理论力学习题答案
- 格式:docx
- 大小:2.51 MB
- 文档页数:51
第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体.还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点.该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型.在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量.力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中.只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
b(杆ABa(球A ))d(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’.所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时.若选用不同的直角坐标系.则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N.放在水平梁AC的中央.如图所示。
2-3 梁的支承及载荷如图示,梁的自重不计。
以载荷M、P、q表示支承处的约束力。
(a) (b)(c) (d)(e) (f)(a)题2-3(a)图题2-3(a)答案图解: 对象:AB杆,受力如图示:建立参考基如图示∑==niixF1=AxF∑==niiAzFm1)(22=⋅+-⋅-⋅aqaMaFaFByaMqaFFBy2412+-=∑==niiyF1=--+qaFFFByAyaMqaFFAy2452-+=(b)、题2-3(b )图 题2-3(b )答案图解: 对象AB 杆,受力如图示,建立参考基如图示∑==n i ix F 100=Ax F∑==ni i Az F m 10)( 03212=-⋅⋅-⋅+⋅M a a q a F a F ByaMF qa F By 2243+-=∑==ni iy F 10 0321=-⋅-+F a q F F By AyaM F qa F Ay 22343-+=(C )、题2-3(C )图 题2-3(C )答案图 解:以AD 梁为研究对象,画出受力图如图所示。
建立参考基如图示0)(1=∑=i n i A F m 02342=⋅-⋅-⋅b qb b qb b F N C 得qb F N C 85= 01=∑=n i iy F 04=--+qb qb F F N C Ay 得qb F Ay 85= 01=∑=n i ix F0=Ax F(d )题2-3(d )图 题2-3(d )答案图解:以AB 梁为研究对象,画受力图如图所示。
建立参考基如图示0)(1=∑=i n i A F m 0222=-⋅⋅-⋅qb b b q b F N B 得qb F N B 23=01=∑=n i iy F 02=⋅-+b q F F Ay N B 得qb F Ay21= 01=∑=n i ix F0=Ax F(e )、题2-3(e )图 题2-3(e )答案图解:以AB 梁为研究对象,画受力图如图所示。
理论力学(盛冬发)课后习题答案c h12(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第12章动能定理一、是非题(正确的在括号内打“√”、错误的打“×”)1.圆轮纯滚动时,与地面接触点的法向约束力和滑动摩擦力均不做功。
( √ )2.理想约束的约束反力做功之和恒等于零。
( √ )3.由于质点系中的内力成对出现,所以内力的功的代数和恒等于零。
( × )4.弹簧从原长压缩10cm和拉长10cm,弹簧力做功相等。
( √ )5.质点系动能的变化与作用在质点系上的外力有关,与内力无关。
( × )6.三个质量相同的质点,从距地相同的高度上,以相同的初速度,一个向上抛出,一个水平抛出,一个向下抛出,则三质点落地时的速度相等。
( √ )7.动能定理的方程是矢量式。
( × )8.弹簧由其自然位置拉长10cm,再拉长10cm,在这两个过程中弹力做功相等。
143144( × )二、填空题1.当质点在铅垂平面内恰好转过一周时,其重力所做的功为 0 。
2.在理想约束的条件下,约束反力所做的功的代数和为零。
3.如图所示,质量为1m 的均质杆OA ,一端铰接在质量为2m 的均质圆轮的轮心,另一端放在水平面上,圆轮在地面上做纯滚动,若轮心的速度为o v ,则系统的动能=T 222014321v m v m +。
4.圆轮的一端连接弹簧,其刚度系数为k ,另一端连接一重量为P 的重物,如图所示。
初始时弹簧为自然长,当重物下降为h 时,系统的总功=W 221kh Ph -。
图 图5.如图所示的曲柄连杆机构,滑块A 与滑道BC 之间的摩擦力是系统的内力,设已知摩擦力为F 且等于常数,则曲柄转一周摩擦力的功为Fr 4-。
1456.平行四边形机构如图所示,r B O A O ==21,B O A O 21//,曲柄A O 1以角速度ω转动。
理论力学习题答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 静力学公理和物体的受力分析一、是非判断题在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ∨ ) 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( × ) 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( × ) 力的可传性只适用于刚体,不适用于变形体。
( ∨ ) 两点受力的构件都是二力杆。
( × ) 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( × ) 力的平行四边形法则只适用于刚体。
( × ) 凡矢量都可以应用平行四边形法则合成。
( ∨ ) 只要物体平衡,都能应用加减平衡力系公理。
( × ) 凡是平衡力系,它的作用效果都等于零。
( × ) 合力总是比分力大。
( × ) 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( × )若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ∨ )当软绳受两个等值反向的压力时,可以平衡。
( × )静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ∨ )静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
( ∨ )凡是两端用铰链连接的直杆都是二力杆。
( × )如图所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。
( × )图3二、填空题力对物体的作用效应一般分为 外 效应和 内 效应。
对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。
第11章 动量矩定理一、是非题(正确的在括号内打“√”、错误的打“×”)1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。
(×)2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。
(√)3. 质点系动量矩的变化与外力有关,与内力无关。
(√)4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。
(√)5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。
(×)6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。
(×)7. 质点系对某点的动量矩定理e 1d ()d nOO i i t ==∑L M F 中的点“O ”是固定点或质点系的质心。
(√)8. 如图所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+ 2213ml mr =+,式中m 为AB 杆的质量。
(×)9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d()d nP P i i t ==∑L M F 的形式,而不需附加任何条件。
(×)10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。
(×)图二、填空题1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。
2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。
3. 质点系的质量与质心速度的乘积称为质点系的动量。
4. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。
5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数和等于零。
第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
理论力学课后习题及答案解析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A 点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;将RB向下平移一段距离d,使满足:最后简化为一个力R,大小等于RB。
其几何意义是:R 的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力RA和一个力偶M A,且:如图所示;将RA向右平移一段距离d,使满足:最后简化为一个力R,大小等于RA。
其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
理论力学习题及解答第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
·36·第4章 空间力系一、是非题(正确的在括号内打“√”、错误的打“×”)1.力在坐标轴上的投影是代数量,而在坐标面上的投影为矢量。
( √ )2.力对轴之矩是力使刚体绕轴转动效应的度量,它等于力在垂直于该轴的平面上的分力对轴与平面的交点之矩。
( √ )3.在平面问题中,力对点之矩为代数量;在空间问题中,力对点之矩也是代数量。
( × )4.合力对任一轴之矩,等于各分力对同一轴之矩的代数和。
( √ )5.空间任意力系平衡的必要与充分条件是力系的主矢和对任一点的主矩都等于零。
( √ ) 6.物体重力的合力所通过的点称为重心,物体几何形状的中心称为形心,重心与形心一定重合。
( × ) 7.计算一物体的重心,选择不同的坐标系,计算结果不同,因而说明物体的重心位置是变化的。
( × ) 8.物体的重心一定在物体上。
( × )二、填空题1.空间汇交力系共有三个独立的平衡方程,它们分别表示为0=∑xF、0=∑yF和0=∑zF 。
空间力偶系共有三个独立的平衡方程,它们分别表示为0=∑xM、0=∑yM和0=∑zM。
而空间任意力系共有六个独立的平衡方程,一般可表示为0=∑xF、0=∑yF、0=∑zF 、0)(=∑F xM 、 0)(=∑F yM 和0)(=∑F zM 。
2.由n 个力组成的空间平衡力系,如果其中的(n -1)个力相交于A 点,那么另一个力也必定通过点A 。
3.作用在同一刚体上的两个空间力偶彼此等效的条件是力偶矩矢相等。
4.空间力对一点的矩是一个矢量,而空间力对某轴的矩是一个代数量。
5.空间力F 对任一点O 之矩)(F M O 可用矢量积来表示,即F r F M ⨯=)(O 。
写成解析表达式为k j i F M )()()()(x y z x y z O yF xF xF zF zF yF -+-+-=。
6.当空间力与轴相交时,力对该轴的矩等于零。
应按下列要求进行设计(D )A.地震作用和抗震措施均按8度考虑B.地震作用和抗震措施均按7度考虑C.地震作用按8度确定,抗震措施按7度采用答题(共38分)1、什么是震级什么是地震烈度如何评定震级和烈度的大小(6分)震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分)地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。
(2分)震级的大小一般用里氏震级表达(1分)地震烈度是根据地震烈度表,即地震时人的感觉、器物的反应、建筑物破坏和地表现象划分的。
(1分)D.地震作用按7度确定,抗震措施按8度采用4.关于地基土的液化,下列哪句话是错误的(A)A.饱和的砂土比饱和的粉土更不容易液化B.地震持续时间长,即使烈度低,也可能出现液化C.土的相对密度越大,越不容易液化D.地下水位越深,越不容易液化5.考虑内力塑性重分布,可对框架结构的梁端负弯矩进行调幅(B )A.梁端塑性调幅应对水平地震作用产生的负弯矩进行B.梁端塑性调幅应对竖向荷载作用产生的负弯矩进行C.梁端塑性调幅应对内力组合后的负弯矩进行D.梁端塑性调幅应只对竖向恒荷载作用产生的负弯矩进行6.钢筋混凝土丙类建筑房屋的抗震等级应根据那些因素查表确定( B )A.抗震设防烈度、结构类型和房屋层数B.抗震设防烈度、结构类型和房屋高度C.抗震设防烈度、场地类型和房屋层数D.抗震设防烈度、场地类型和房屋高度7.地震系数k与下列何种因素有关( A )A.地震基本烈度B.场地卓越周期一、 C.场地土类1.震源到震中的垂直距离称为震源距(×)2.建筑场地类别主要是根据场地土的等效剪切波速和覆盖厚度来确定的(√)3.地震基本烈度是指一般场地条件下可能遭遇的超越概率为10%的地震烈度值(×)4.结构的刚心就是地震惯性力合力作用点的位置(×)5.设防烈度为8度和9度的高层建筑应考虑竖向地震作用(×)6.受压构件的位移延性将随轴压比的增加而减小C.地震作用按8度确定,抗震措施按7度采用答题(共38分)1、什么是震级什么是地震烈度如何评定震级和烈度的大小(6分)震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分)地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。
静力学第一章习题答案1-3 试画出图示各结构中构件AB 的受力图 1-4 试画出两结构中构件ABCD 的受力图1-5 试画出图a 和b 所示刚体系整体合格构件的受力图1-5a 1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:对C 点有:解以上二个方程可得:2163.1362F F F == 解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。
对B 点由几何关系可知:0245cos BC F F = 对C 点由几何关系可知: 0130cos F F BC =解以上两式可得:2163.1F F =静力学第二章习题答案2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。
AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):F 2F BC F ABB45oyx F BCF CD C60o F 130oxy F BC F CD 60oF 130o F 2F BC F AB 45o其中:31tan =θ。
对BC 杆有:aM F F F AB C 354.0===A ,C 两点约束力的方向如图所示。
2-4解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C 处的约束力方向也可确定,各杆的受力如图所示。
对BC 杆有: 0=∑M030sin 20=-⋅⋅M C B F B对AB 杆有: A B F F = 对OA 杆有: 0=∑M01=⋅-A O F M A求解以上三式可得:m N M ⋅=31, N F F F C O AB 5===,方向如图所示。
//2-6求最后简化结果。
解:2-6a坐标如图所示,各力可表示为:j F i F F ρρρ23211+=, i F F ρρ=2, j F i F F ρρρ23213+-=先将力系向A 点简化得(红色的): j F i F F R ρρρ3+=, k Fa M A ρρ23=方向如左图所示。
由于A R M F ρρ⊥,可进一步简化为一个不过A 点的力(绿色的),主矢不变,其作用线距A 点的距离a d 43=,位置如左图所示。
2-6b同理如右图所示,可将该力系简化为一个不过A 点的力(绿色的),主矢为:其作用线距A 点的距离a d43=,位置如右图所示。
简化中心的选取不同,是否影响最后的简化结果? 2-13解:整个结构处于平衡状态。
选择滑轮为研究对象,受力如图,列平衡方程(坐标一般以水平向右为x 轴正向,竖直向上为y 轴正向,力偶以逆时针为正): 选梁AB 为研究对象,受力如图,列平衡方程:求解以上五个方程,可得五个未知量A By Bx Ay Ax M F F F F ,,,,分别为:αsin P F F Bx Ax -==(与图示方向相反))cos 1(α+==P F F By Ay (与图示方向相同)l P M A )cos 1(α+= (逆时针方向)2-18解:选AB 杆为研究对象,受力如图所示,列平衡方程:求解以上两个方程即可求得两个未知量α,D N ,其中:未知量不一定是力。
2-27解:选杆AB 为研究对象,受力如下图所示。
列平衡方程:由∑=0yF 和∑=0z F 可求出Az Ay F F ,。
平衡方程0=∑x M 可用来校核。
思考题:对该刚体独立的平衡方程数目是几个? 2-29解:杆1,2,3,4,5,6均为二力杆,受力方向沿两端点连线方向,假设各杆均受压。
选板ABCD 为研究对象,受力如图所示,该力系为空间任意力系。
采用六矩式平衡方程:F F 226-=(受拉)0=∑BH M045cos 45cos 0604=⋅-⋅-a F a F F F 224=(受压)F F 2211+=(受压)0=∑CD M 045sin 031=⋅-⋅+⋅a F a F a FFF 213-=(受拉)本题也可以采用空间任意力系标准式平衡方程,但求解代数方程组非常麻烦。
类似本题的情况采用六矩式方程比较方便,适当的选择六根轴保证一个方程求解一个未知量,避免求解联立方程。
2-31 力偶矩cm N M ⋅=1500解:取棒料为研究对象,受力如图所示。
列平衡方程:补充方程:⎩⎨⎧==2211N f F N f F s s 五个方程,五个未知量s f N F N F ,2211,,,,可得方程: 解得491.4,223.021==S S f f 。
当491.42=S f 时有:即棒料左侧脱离V 型槽,与提议不符,故摩擦系数223.0=S f 。
2-33解:当045=α时,取杆AB 为研究对象,受力如图所示。
列平衡方程: 附加方程:N S S F f F =四个方程,四个未知量s S N f T F F ,,,,可求得646.0=s f 。
2-35解:选棱柱体为研究对象,受力如图所示。
假设棱柱边长为a ,重为P ,列平衡方程: 如果棱柱不滑动,则满足补充方程⎩⎨⎧==NBs B NA s A F f F F f F 21时处于极限平衡状态。
解以上五个方程,可求解五个未知量α,,,,NB B NA A F F F F ,其中:32)(3tan 1221+-+=s s s s f f f f α(1)当物体不翻倒时0≥NBF ,则:060tan ≤α(2)即斜面倾角必须同时满足(1)式和(2)式,棱柱才能保持平衡。
静力学第三章习题答案3-10解:假设杆AB ,DE 长为2a 。
取整体为研究对 象,受力如右图所示,列平衡方程:取杆DE 为研究对象,受力如图所示,列平 衡方程:取杆AB 为研究对象,受力如图所示,列平衡方程:∑=0y F 0=++By Dy Ay F F FF F Ay -=(与假设方向相反) ∑=0A M 02=⋅+⋅a F a F Bx DxF F Bx -=(与假设方向相反) ∑=0B M 02=⋅-⋅-a F a F Dx AxF F Ax -=(与假设方向相反)3-12F Cx F CyF Bx F By解:取整体为研究对象,受力如图所示,列平衡方程: 取杆AB 为研究对象,受力如图所示,列平衡方程:杆AB 为二力杆,假设其受压。
取杆AB 和AD 构成的组合体为研究对象,受力如图所示,列平衡方程: 解得F F AC=,命题得证。
注意:销钉A 和C 联接三个物体。
3-14解:取整体为研究对象,由于平衡条件可知该力系对任一点之矩为零,因此有:即B F 必过A 点,同理可得A F 必过B 点。
也就是A F 和B F 是大小相等,方向相反且共线的一对力,如图所示。
取板AC 为研究对象,受力如图所示,列平衡方程: 解得:ba M F A-=2(方向如图所示)3-20解:支撑杆1,2,3为二力杆,假设各杆均受压。
选梁BC 为研究对象,受力如图所示。
其中均布载荷可以向梁的中点简化为一个集中力,大小为2qa ,作用在BC 杆中点。
列平衡方程:∑=0B M 0245sin 03=-⋅-⋅M a qa a F)2(23qa aMF +=(受压)选支撑杆销钉D 为研究对象,受力如右图所示。
列平衡方程:DF 3 F 2 F 1xyF AF B F CxF CyF D∑=0x F 045cos 031=-F F qa a M F 21+=(受压)∑=0y F045sin 032=--F F )2(2qa aM F +-=(受拉)选梁AB 和BC 为研究对象,受力如图所示。
列平衡方程:∑=0x F 045cos 03=+F F Ax )2(qa aM F Ax +-=(与假设方向相反)∑=0A M0345sin 242032=-⋅+⋅-⋅-⋅+M a F a qa a P a F M AM Pa qa M A -+=242(逆时针)3-21解:选整体为研究对象,受力如右图所示。
列平衡方程:∑=0x F 0=++F F F Bx Ax(1)由题可知杆DG 为二力杆,选GE 为研究对象,作用于其上的力汇交于点G ,受力如图所示,画出力的三角形,由几何关系可得:F F E22=。
取CEB 为研究对象,受力如图所示。
列平衡方程: 代入公式(1)可得:2F FAx-= 3-24解:取杆AB 为研究对象,设杆重为P ,受力如图所示。
列平衡方程: 取圆柱C 为研究对象,受力如图所示。
列平衡方程:注意:由于绳子也拴在销钉上,因此以整体为研究对象求得的A 处的约束力不是杆AB 对销钉的作用力。
3-27解:取整体为研究对象,设杆长为L ,重为P ,受力如图所示。
列平衡方程:∑=0A M0cos 22sin 2=⋅-⋅θθLP L F Nθtan 2P F N =(1)取杆BC 为研究对象,受力如图所示。
列平衡方程:∑=0B M0cos cos 2sin =⋅-⋅+⋅θθθL F LP L F s NP F S =(2)F Ax F Ay F BxF By F AxF AyF sP补充方程:N s s F f F ⋅≤,将(1)式和(2)式代入有:2tan s f ≤θ,即010≤θ。
3-29证明:(1)不计圆柱重量 法1:取圆柱为研究对象,圆柱在C 点和D 点分别受到法向约束力和摩擦力的作用,分别以全约束力RD RC F F ,来表示,如图所示。
如圆柱不被挤出而处于平衡状态,则RD RC F F ,等值,反向,共线。
由几何关系可知,RD RC F F ,与接触点C ,D 处法线方向的夹角都是2α,因此只要接触面的摩擦角大于2α,不论F 多大,圆柱不会挤出,而处于自锁状态。
法2(解析法):首先取整体为研究对象,受力如图所示。
列平衡方程: 再取杆AB 为研究对象,受力如图所示。
列平衡方程:取圆柱为研究对象,受力如图所示。
假设圆柱半径为R ,列平衡方程: 由补充方程:ND SD SD NC SC SC F f F F f F ⋅≤⋅≤,,可得如果: 则不论F 多大,圆柱都不被挤出,而处于自锁状态。
证明:(2)圆柱重量P 时取圆柱为研究对象,此时作用在圆柱上的力有重力P ,C 点和D 点处的全约束力RD RC F F ,。