Ch15光的偏振
- 格式:doc
- 大小:142.50 KB
- 文档页数:4
光的偏振实验方法光的偏振是光学中的重要现象,它涉及到光的传播方向和振动方向的关系。
为了研究和观察光的偏振现象,科学家们开发了许多实验方法。
本文将介绍一些常用的光的偏振实验方法。
一、马吕斯交叉法马吕斯交叉法是一种简单而直观的光的偏振实验方法。
所需装置包括一个偏振镜和一对交叉的光栅。
实验步骤:1. 将光栅放置在光路中,使光通过光栅后形成一对交叉的图案。
2. 调整偏振镜的角度,观察图案的变化。
3. 当偏振镜与光栅之间的角度达到一定条件时,图案将呈现出清晰的波纹状。
通过观察图案的变化,我们可以判断光的偏振性质以及偏振方向。
二、尼古拉斯法尼古拉斯法是一种利用偏振片的实验方法,可以用来测量光的振动方向。
实验步骤:1. 准备一对偏振片,将它们的传递轴垂直放置。
2. 将待测光线通过第一个偏振片,使其只能通过一个方向的振动。
3. 调整第二个偏振片的角度,观察透过第二个偏振片的光的强度变化。
4. 当第二个偏振片的传递轴与第一个偏振片之间的夹角为90°时,光的强度将最小。
通过调整第二个偏振片的角度,我们可以确定光的振动方向。
三、双折射和波片法双折射和波片法是一种通过使用双折射晶体和波片来产生和分析偏振光的实验方法。
实验步骤:1. 使用双折射晶体(如方解石)产生偏振光。
2. 将产生的偏振光通过波片(如四分之一波片或半波片)进行调整。
3. 观察光的传播方向和振动方向的变化,使用适当的检测器记录实验结果。
通过对偏振光的产生、调整和分析,我们可以研究光的偏振现象和性质。
总结:光的偏振实验方法有很多种,其中马吕斯交叉法、尼古拉斯法和双折射和波片法是常用的实验手段。
通过这些实验方法,科学家们能够观察和研究光的偏振现象,从而深入理解光的性质和行为。
对于光学研究和实际应用而言,光的偏振实验方法具有重要的意义。
注:本文介绍的实验方法仅为举例,实际实验操作应根据具体情况和实验要求进行调整。
实验十五光偏振现象的观察和检验一、实验目的1.观察光的偏振现象,了解偏振光的种类;2.掌握偏振光的产生及检验方法;3.了解波片的作用。
二、实验器材氦氖激光光源(1个),1/2波片(1片),1/4波片(1片),偏振片(2片),底座(4个),光电转换器(1个)。
三、实验原理(一)偏振光的种类光是电磁波,光的偏振现象表明光是一种横波,即电磁振动方向与光的传播方向垂直。
光作为电磁波,光波中含有电振动矢量和磁振动矢量,就光与物质的相互作用而言,起主要作用的是电矢量,通常称电矢量为光矢量。
并将光矢量和光的传播方向所构成的平面称为光的振动面。
根据光矢量的振动状态,可以把光分为五种偏振态,结合图15-1认识下面几种偏振态的概念:1.自然光:如果在垂直于光的传播方向的平面内,光矢量的振动方向是无规则地变化着的,且发生在各个方向的概率均等,即各个方向的平均振幅相等,称此种光为自然光。
2.部分偏振光:如果某些方向光矢量的平均振幅较大,某些方向光矢量的平均振幅较小,则称为部分偏振光。
3.线偏振光:如果光矢量沿着一个固定方向振动,则称此种光为线偏振光或称平面偏振光。
4.椭圆偏振光:光矢量的大小和方向都作规则的变化,在垂直于光的传播方向的平面内,光矢量的矢端运动轨迹是椭圆,称此种光为椭圆偏振光。
5.圆偏振光:当椭圆偏振光中光矢量的大小不变,只是方向作规则的变化,光矢量的矢端运动轨迹是圆,称此种光为圆偏振光。
(二)线偏振光的产生1.用偏振片来获取线偏振光偏振片是一种具有二向色性的晶体,所谓二向色性是指该晶体对两个相互垂直振动的光矢量具有不同的吸收本领。
当自然光通过二向色性晶体时,其中一方向的振动几乎完全被吸收,则透射出来的光为线偏振光。
2.反射和折射产生偏振光根据布儒斯特定律,当自然光以=arctan n的入射角入射到折射率为n的玻璃表面上时,其反射光为完全的线偏振光,振动面垂直于入射面,称为布儒斯特角。
此时透射光为部分偏振光,如果自然光以角入射到一叠平行玻璃片堆上,则经过多次反射和折射,最后从玻璃片堆透射出来的光也接近于线偏振光。
光的偏振实验了解光的偏振现象光的偏振现象是光波在传播过程中振动方向的定义。
通常,光的波动是沿着垂直于传播方向的所有方向均匀地振动。
然而,在某些情况下,光的振动方向可以被约束在一个特定的方向上,这就是光的偏振现象。
为了进一步了解光的偏振现象,我们可以进行实验来观察和研究光的偏振行为。
以下将介绍几种常见的光的偏振实验方法。
一、马吕斯法马吕斯法是最早用来研究光的偏振的实验方法之一。
该方法利用偏光镜和分析片的组合,可以将线偏振光转换成圆偏振光或者反之。
通过调节偏光镜和分析片的相对角度,我们可以观察到转换前后光的强度的变化,从而研究光的偏振现象。
二、振动起偏器法振动起偏器法是通过使用起偏器和分析器来观察光的偏振现象。
起偏器是一个偏振镜,可以限制光只能在一个特定方向上振动。
当通过起偏器的偏振光再经过分析器时,根据分析器的角度调节,我们可以观察到光的强度的变化,从而探究光的偏振特性。
三、双折射现象双折射是光线通过一些特殊的材料时产生的光的偏振现象。
常见的双折射材料包括石英晶体和冰晶石等。
通过将光线通过这些材料,我们可以观察到光线被分成两束具有不同振动方向的光线,这种现象被称为光的双折射。
通过测量这两束光线的振动方向,可以研究光的偏振现象。
四、干涉法干涉法是一种通过干涉现象来研究光的偏振特性的方法。
通过使用光路调节器和干涉仪,我们可以观察到在特定条件下,不同偏振方向的光线在干涉仪中产生干涉条纹。
通过分析和测量这些干涉条纹,可以获得有关光的偏振性质的有用信息。
通过以上的实验方法,我们可以更加深入地了解光的偏振现象。
这些实验方法不仅帮助我们理解光的振动方式,还在许多领域中有着重要的应用,如光学通信、显微镜下的观察等。
总结光的偏振现象是光学中非常重要的一个概念。
通过实验方法,我们可以对光的偏振行为有更深入的认识。
马吕斯法、振动起偏器法、双折射现象和干涉法是常用的实验方法,它们各自从不同的角度帮助我们理解光的偏振现象。
光的偏振偏振光的性质与应用光的偏振和偏振光的性质与应用光是由电磁波组成的,它有一个特殊的性质叫偏振。
偏振光是指光波中的电磁场矢量沿着特定方向振荡的光,它具有许多有趣的性质和广泛的应用。
本文将探讨光的偏振和偏振光的性质以及在科学技术中的应用。
一、光的偏振光是由电磁场的振荡产生的,而电磁场的振动方向有多种可能。
当光波中的电磁场沿着一个确定的方向进行振荡时,我们称之为偏振光。
光的偏振性质可以通过偏振片来观察,偏振片是一种能够选择特定方向光进行透射的光学元件。
二、偏振光的性质1. 光的偏振方式偏振光可以分为线性偏振光、圆偏振光和椭圆偏振光三种方式。
线性偏振光是指电磁场振荡方向固定不变的光,其电场矢量的振动方向可以与光传播方向垂直或平行;圆偏振光是指电磁场振荡方向在垂直于光传播方向的平面内旋转的光;椭圆偏振光是指电磁场振荡方向在垂直于光传播方向的平面内,且振动方向由一个方向逐渐变化到另一个方向的光。
2. 光的偏振特性偏振光的一个重要特性是偏振方向,即电场矢量的振动方向。
偏振片可以选择特定方向的光进行透射,而将垂直于该方向的光进行吸收。
这种特性可以应用于许多领域,如光学器件中的偏振光分析和调制。
3. 线偏振器的原理线偏振器是一种用来产生或选择特定方向线偏振光的器件。
它通常由有机薄膜或金属网格制成,其结构能够产生特定方向的透射。
通过调整线偏振器的方向和角度,可以选择性地改变透射光的偏振方向,实现光的分析、调制和控制。
三、偏振光的应用1. 光学显微镜偏振光在光学显微镜中有广泛的应用。
通过使用偏振片、偏振器和偏振滤光片,可以干扰样品中的光在显微镜中的传播和反射。
这种技术可以提供更多关于样品中微小结构和材料特性的信息,如晶体的方向和组织,纤维的方向和构造等。
2. 光通信偏振光在光通信中也发挥着重要的作用。
利用偏振调制和解调技术,可以实现高速、高容量的光信号传输。
偏振光通信系统可提供更高的信号品质和抗干扰能力,适用于各种长距离和高速数据传输的应用。
光的偏振物理实验报告光的偏振物理实验报告引言:光是一种电磁波,具有电场和磁场的振荡性质。
在自然界中,光的传播方向通常是无规则的,这种光称为非偏振光。
然而,通过一系列的物理实验,我们可以将非偏振光转化为偏振光,从而研究光的偏振性质。
本实验旨在通过实际操作,观察和分析光的偏振现象,并探索其在物理学中的应用。
实验一:偏振片的特性在这个实验中,我们使用了偏振片来观察光的偏振现象。
偏振片是一种具有特殊结构的光学元件,可以选择性地允许某个方向的光通过,而阻挡其他方向的光。
我们将偏振片放置在光源和屏幕之间,通过调整偏振片的方向,可以观察到光的强度的变化。
结果表明,当偏振片的方向与光的偏振方向垂直时,光的强度最小,几乎无法透过偏振片。
而当偏振片的方向与光的偏振方向平行时,光的强度最大,几乎全部透过偏振片。
这表明,偏振片可以选择性地让特定方向的光通过,从而实现光的偏振。
实验二:双折射现象双折射是光在某些晶体中传播时发生的现象,其中光的传播速度因晶体的结构而异。
我们使用了一块双折射晶体(例如石英晶体)来观察这一现象。
将光源照射到双折射晶体上,我们可以看到光线被分成两束,分别沿着不同的方向传播。
这是因为在双折射晶体中,光的传播速度在不同方向上有所差异。
这导致了光的折射方向发生变化,从而形成了两束光线。
这种双折射现象在光学仪器制造和光学通信中具有重要的应用价值。
实验三:偏振光的旋光性质在这个实验中,我们使用了旋光片来研究偏振光的旋光性质。
旋光片是一种光学元件,可以使光线的偏振方向发生旋转。
我们将旋光片放置在光源和偏振片之间,通过调整旋光片的角度,可以观察到光的偏振方向的旋转。
结果表明,旋光片可以使光的偏振方向发生旋转。
这是由于旋光片的特殊结构导致光的传播速度在不同方向上有所差异,从而引起光的旋转现象。
这种旋光性质在化学分析和制药工业中有广泛的应用。
实验四:偏振光的干涉现象在这个实验中,我们使用了干涉仪来观察偏振光的干涉现象。
光的偏振初中物理中光的偏振现象与应用光是一种电磁波,具有波动特性,可以传播能量和信息。
光的偏振现象是光波沿着特定方向振动的性质,它在物理学中具有重要的应用价值。
一、光的偏振现象及原理光的偏振是指光波在传播过程中,振动方向不同的光波之间的关系。
普通光是一种无偏振光,其振动方向在任意方向上都有平均分布。
而偏振光则是振动方向只能沿着特定方向传播的光。
光的偏振现象可以通过偏振镜进行观察。
偏振镜是一种特殊的光学器件,通过选择性地阻止或透过特定方向的光振动来实现偏振效果。
当一束无偏振光通过偏振镜时,其一部分光沿着特定方向传播,另一部分光则被吸收或反射。
这样,我们就可以观察到只有特定振动方向光的现象。
光的偏振现象可以通过横波理论进行解释。
当光波以垂直于振动方向的波动方向传播时,被称为横波。
光波的振动方向与光的传播方向垂直,这就是光的偏振。
光的偏振可以通过介质中的分子结构或光的传播路径实现。
二、光的偏振应用光的偏振现象在实际应用中具有广泛的价值。
以下是几个常见的光的偏振应用的例子:1. 光的偏振与太阳眼镜太阳眼镜是一种可以过滤掉振动方向特定的光线的偏振滤光器。
它可以有效地阻止强光对眼睛的伤害,并提供清晰的视野。
太阳眼镜通过只允许特定方向的光通过来减弱太阳光的强度,有效地保护视觉健康。
2. 光的偏振与液晶显示器液晶显示器是电子设备中常见的显示器类型。
它利用液晶分子的偏振性质来控制光的传播,从而显示图像和文字。
液晶显示器由上、下两片偏振玻璃片组成,中间夹着液晶层。
当施加电场时,液晶分子的排列方向发生改变,从而改变光的偏振方向,显示出不同的颜色和亮度。
3. 光的偏振与光栅偏振器光栅偏振器是一种能够转换光的偏振方向的设备。
它由具有特殊结构的光栅构成,可以将无偏振光转换为偏振光。
光栅偏振器在光学仪器中广泛应用,例如光学显微镜和光谱仪等。
4. 光的偏振与光通信光通信是一种利用光波传输数据和信息的技术。
在光通信中,通过调制光波的偏振方向来传输二进制数据。
光的偏振与全反射实验方法总结光的偏振与全反射是光学中的重要现象,它们在科学研究、技术应用等领域起着重要的作用。
为了更好地理解和研究这些现象,人们进行了大量的实验研究。
本文将对光的偏振与全反射实验方法进行总结,并介绍实验的操作步骤和结果分析。
一、光的偏振实验方法1. 实验仪器和材料准备在光的偏振实验中,通常需要准备的仪器和材料如下:(1)偏振片/偏光镜:用来选择或改变光的偏振方向;(2)透镜:用来调整被研究的光的光束;(3)荧光屏/光敏电流计:用来接收光的偏振现象;(4)光源:提供光的源波;(5)旋转台:用来调整和稳定实验装置。
2. 实验步骤(1)将偏振片插入光路,调整偏振方向,使其与待研究的光的偏振方向垂直;(2)通过透镜将光束聚焦到荧光屏或光敏电流计上;(3)观察荧光屏上的光强变化或记录光敏电流计的读数;(4)旋转偏振片,观察荧光屏上的光强变化或光敏电流计的读数变化。
3. 实验结果与讨论(1)通过实验观察到的光强变化或光敏电流计的读数变化,可以判断光的偏振状态;(2)根据实验现象,可以分析光的偏振方向、强度和偏振光的传播性质等。
二、全反射实验方法1. 实验仪器和材料准备在全反射实验中,通常需要准备的仪器和材料如下:(1)玻璃杯/透明容器:用来容纳折射介质;(2)光源:提供光的源波;(3)白纸:用来观察全反射现象。
2. 实验步骤(1)将透明容器填满折射介质(例如水);(2)将光源照射到接触面上,使其与垂直方向成一定角度;(3)观察接触面上的折射现象,特别是注视角度的变化;(4)将白纸放在接触面上方,通过观察白纸上的全反射现象继续研究。
3. 实验结果与讨论(1)通过观察接触面的折射现象,可以判断是否发生全反射;(2)通过观察白纸上的全反射现象,可以进一步分析全反射角度与光的入射角度的关系等。
综上所述,通过对光的偏振与全反射实验方法的总结,我们可以更好地理解和研究光的偏振与全反射现象。
通过实验中观察到的现象和结果,我们可以进一步深入研究光学领域,并应用于相关的科学研究和技术开发中。
光的偏振偏振光的产生和特性光的偏振——偏振光的产生和特性光是一种电磁波,具有波动性和粒子性。
当光通过某些介质或物体时,它的振动方向可能会发生变化,这就是光的偏振现象。
偏振光是指在特定方向上振动的光波,与传统的自然光相比,它具有明显的方向性和特性。
一、偏振光的产生偏振光的产生可以通过吸收、散射和干涉等过程实现。
以下是几种常见的偏振光产生方式:1. 吸收偏振当自然光通过吸光性较强的介质或物体时,部分光波会被吸收,而剩下的光波则在特定方向上振动,形成偏振光。
这种偏振方式常见于偏振片等介质。
2. 散射偏振当光通过物体表面或颗粒时,发生散射现象。
在散射过程中,光的振动方向与原先传播方向有差异,造成偏振。
此种偏振方式比较复杂,其具体机制与物体的形状、大小和光的波长等有关。
3. 双折射偏振某些晶体或材料在光的传播过程中会发生双折射现象。
双折射是指光在物质中传播时,由于晶体的结构特性而分成了两股光线,这两股光线的振动方向不同,因此形成了偏振光。
二、偏振光的特性偏振光具有一些特殊的属性,这些特性决定了偏振光在科学、技术和日常生活中的应用价值。
1. 方向性偏振光的最显著特点就是具有明确的振动方向。
根据振动方向的不同,可以将偏振光分为水平偏振光、垂直偏振光、45度偏振光等。
方向性使得偏振光在光学显微镜、液晶显示器等设备中起到非常重要的作用。
2. 平行性与自然光相比,偏振光具有更好的平行性。
这意味着偏振光能够聚焦成更为集中的光束,使得其在激光器、投影仪等光学器件中应用广泛。
3. 强度衰减偏振光在传输过程中会因各种因素产生强度衰减。
这种衰减可以用偏振度来描述,偏振度是指光的偏振强度与总强度之比。
常见的偏振度包括线偏振度和环偏振度,用来衡量光的振动方向偏离程度。
4. 与介质的相互作用偏振光与物质之间的相互作用非常复杂。
不同的介质对偏振光的传播影响也不同,包括偏振光的折射、反射和吸收等现象。
这种与介质的相互作用使得偏振光在材料分析、生物医学和通信等领域有广泛的应用。
光的偏振性实验
实验1 起偏、检偏和消光现象
转动两偏振片,使得两束光发生完全消光。
转动其中检偏器,起偏器保持不动。
探测器上光强的变化如下图所示。
图1 转动检偏器时光强发生的变化
当检偏器与起偏器夹角为0度和180度时,投射光强最小为0,将会出现完全消光现象。
夹角为90度和270度是,透射光强最大。
在检偏器转动一周的过程中,会有两次先增大后减小到的光强变化。
λ波片后偏振态的变化
实验2 光通过4
偏振态
实验3 半波片转动影响偏振态的观察记录
在有布儒斯特窗和偏振棱镜联合组成的起偏器和检偏器之间插入半波片,并使其绕水平轴转动360度,屏幕上共会出现4次消光现象。
表3 转动半波片后检偏器需要转动的角度
半波片转动角度
检偏器转动角度
15 29 30 57.5 45 86.5 60 114 75 144 90
171.5
将上表中数据导入origin 软件,进行线性拟合。
拟合线性图像如下图:
图2原始图像和线性拟合后图像
该线性拟合方程为 1.9070.25y x =+,此方程可近似为2y x =。
半波片作用:线偏光经半波片后振动方向转动的角度是入射光偏振角度的两倍。
0153045607590105120135150165180Y
X。
光的偏振与偏光器光是一种电磁波,在传播过程中的振动方向决定了光的偏振状态。
光的偏振与偏光器是光学中重要的概念和工具,对于了解光的性质以及应用具有重要意义。
一、光的偏振光的偏振是指光波传播方向上电场振动的方向。
根据电场在垂直于传播方向的平面上振动的特点,光可以分为三种偏振状态:横向电场振动(TE)光、横向磁场振动(TM)光和横向电场与磁场都振动(TEM)光。
横向电场振动(TE)光是指电场垂直于传播方向的平面上振动,此时磁场是沿着传播方向振动的。
横向磁场振动(TM)光是指磁场垂直于传播方向的平面上振动,此时电场是沿着传播方向振动的。
横向电场与磁场都振动(TEM)光是指电场和磁场都垂直于传播方向的平面上振动。
二、偏光器的原理与分类偏光器是用于改变光的偏振状态的光学器件。
其工作原理基于马吕斯定律,通过选择性吸收或者透过某一方向振动的光来改变光的偏振状态。
常见的偏光器有偏振片、偏光镜、偏振棱镜和偏光滤光片等。
根据其工作原理和结构特点,偏光器可以分为以下几种类型:1. 偏振片:偏振片是一种基于吸收性的偏光器,通过合适的材料处理形成具有特定方位的通道,只允许垂直于该方位的光通过,从而过滤掉其他方向振动的光,实现对光的偏振控制。
2. 偏振镜:偏振镜是将光线反射的镜子,其背后涂有特殊材料用于选择性吸收或透过光的特定方向振动分量,从而改变光的偏振状态。
3. 偏振棱镜:偏振棱镜是利用折射和反射的原理将光分离成具有不同偏振状态的光,通过调整棱镜的角度和结构,可以实现对光的偏振控制。
4. 偏光滤光片:偏光滤光片是利用吸收、偏振或散射等原理对光进行滤波,以达到改变或选择光的偏振状态的目的。
三、应用领域光的偏振与偏光器在许多领域中都有重要的应用。
1. 光学显微镜:在生物医学研究中,光学显微镜常用于观察组织和细胞的结构与功能。
通过使用偏振器,可以增强显微镜对样本中各类结构的清晰度,提高显微图像对比度。
2. 液晶显示技术:液晶显示器(LCD)是现代电子产品中广泛运用的显示技术。
第十五章 光的偏振
15-1 在以下五个图中,前四个图表示线偏振光入射于两
种介质分界面上,最后一图表示入射光是自然光.n 1、n 2为两
种介质的折射率,图中入射角i 0=arctg (n 2/n 1),i ≠i 0.试在图上画出实际存在的折射光线和反射光线,并用点或短线把振
动方向表示出来.
15-2 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.
(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.
(2) 如果将第二个偏振片抽走,情况又如何?
(答案:I 0 / 2,I 0 / 4,I 0/ 8;I 0 / 2,0)
15-3 两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.
(答案:2/ 3,)
15-4 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.
(答案:22.5°)
15-5 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.
(1) 求透过每个偏振片后的光束强度;
(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.
(答案:3 I 0 / 4,3I 0 / 16;I 0 / 2,I 0 / 8)
15-6 一束光强为I 0的自然光垂直入射在三个叠在一起的偏振片P 1、P 2、P 3上,已知P 1与P 3的偏振化方相互垂直.
(1) 求P 2与P 3的偏振化方向之间夹角为多大时,穿过第三个偏振片的透射光强为I 0 / 8;
(2) 若以入射光方向为轴转动P 2,当P 2转过多大角度时,穿过第三个偏振片的透射光强由原来的I 0 / 8单调减小到I 0 /16?此时P 2、P 1的偏振化方向之间的夹角多大?
(答案:45°;22.5°,22.5°)
15-7 强度为I 0的一束光,垂直入射到两个叠在一起的偏振片上,这两个偏振片的偏振化方向之间的夹角为60°.若这束入射光是强度相等的线偏振光和自然光混合而成的,且线偏振光的光矢量振动方向与此二偏振片的偏振化方向皆成30
°角,求透过每个偏振片后的光
束强度.
(答案:5I 0 / 8,5I 0 / 32)
15-8 两个偏振片P 1,P 2叠在一起,一束强度为I 0的光垂直入射到偏振片上.已知该入射光由强度相同的自然光和线偏振光混合而成,且入射光穿过第一个偏振片P 1后的光强为0.716 I 0;当将P 1抽出去后,入射光穿过P 2后的光强为0.375I 0.求P 1、P 2的偏振化方向之间的夹角.
(答案:75°或45°)
15-9 有三个偏振片叠在一起,已知第一个与第三个的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,求第二个偏振片与第一个偏振片的偏振化方向之间的夹角为多大时,该入射光连续通过三个偏振片之后的光强为最大.
(答案:45°)
15-10 有两个偏振片叠在一起,其偏振化方向之间的夹角为45°.一束强度为I 0的光垂直入射到偏振片上,该入射光由强度相同的自然光和线偏振光混合而成.此入射光中线偏振光矢量沿什么方向才能使连续透过两个偏振片后的光束强度最大?在此情况下,透过第一个偏振片的和透过两个偏振片后的光束强度各是多大?
(答案:入射光中线偏振光的光矢量方向与P 1的偏振化方向平行,3 I 0 / 4,3 I 0 / 8)
15-11 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.一束强度为I 0的光垂直入射到偏振片上,已知该入射光由强度相同的自然光和线偏振光混合而成,现测得连续透过两个偏振片后的出射光强与I 0之比为9 /16,试求入射光中线偏振光的光矢量方向.
(答案:与P 1的偏振化方向平行)
15-12 一光束由强度相同的自然光和线偏振光混合而成.此光束垂直入射到几个叠在一起的偏振片上.
(1) 欲使最后出射光振动方向垂直于原来入射光中线偏振光的振动方向,并且入射光中两种成分的光的出射光强相等,至少需要几个偏振片?它们的偏振化方向应如何放置?
(2) 这种情况下最后出射光强与入射光强的比值是多少?
(答案:略)
15-13 由强度为I a 的自然光和强度为I b 的线偏振光混合而成的一束入射光,垂直入射在一偏振片上,当以入射光方向为转轴旋转偏振片时,出射光将出现最大值和最小值.其比值为n .试求出I a / I b 与n 的关系.
(答案:()1/2-n )
15-14 两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?
(答案:60°)
15-15 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.已知穿过P 1后的透射光强为入射光强的2 / 3,求
(1) 入射光中线偏振光的光矢量振动方向与P 1的偏振化方向的夹角θ为多大?
(2) 连续穿过P 1、P 2后的透射光强与入射光强之比.
(答案:24.1°;1 / 2)
15-16 两偏振片叠在一起,其偏振化方向夹角为45°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上,入射光中线偏振光的光矢量振动方向与第一个偏振片的偏振化方向间的夹角为30°.
(1) 若忽略偏振片对可透射分量的反射和吸收,求穿过每个偏振片后的光强与入射光强之比;
(2) 若考虑每个偏振片对透射光的吸收率为10%,穿过每个偏振片后的透射光强与入射光强之比又是多少?
(答案:0.625,0.313;0.563,0.253)
15-17 有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为 1.333和
1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?
(答案:11.8°)
15-18 一束自然光自空气入射到水面上,若水相对空气的折射率为1.33,求布儒斯特角.
(答案:53.1°)
15-19 一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.
(答案:1.56)
15-20 一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,
(1) 此入射光的入射角为多大?
(2) 折射角为多大?
(答案:53.1°;36.9°)
15-21 一束自然光以起偏角i 0=48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为1.56 ,求:
(1) 该液体的折射率.
(2) 折射角.
(答案:1.40;41.91°或 5541'︒)
15-22 一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.
(答案:1.483,48.03°)
15-23 在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射
向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0
i '.
水玻璃
(答案:49.6°,40.4°)
15-24 如图所示,媒质Ⅰ为空气(n 1=1.00),Ⅱ为玻璃(n 2
=1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以i角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光, (1) 入射角i 是多大?
(2) 图中玻璃上表面处折射角是多大?
(3) 在图中玻璃板下表面处的反射光是否也是线偏振光? (答案:58.0°;32.0°;是线偏振光)
15-25 如图所示,一束自然光入射在平板玻璃上,已知其上表面的反射光线1为完全偏振光.设玻璃板两侧都是空气,试证明其下表面的反射光线2也是完全偏振光.
15-26 有一束钠黄光以50°角入射到方解石平板上,方解石的光轴平行于平板表面且与入射面垂直,求方解石中两条折射线的夹角.
(对于钠黄光n o = 1.658,n e =1.486)
(答案:3.5°)
15-27 线偏振光垂直入射于石英晶片上(光轴平行于入射表面),石英主折射率n o =
1.544,n e = 1.553.(1) 若入射光振动方向与晶片的光轴成60°角,不计反射与吸收损失,估算透过的o 光与e 光强度之比.(2) 若晶片厚度为0.50 mm ,透过的o 光与e 光的光程差多大?
(答案:3;4.5 m )。