复合材料性能进一步提升将成为后续研究热点,且基于有限元数值模拟方法进行复合材料设计也是必然趋势。
最后针对单一强化性能提升有限的问题,提出了基于表面改性的柔性颗粒多模式强化方法,同时针对现有的技术难点展望了后续的研究方向,以期为颗粒增强复合材料的制备提供理论参考。
关键词:碳化硅颗粒;表面改性;复合材料;模拟;界面DOI:10.3969/j.issn.1674-6457.2023.12.008中图分类号:TB333 文献标识码:A 文章编号:1674-6457(2023)012-0058-10Research Status of Particle Interface Modification Technology for Silicon CarbideParticle Reinforced Aluminum Matrix CompositesGAN Guo-qiang1, HAN Zhen2, BAO Jian-hua1, WOLFGANG Pantleon3(1. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China;2. Ningbo Branch of China Academy of Ordnance Science, Zhejiang Ningbo 315000, China;3. Technical University of Denmark, Copenhagen 2800, Denmark)ABSTRACT: SiC particle reinforced aluminum matrix composites are widely used in aerospace, electronics, medical and other fields due to their excellent properties such as high specific strength, high specific stiffness, high wear resistance, and high tem-perature stability. However, due to the high melting point and high hardness of SiC particles, as well as the interface reaction between silicon carbide reinforced particles and aluminum matrix, SiC aluminum matrix composites have problems such as poor收稿日期:2023-09-03Received:2023-09-03基金项目:安徽省重点研究与开发计划(JZ2022AKKG0100)Fund:Anhui Provincial Key Research and Development Project (JZ2022AKKG0100)引文格式:甘国强, 韩震, 鲍建华, 等. 碳化硅颗粒增强铝基复合材料颗粒表面改性技术研究现状[J]. 精密成形工程, 2023, 15(12): 58-67.GAN Guo-qiang, HAN Zhen, BAO Jian-hua, et al. Research Status of Particle Interface Modification Technology for Silicon第15卷 第12期 甘国强,等:碳化硅颗粒增强铝基复合材料颗粒表面改性技术研究现状59processability and insufficient interfacial adhesion. It is no longer possible to meet the requirements for material performance in fields such as national defense and aerospace. Therefore, studying the ways to improve the interface between particles and ma-trix is of great scientific significance for improving the comprehensive performance of composite materials. In combination with existing research results at home and abroad, the interface strengthening mechanism, interface reaction characteristics, existing surface modification technology principles and numerical simulation development status of SiC reinforced particles and alumi-num matrix composites were summarized. The results showed that the performance improvement of reinforced particle alumi-num matrix composites after strengthening was limited after being treated with a single surface modification method. Therefore, how to adopt new methods to improve the performance of composite materials will become a hot research topic in the future, and the design of composite materials based on finite element numerical simulation methods is also an inevitable trend. Finally, in response to the limited improvement of single strengthening performance, the author proposes a flexible particle multimodal strengthening method based on surface modification, and looks forward to future research directions in response to existing technical difficulties, hoping to provide theoretical reference for the preparation of particle reinforced composite materials. KEY WORDS: SiCp; surface modification; composite material; simulation; interface碳化硅颗粒增强铝基复合材料是以碳化硅颗粒(SiCp )作为增强相,以铝或铝合金作为基体的一种复合材料,因具有密度和价格成本低、高温性能良好、耐腐蚀耐磨及比强度和比弹性模量高等特点,已成为热门的新型结构材料之一,现已广泛应用于航空航天、电子、汽车及体育等多个领域,如汽车刹车盘、发动机缸体活塞等结构件中。
4032铝合金热加工图及热变形机理研究陈强;刘华平;陈拂晓;杨永顺;郭俊卿【摘要】采用Gleeble-1500热物理模拟实验机对4032铝合金进行等温压缩实验,研究应变速率在0.02s-1~5s-1和变形温度为370℃~490℃的4032铝合金的热变形特征,并根据材料动态模型构建4032铝合金的热加工图.应用OLYMPUS PMG3型光学显微镜观察分析压缩后试样的微观组织.研究表明:4032铝合金最佳热加工工艺参数为:变形温度460℃~490℃,应变速率0.03s-1~0.36s-1;4032铝合金热加工的软化机制主要是动态回复.【期刊名称】《锻压装备与制造技术》【年(卷),期】2013(048)005【总页数】4页(P87-90)【关键词】材料科学;4032铝合金;加工图;动态回复;流变失稳【作者】陈强;刘华平;陈拂晓;杨永顺;郭俊卿【作者单位】河南科技大学材料科学与工程学院,河南洛阳471023;洛阳中重发电设备有限责任公司,河南洛阳471003;河南科技大学材料科学与工程学院,河南洛阳471023;河南科技大学材料科学与工程学院,河南洛阳471023;河南科技大学材料科学与工程学院,河南洛阳471023【正文语种】中文【中图分类】TG3014032铝合金是一种典型的共晶铝硅合金,具有中等力学性能(抗拉强度350MPa),低的热膨胀系数,出色的耐磨和耐腐蚀性能,适合于制造空调压缩机活塞、发动机活塞、压缩机转子等零部件[1]。
基于动态材料模型的热加工图能够准确反映材料在不同变形条件下的组织结构变化,确定软化机理,研究出失稳区域,优化热加工工艺参数。
本文采用Gleeble-1500热物理模拟实验机对4032铝合金进行等温压缩实验,得到压缩式样的真应力-真应变关系曲线。
依据动态材料模型构建4032铝合金的热加工图,为4032铝合金的热挤压等热塑性加工工艺参数的优化以及控制组织变化提供理论依据。
1 试验材料和方法实验材料为工厂生产的4032铝合金挤压棒材,H112状态,其化学成分(质量分数)为:Si11.0-13.5、Cu0.5-1.3、Mg0.80-1.3、Zn0.2、Fe1.0、Cr0.9,其他为Al。
4032铝合金热加工图及热变形机理研究一、引言介绍热加工及4032铝合金的基本情况,提出研究的目的和意义。
二、4032铝合金的热加工技术1.热处理工艺2.热变形工艺3.热模拟实验方法三、4032铝合金热变形机理1.高温下的塑性变形2.动态再结晶机制3.热软化及断裂机制四、4032铝合金热加工图的建立1.材料参数的获取2.建立热加工图的方法及过程3.热加工图的应用实例分析五、4032铝合金热加工研究的展望简要介绍4032铝合金热加工的发展趋势,提出未来的研究方向和重点。
注:提纲仅为参考,具体内容根据实际情况进行调整。
第一章引言随着工业制造水平的不断提高,新型材料的开发和应用受到越来越广泛的关注。
4032铝合金作为新型材料之一,被广泛应用于航空、汽车、建筑、电子等多领域。
在材料加工中,热加工技术是一种重要的加工方法,其可以改善材料的结构性能、提高材料的加工性能和精度。
因此,探究4032铝合金的热加工技术及热变形机理,对于推动4032铝合金在实际应用中的发展具有重要意义。
本论文旨在通过对4032铝合金的热加工技术及热变形机理研究,加深对材料的理解,为其应用和开发提供理论依据和技术指导。
第二章 4032铝合金的热加工技术热加工技术是将材料在高温状态下进行塑性变形等加工工艺,其主要目的是提高材料的塑性变形能力、改善材料的微观结构和性能、提高材料的韧性和延展性、降低加工难度和提高加工精度。
在4032铝合金的热加工过程中,热处理、热变形和热模拟实验是关键要素,下面分别进行介绍。
1. 热处理工艺热处理是一种通过控制材料的加热、冷却过程来改变其结构和性能的加工工艺,其可以提高材料的强度、硬度和韧性等性能,从而适应不同的生产需求。
在4032铝合金制造过程中,采用的热处理工艺主要有时效处理、回火处理、退火处理等。
时效处理是将铝合金加热到合适的温度(通常为较低温度),在此温度下保温一段时间,使其获得最佳的热稳定性和机械性能。