湖南省涟源一中2018_2019学年高二数学上学期第二次月考试题文201812280187
- 格式:wps
- 大小:311.50 KB
- 文档页数:14
2018-2019学年高二数学上学期第二次月考试题文一、选择题(本大题共12小题,共60.0分)1.i为虚数单位,则A. B. C. i D. 12.已知i是虚数单位,复数z满足,则复平面内表示z的共轭复数的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.圆上的点到直线的距离最大值是A. B. 2 C. D.4.当点P在圆上变动时,它与定点相连,线段PQ的中点M的轨迹方程是A. B.C. D.5.执行如图所示的程序框图,如果输出那么判断框内应填入的条件是 ( )A. B. C. D.6.如图,圆C内切于扇形AOB,,若在扇形AOB内任取一点,则该点在圆C内的概率为A. B. C. D.7.已知x与y之间的一组数据:x 1 2 3 4y m若y关于x的线性回归方程为,则m的值为A. B. C. D. 1A. ,B. ,13C. ,D. 13,138.随机调查某校50个学生在学校的午餐费,结果如表:餐费元678人数102020这50个学生的午餐费的平均值和方差分别是A. ,B. ,C. 7,D. 7,9.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.10.在区间上随机取两个数x和y,则的概率为A. B. C. D.11.甲、乙两位歌手在“中国好声音”选拔赛中,5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别为、,则下列判断正确的是A. ,甲比乙成绩稳定B. ,乙比甲成绩稳定C. ,甲比乙成绩稳定D. ,乙比甲成绩稳定二、填空题(本大题共4小题,共20.0分)12.已知一个样本x,1,y,5的平均数为2,方差为5,则 ______ .13.设复数i为虚数单位,若为纯虚数,则a的值为______.14.从长度为2,3,4,5的四条线段中随机地选取三条线段,则所选取的三条线段恰能构成三角形的概率是________.15.学校艺术节对A,B,C,D四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两件作品未获得一等奖”;丁说:“是C作品获得一等奖”.评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是______.三、解答题(本大题共6小题,共72.0分)16.已知直线l经过两条直线和的交点,且与直线垂直.求直线l的方程;若圆C的圆心为点,直线l被该圆所截得的弦长为,求圆C的标准方程.18.已知直线l:,圆C:。
涟源市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 已知函数,则( )(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩(2016)f -=A .B .C .1D .2e e 1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.2. 利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度,如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为( )P (K 2>k )0.500.400.250.150.100.050.0250.0100.0050.001k 0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A .25%B .75%C .2.5%D .97.5%3. 已知向量||=, •=10,|+|=5,则||=()A .B .C .5D .254. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( )A .﹣2B .﹣1C .0D .15. 对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是()A .(﹣∞,﹣2)B .D .上是减函数,那么b+c ()A .有最大值B .有最大值﹣C .有最小值D .有最小值﹣6. 复数z=(其中i 是虚数单位),则z 的共轭复数=()A .﹣iB .﹣﹣iC . +iD .﹣ +i7. 设f (x )=(e -x -e x )(-),则不等式f (x )<f (1+x )的解集为()12x +112A .(0,+∞)B .(-∞,-)12C .(-,+∞)D .(-,0)12128. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A .B .C .D .9. 如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .210.已知为的三个角所对的边,若,则,,a b c ABC ∆,,A B C 3cos (13cos )b C c B =-sin :sin C A =()A .2︰3B .4︰3C .3︰1D .3︰2【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.11.设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
涟源市高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1} 2. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C ) 13 (D ) 12- 3. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.4. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞ 5.以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定6. 已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐,则双曲线C 的离心率是( ) AB .2 CD7. 已知全集U R =,{|239}xA x =<≤,{|02}B y y =<≤,则有( )A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð8. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65-【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.9.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.一定相离 B.一定相切C.相交且一定不过圆心D.相交且可能过圆心10.某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为()A.程序流程图B.工序流程图C.知识结构图D.组织结构图11.等比数列{a n}中,a3,a9是方程3x2﹣11x+9=0的两个根,则a6=()A.3 B.C.±D.以上皆非12.直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为()A.0 B.1 C.2 D.3二、填空题13.已知面积为的△ABC中,∠A=若点D为BC边上的一点,且满足=,则当AD取最小时,BD的长为.14.一质点从正四面体A﹣BCD的顶点A出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB由A到B,第2次运动经过棱BC由B到C,第3次运动经过棱CA由C到A,第4次经过棱AD由A到D,…对于N∈n*,第3n次运动回到点A,第3n+1次运动经过的棱与3n﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为.15.已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=.16.已知偶函数f(x)的图象关于直线x=3对称,且f(5)=1,则f(﹣1)=.17.在△ABC中,a=4,b=5,c=6,则=.18.已知函数5()sin(0)2f x x a xπ=-≤≤的三个零点成等比数列,则2log a=.三、解答题19.(本小题满分12分)某市拟定2016年城市建设,,A B C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C三项重点工程竞标成功的概率分别为a,b,14()a b,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34.(1)求a与b的值;(2)公司准备对该公司参加,,A B C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.20.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(Ⅰ)证明:AC⊥D1E;(Ⅱ)求DE与平面AD1E所成角的正弦值;(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.21.如图所示,PA 为圆O 的切线,A 为切点,PO 交圆O 于B ,C 两点,PA=20,PB=10,∠BAC 的角平分线与BC 和圆O 分别交于点D 和E . (Ⅰ)求证AB •PC=PA •AC (Ⅱ)求AD •AE 的值.22.(本题满分13分)已知函数x x ax x f ln 221)(2-+=. (1)当0=a 时,求)(x f 的极值;(2)若)(x f 在区间]2,31[上是增函数,求实数a 的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.23.(本小题满分13分)如图,已知椭圆22:14x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k 为定值; (2)求线段MN 的长的最小值;(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.24.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p (0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X ,求X 的数学期望,并求该通讯器械正常工作的概率P ′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.涟源市高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:A ∩B={x|﹣2<x <1}∩{x|0<x <2}={x|0<x <1}.故选D .2. 【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C.3. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 4. 【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m的范围.5. 【答案】C【解析】解:设过右焦点F 的弦为AB ,右准线为l ,A 、B 在l 上的射影分别为C 、D连接AC 、BD ,设AB 的中点为M ,作MN ⊥l 于N根据圆锥曲线的统一定义,可得==e ,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB 为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|) ∴圆M 到l 的距离|MN|>r ,可得直线l 与以AB 为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F ,求以经过F 的弦AB 为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.6. 【答案】C 【解析】试题分析:由题意知()1,0到直线0bx ay -=的距离为22=,得a b =,则为等轴双曲故本题答案选C. 1 考点:双曲线的标准方程与几何性质.【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2a 化为的关系式,解方程或者不等式求值或取值范围.7. 【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 8. 【答案】B9. 【答案】C【解析】【分析】将圆C 方程化为标准方程,找出圆心C 坐标与半径r ,利用点到直线的距离公式表示出圆心到直线的距离d ,与r 比较大小即可得到结果.【解答】解:圆C 方程化为标准方程得:(x ﹣1)2+y 2=2, ∴圆心C (1,0),半径r=,∵≥>1, ∴圆心到直线l 的距离d=<=r ,且圆心(1,0)不在直线l 上,∴直线l 与圆相交且一定不过圆心. 故选C10.【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.故选D .【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答.11.【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a62=a 3a 9=3,即a 6=±.故选C12.【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .二、填空题13.【答案】.【解析】解:AD取最小时即AD⊥BC时,根据题意建立如图的平面直角坐标系,根据题意,设A(0,y),C(﹣2x,0),B(x,0)(其中x>0),则=(﹣2x,﹣y),=(x,﹣y),∵△ABC的面积为,∴⇒=18,∵=cos=9,∴﹣2x2+y2=9,∵AD⊥BC,∴S=••=⇒xy=3,由得:x=,故答案为:.【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识.14.【答案】D.【解析】解:根据题意,质点运动的轨迹为:A→B→C→A→D→B→A→C→D→A接着是→B→C→A→D→B→A→C→D→A…周期为9.∵质点经过2015次运动,2015=223×9+8,∴质点到达点D.故答案为:D.【点评】本题考查了函数的周期性,本题难度不大,属于基础题.15.【答案】2n﹣1.【解析】解:∵a1=1,a n+1=a n+2n,∴a2﹣a1=2,a3﹣a2=22,…a n﹣a n﹣1=2n﹣1,相加得:a n﹣a1=2+22+23+2…+2n﹣1,a n=2n﹣1,故答案为:2n﹣1,16.【答案】1.【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,f(x)是偶函数,所以f(﹣1)=f(1)=1.故答案为:1.17.【答案】1.【解析】解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础.18.【答案】12-考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.三、解答题19.【答案】【解析】(1)由题意,得11424131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=⎪⎩.…………………4分(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X , 则X 的值可以为0,2,4,6,8,10,12.…………5分而41433221)0(=⨯⨯==X P ;1231(2)2344P X ==⨯⨯=;1131(4)2348P X ==⨯⨯=; 1211135(6)23423424P X ==⨯⨯+⨯⨯=;1211(8)23412P X ==⨯⨯=; 1111(10)23424P X ==⨯⨯=;1111(12)23424P X ==⨯⨯=.…………………9分所以X 的分布列为:于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12=.……………12分20.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD ﹣A 1B 1C 1D 1是长方体,∴D 1D ⊥平面ABCD , 又AC ⊂平面ABCD ,∴D 1D ⊥AC …1分 在长方形ABCD 中,AB=BC ,∴BD ⊥AC …2分 又BD ∩D 1D=D ,∴AC ⊥平面BB 1D 1D ,…3分 而D 1E ⊂平面BB 1D 1D ,∴AC ⊥D 1E …4分(Ⅱ)解:如图建立空间直角坐标系Dxyz ,则A (1,0,0),D 1(0,0,2),E (1,1,1),B (1,1,0),∴…5分设平面AD 1E 的法向量为,则,即令z=1,则…7分∴…8分∴DE 与平面AD 1E 所成角的正弦值为…9分 (Ⅲ)解:假设在棱AD 上存在一点P ,使得BP ∥平面AD 1E .设P 的坐标为(t ,0,0)(0≤t ≤1),则∵BP ∥平面AD 1E∴,即,∴2(t ﹣1)+1=0,解得,…12分∴在棱AD 上存在一点P ,使得BP ∥平面AD 1E ,此时DP 的长.…13分.21.【答案】【解析】(1)证明:∵PA为圆O的切线,∴∠PAB=∠ACP,又∠P为公共角,∴△PAB∽△PCA,∴,∴AB•PC=PA•AC.…(2)解:∵PA为圆O的切线,BC是过点O的割线,∴PA2=PB•PC,∴PC=40,BC=30,又∵∠CAB=90°,∴AC2+AB2=BC2=900,又由(1)知,∴AC=12,AB=6,连接EC,则∠CAE=∠EAB,∴△ACE∽△ADB,∴,∴.【点评】本题考查三角形相似的证明和应用,考查线段乘积的求法,是中档题,解题时要注意切割线定理的合理运用.22.【答案】【解析】(1)函数的定义域为),0(+∞,因为x x ax x f ln 221)(2-+=,当0=a 时,x x x f ln 2)(-=,则x x f 12)('-=.令012)('=-=x x f ,得21=x .…………2分所以当2=x 时,)(x f 的极小值为2ln 1)21(+=f ,函数无极大值.………………5分23.【答案】【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,∴ 直线AP 的斜率0101y k x -=,BP 的斜率0201y k x +=,又点P 在椭圆上,所以20014x y +=,()00x ≠,从而有200012200011114y y y k k x x x -+-⋅===-. (4分)24.【答案】【解析】解:(Ⅰ)由题意可知:X ~B (9,p ),故EX=9p . 在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:. 在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:.通讯器械正常工作的概率P ′=;(Ⅱ)当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作.①若前9个元素有4个正常工作,则它的概率为:.此时后两个元件都必须正常工作,它的概率为: p 2;②若前9个元素有5个正常工作,则它的概率为:.此时后两个元件至少有一个正常工作,它的概率为:;③若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P ″=p 2++,可得P ″﹣P ′=p 2+﹣,==.故当p=时,P ″=P ′,即增加2个元件,不改变通讯器械的有效率;当0<p 时,P ″<P ′,即增加2个元件,通讯器械的有效率降低;当p时,P ″>P ′,即增加2个元件,通讯器械的有效率提高.【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目.。
涟源市高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( ) A .c a b >> B .a c b >> C .a b c >> D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力. 2. 已知集合,则A0或 B0或3C1或D1或33. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .44. 用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1B .7C .﹣7D .﹣55. 下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x = C.ln y x = D.y x =6. (理)已知tan α=2,则=( )A .B .C .D .7. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.8. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .69. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .10.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案11.已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A .1B .C .2D .412.点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则的取值范围是( )A .[﹣1,﹣]B .[﹣,﹣]C .[﹣1,0]D .[﹣,0]二、填空题13.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF的重心到准线距离为 .14.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .15.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.16.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .17.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 三、解答题19.在直角坐标系xOy 中,已知一动圆经过点(2,0)且在y 轴上截得的弦长为4,设动圆圆心的轨 迹为曲线C .(1)求曲线C 的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C 交于A ,B 两点与曲线C 交于E ,F 两点, 线段AB ,EF 的中点分别为M ,N ,求证:直线MN 过定点P ,并求出定点P 的坐标.20.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图. (Ⅰ)求图中实数a 的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.21.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.22.如图,四边形ABEF 是等腰梯形,,2,42,22AB EF AF BE EF AB ====,四边形ABCD 是矩形,AD ⊥平面ABEF ,其中,Q M 分别是,AC EF 的中点,P 是BM 的中点.(1)求证:PQ 平面BCE ; (2)AM ⊥平面BCM .23.已知函数f (x )=cosx (sinx+cosx )﹣.(1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.24.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.涟源市高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D2. 【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。
涟源市第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 为了得到函数y=cos (2x+1)的图象,只需将函数y=cos2x 的图象上所有的点( )A .向左平移个单位长度B .向右平移个单位长度C .向左平移1个单位长度D .向右平移1个单位长度2. 由两个1,两个2,两个3组成的6位数的个数为( ) A .45 B .90 C .120 D .3603. 已知向量=(1,n ),=(﹣1,n ﹣2),若与共线.则n 等于( )A .1B .C .2D .44. 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A .11B .11.5C .12D .12.55. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )A .B .18C .D .6. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .367. 已知函数f (x )=x 3+mx 2+(2m+3)x (m ∈R )存在两个极值点x 1,x 2,直线l 经过点A (x 1,x 12),B(x 2,x 22),记圆(x+1)2+y 2=上的点到直线l 的最短距离为g (m ),则g (m )的取值范围是( )A .[0,2]B .[0,3]C .[0,) D .[0,)8. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.9. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣210.已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( ) A.B.﹣ C .4D.11.定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f <<12.如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A .B .C .D .二、填空题13在这段时间内,该车每100千米平均耗油量为 升.14.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 15.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .16.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b . 17.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .18.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为三、解答题19.已知命题p :x 2﹣2x+a ≥0在R 上恒成立,命题q :若p 或q 为真,p 且q 为假,求实数a 的取值范围.20.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.21.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.22.已知f (x )=x 3+3ax 2+3bx+c 在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行. (1)求函数的单调区间;(2)若x ∈[1,3]时,f (x )>1﹣4c 2恒成立,求实数c 的取值范围.23.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,PD=AD=2EC,EC∥PD.(Ⅰ)求异面直线BD与AE所成角:(Ⅱ)求证:BE∥平面PAD;(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由.24.已知函数f(x)=log2(x﹣3),(1)求f(51)﹣f(6)的值;(2)若f(x)≤0,求x的取值范围.涟源市第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵,故将函数y=cos2x的图象上所有的点向左平移个单位长度,可得函数y=cos(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.2.【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C62C42C22=90个不同的六位数,故选:B.【点评】本题考查了分步计数原理,关键是转化,属于中档题.3.【答案】A【解析】解:∵向量=(1,n),=(﹣1,n﹣2),且与共线.∴1×(n﹣2)=﹣1×n,解之得n=1故选:A4.【答案】C【解析】解:由题意,0.06×5+x×0.1=0.5,所以x为2,所以由图可估计样本重量的中位数是12.故选:C.5.【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.6.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。
涟源市第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-<2. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .563. 下面各组函数中为相同函数的是( )A .f (x )=,g (x )=x ﹣1B .f (x )=,g (x )=C .f (x )=ln e x 与g (x )=e lnxD .f (x )=(x ﹣1)0与g (x )=4. 已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x+6)=f (x )+f (3),x 1,x 2∈[0,3],x 1≠x 2时,有成立,下列结论中错误的是( )A .f (3)=0B .直线x=﹣6是函数y=f (x )的图象的一条对称轴C .函数y=f (x )在[﹣9,9]上有四个零点D .函数y=f (x )在[﹣9,﹣6]上为增函数5. 函数y=2|x|的图象是( )A .B .C .D .6. 已知实数x ,y 满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .77. 某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A .20+2πB .20+3πC .24+3πD .24+3π8. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( ) A .1 B .0 C .﹣1 D .0或﹣19. i 是虚数单位,i 2015等于( )A .1B .﹣1C .iD .﹣i10.直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在11.定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( ) A .在[﹣7,0]上是增函数,且最大值是6 B .在[﹣7,0]上是增函数,且最小值是6 C .在[﹣7,0]上是减函数,且最小值是6 D .在[﹣7,0]上是减函数,且最大值是612.设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x <<二、填空题13.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.14.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .15.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .16.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= .17.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .18.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .三、解答题19.已知函数f (x )=ax 3+2x ﹣a , (Ⅰ)求函数f (x )的单调递增区间;(Ⅱ)若a=n 且n ∈N *,设x n 是函数f n (x )=nx 3+2x ﹣n 的零点.(i )证明:n ≥2时存在唯一x n 且;(i i )若b n =(1﹣x n )(1﹣x n+1),记S n =b 1+b 2+…+b n ,证明:S n <1.20.(本小题满分12分)已知在ABC 中,角C B A ,,所对的边分别为,,,c b a 且)3(s i n ))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;(Ⅱ) 若2a =,ABC ∆c b ,.21.数列{a n }满足a 1=,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2a n }的前n 项和;(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.22.已知抛物线C :x 2=2py (p >0),抛物线上一点Q (m ,)到焦点的距离为1. (Ⅰ)求抛物线C 的方程(Ⅱ)设过点M (0,2)的直线l 与抛物线C 交于A ,B 两点,且A 点的横坐标为n (n ∈N *)(ⅰ)记△AOB 的面积为f (n ),求f (n )的表达式(ⅱ)探究是否存在不同的点A ,使对应不同的△AOB 的面积相等?若存在,求点A 点的坐标;若不存在,请说明理由.23.已知关x的一元二次函数f(x)=ax2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P 和Q中随机取一个数a和b得到数对(a,b).(1)列举出所有的数对(a,b)并求函数y=f(x)有零点的概率;(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.24.如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q为PD的中点.(Ⅰ)证明:CQ∥平面PAB;(Ⅱ)若平面PAD⊥底面ABCD,求直线PD与平面AQC所成角的正弦值.涟源市第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D2.【答案】D【解析】考点:1.斜率;2.两点间距离.3.【答案】D【解析】解:对于A:f(x)=|x﹣1|,g(x)=x﹣1,表达式不同,不是相同函数;对于B:f(x)的定义域是:{x|x≥1或x≤﹣1},g(x)的定义域是{x}x≥1},定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是{x|x>0},定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是{x|x≠1},是相同函数;故选:D.【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题.4.【答案】D【解析】解:对于A:∵y=f(x)为R上的偶函数,且对任意x∈R,均有f(x+6)=f(x)+f(3),∴令x=﹣3得:f(6﹣3)=f(﹣3)+f(3)=2f(3),∴f(3)=0,故A正确;对于B:∵函数y=f(x)是以6为周期的偶函数,∴f(﹣6+x)=f(x),f(﹣6﹣x)=f(x),∴f(﹣6+x)=f(﹣6﹣x),∴y=f(x)图象关于x=﹣6对称,即B正确;对于C:∵y=f(x)在区间[﹣3,0]上为减函数,在区间[0,3]上为增函数,且f(3)=f(﹣3)=0,∴方程f(x)=0在[﹣3,3]上有2个实根(﹣3和3),又函数y=f(x)是以6为周期的函数,∴方程f(x)=0在区间[﹣9,﹣3)上有1个实根(为﹣9),在区间(3,9]上有一个实根(为9),∴方程f(x)=0在[﹣9,9]上有4个实根.故C正确;对于D:∵当x1,x2∈[0,3]且x1≠x2时,有,∴y=f(x)在区间[0,3]上为增函数,又函数y=f(x)是偶函数,∴y=f(x)在区间[﹣3,0]上为减函数,又函数y=f(x)是以6为周期的函数,∴y=f(x)在区间[﹣9,﹣6]上为减函数,故D错误.综上所述,命题中正确的有A、B、C.故选:D.【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题.5.【答案】B【解析】解:∵f(﹣x)=2|﹣x|=2|x|=f(x)∴y=2|x|是偶函数,又∵函数y=2|x|在[0,+∞)上单调递增,故C错误.且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.6.【答案】A【解析】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.7.【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.8.【答案】B【解析】解:∵(a﹣i)•2i=2ai+2为正实数,∴2a=0,解得a=0.故选:B.【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.9.【答案】D【解析】解:i2015=i503×4+3=i3=﹣i,故选:D【点评】本题主要考查复数的基本运算,比较基础.10.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tan θ=﹣2,即可判断出结论. 【解答】解:设直线2x+y+7=0的倾斜角为θ, 则tan θ=﹣2, 则θ为钝角. 故选:C .11.【答案】D【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数, ∴函数f (x )在x=7时,函数取得最大值f (7)=6, ∵函数f (x )是偶函数,∴在[﹣7,0]上是减函数,且最大值是6, 故选:D12.【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1二、填空题13.【答案】512【解析】14.【答案】.【解析】解:设大小正方形的边长分别为x,y,(x,y>0).则+x+y+=3+,化为:x+y=3.则x2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.15.【答案】25【解析】考点:分层抽样方法.16.【答案】2.【解析】解:f(x)=ae x+bsinx的导数为f′(x)=ae x+bcosx,可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,由x=0处与直线y=﹣1相切,可得a+b=0,且ae0+bsin0=a=﹣1,解得a=﹣1,b=1,则b﹣a=2.故答案为:2.17.【答案】[5,+∞).【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.【解答】解:由题意可得f(x)=x6=x3.由f(x)≤mx在区间[,]上恒成立,可得m≥x2在区间[,]上恒成立,由于x2在区间[,]上的最大值为5,故m≥5,即m的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.18.【答案】6【解析】解:根据题意,得;∵f(2x)=2f(x),∴f(34)=2f(17)=4f()=8f()=16f();又∵当2≤x≤4时,f(x)=1﹣|x﹣3|,∴f()=1﹣|﹣3|=,∴f(2x)=16×=2;当2≤x≤4时,f(x)=1﹣|x﹣3|≤1,不存在;当4≤x≤8时,f(x)=2f()=2[1﹣|﹣3|]=2,解得x=6;故答案为:6.【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目.三、解答题19.【答案】【解析】解:(Ⅰ)f'(x )=3ax 2+2,若a ≥0,则f'(x )>0,函数f (x )在R 上单调递增;若a <0,令f'(x )>0,∴或,函数f (x )的单调递增区间为和;(Ⅱ)(i )由(Ⅰ)得,f n (x )=nx 3+2x ﹣n 在R 上单调递增,又f n (1)=n+2﹣n=2>0,f n ()====﹣当n ≥2时,g (n )=n 2﹣n ﹣1>0,,n ≥2时存在唯一x n 且(i i )当n ≥2时,,∴(零点的区间判定)∴,(数列裂项求和)∴,又f1(x )=x3+2x ﹣1,,(函数法定界),又,∴,∴,(不等式放缩技巧)命题得证.【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.20.【答案】解:(Ⅰ)由正弦定理及已知条件有2223c bc a b -=-, 即bc a c b 3222=-+. 3分由余弦定理得:232cos 222=-+=bc a c b A ,又),0(π∈A ,故6π=A . 6分(Ⅱ) ABC ∆3sin 21=∴A bc ,34=∴bc ①, 8分又由(Ⅰ)2223c bc a b -=-及,2=a 得1622=+c b ,② 10分由 ①②解得32,2==c b 或2,32==c b . 12分 21.【答案】【解析】(Ⅰ)证明:∵对任意正整数n ,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).故tan 2a n+1==1+tan 2a n ,∴数列{tan 2a n }是等差数列,首项tan 2a 1=,以1为公差.∴=.∴数列{tan 2a n }的前n 项和=+=.(Ⅱ)解:∵cosa n >0,∴tana n+1>0,.∴tana n =,,∴sina 1•sina 2•…•sina m =(tana 1cosa 1)•(tana 2•cosa 2)•…•(tana m •cosa m ) =(tana 2•cosa 1)•(tana 3cosa 2)•…•(tana m •cosa m ﹣1)•(tana 1•cosa m )=(tana 1•cosa m )==,由,得m=40.【点评】本题考查了等差数列的通项公式及其前n 项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.22.【答案】【解析】解:(Ⅰ)依题意得|QF|=y Q +=+=1,解得p=1,∴抛物线C 的方程为x 2=2y ;(Ⅱ)(ⅰ)∵直线l 与抛物线C 交于A 、B 两点, ∴直线l 的斜率存在,设A (x 1,y 1),B (x 2,y 2),直线l 的方程为:y=kx+2,联立方程组,化简得:x 2﹣2kx ﹣4=0,此时△=(﹣2k )2﹣4×1×(﹣4)=4(k 2+4)>0,由韦达定理,得:x 1+x 2=2k ,x 1x 2=﹣4,∴S△AOB=|OM|•|x1﹣x2|=×2==2(*)又∵A点横坐标为n,∴点A坐标为A(n,),又直线过点M(0,2),故k==﹣,将上式代入(*)式,可得:f(n)=2=2=2=n+(n∈N*);(ⅱ)结论:当A点坐标为(1,)或(4,8)时,对应不同的△AOB的面积相等.理由如下:设存在不同的点A m(m,),A n(n,)(m≠n,m、n∈N*),使对应不同的△AOB的面积相等,则f(m)=f(n),即m+=n+,化简得:m﹣n=﹣=,又∵m≠n,即m﹣n≠0,∴1=,即mn=4,解得m=1,n=4或m=4,n=1,此时A点坐标为(1,),(4,8).【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题.23.【答案】【解析】解:(1)(a,b)共有(1,﹣1),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3﹣1),(3,1),(3,2),(3,3),(3,4),15种情况函数y=f(x)有零点,△=b2﹣4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件所以函数y=f(x)有零点的概率为(2)函数y=f(x)的对称轴为,在区间[1,+∞)上是增函数则有,(1,﹣1),(1,1),(1,2),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件所以函数y=f(x)在区间[1,+∞)上是增函数的概率为【点评】本题主要考查概率的列举法和二次函数的单调性问题.对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视.24.【答案】【解析】(Ⅰ)证明:取PA的中点N,连接QN,BN.∵Q,N是PD,PA的中点,∴QN∥AD,且QN=AD.∵PA=2,PD=2,PA⊥PD,∴AD=4,∴BC=AD.又BC∥AD,∴QN∥BC,且QN=BC,∴四边形BCQN为平行四边形,∴BN∥CQ.又BN⊂平面PAB,且CQ⊄平面PAB,∴CQ∥平面PAB.(Ⅱ)解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO.由(Ⅰ)知PA=AM=PM=2,∴△APM为等边三角形,∴PO⊥AM.同理:BO⊥AM.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,∴PO⊥平面ABCD.以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,则D(0,3,0),A(0,﹣1,0),P(0,0,),C(,2,0),Q(0,,).∴=(,3,0),=(0,3,﹣),=(0,,).设平面AQC的法向量为=(x,y,z),∴,令y=﹣得=(3,﹣,5).∴cos<,>==﹣.∴直线PD与平面AQC所成角正弦值为.。
湖南省涟源市第一中学2018-2019年高二上学期第二次月考数学(理)试题(解析版)湖南省涟源市第一中学2018-2019学年高二上学期第二次月考数学(理)试题一、选择题(本大题共10小题,共40.0分)1.若a>b>0,c<d<0,则一定有()A. B. C. D.2.如果命题“¬(p或q)”为假命题,则()A. p、q均为真命题B. p、q均为假命题C. p、q中至少有一个为真命题D. p、q中至多有一个为真命题3.在下列四个命题都中,真命题是()A. 命题“若x,y大于0,则”的逆命题B. 命题“若,则”的否命题C. 命题“若,则”的逆命题D. 命题“若,则”的逆否命题4.设x,y满足约束条件,则z=2x-y的最大值为()A. 10B. 8C. 3D. 25.若不等式x2+ax+1≥0对一切x∈(0,]成立,则a的最小值为()A. B. 0 C. D.6.抛物线x2=-y的准线方程是()A. B. C. D.7.设P为椭圆+=1(a>b>0)上一点,F1、F2为焦点,如果∠PF1F2=75°,∠PF2F1=15°,则椭圆的离心率为()A. B. C. D.8.已知等比数列{a n},a1=1,且4a1,2a2,a3成等差数列,则a2+a3+a4=()A. 7B. 12C. 14D. 649.在△ABC中,角A、B、C的对边分别为a、b、c,若,则△ABC的形状一定是()A. 等腰三角形B. 直角三角形C. 等腰三角形或直角三角形D. 等腰直角三角形10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A. B. C. D.二、填空题(本大题共5小题,共20.0分)1 / 1511.已知命题p:∀x∈[1,2],x2-a≥0;命题q:∃x∈R,x2+2ax+2-a=0,若命题“p且q”是真命题,则实数a的取值范围为______.12.设S n是等差数列{a n}的前n项和,已知a3=5,a5=9,则S7等于______.13.已知数列{a n}的前n项和为S n=2n-1,则数列{a n}的通项公式为______.14.设△ABC的内角A,B,C的对边分别为a,b,c,且,,,则c=______.15.下列命题正确的序号是______①命题“若a>b,则2a>2b”的否命题是真命题;②命题“若x,y都大于0,则xy>0”的逆命题③若p是q的充分不必要条件,则¬p是¬q的必要不充分条件;④方程ax2+x+a=0有唯一解的充要条件是a=±.三、解答题(本大题共6小题,共60.0分)16.命题p:方程x2-x+a2-6a=0,有一正根和一负根.命题q:函数y=x2+(a-3)x+1的图象与x轴无公共点.若命题“p或q”为真命题,而命题“p且q”为假命题,求实数a的取值范围.17.(1)已知x<3,求f(x)=+x的最大值;(2)已知x,y∈R+,且x+y=4,求+的最小值.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且A=60°,sin B:sin C=2:3.(1)求的值;(2)若AB边上的高为3,求a的值.19.等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式;湖南省涟源市第一中学2018-2019年高二上学期第二次月考数学(理)试题(解析版)(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式.20.已知数列{a n}满足a n=2a n-1+2n-1(n≥2),a1=5,b n=(Ⅰ)证明:{b n}为等差数列;(Ⅱ)求数列{a n}的前n项和S n.21.已知椭圆G:=1(a>b>0)的右焦点为(2,),离心率为,设直线l的斜率是1,且l与椭圆G交于A,B两点.(Ⅰ)求椭圆的标准方程.(Ⅱ)若直线l在y轴上的截距是m,求实数m的取值范围.(Ⅲ)以AB为底作等腰三角形,顶点为P(-3,2),求△PAB的面积.3 / 15答案和解析1.【答案】B【解析】解:不妨令a=3,b=1,c=-3,d=-1,则,∴C、D不正确;=-3,=-∴A不正确,B正确.解法二:∵c<d<0,∴-c>-d>0,∵a>b>0,∴-ac>-bd,∴,∴.故选:B.利用特例法,判断选项即可.本题考查不等式比较大小,特值法有效,带数计算正确即可.2.【答案】C【解析】解:¬(p或q)为假命题,则p或q为真命题所以p,q至少有一个为真命题.故选:C.¬(p或q)为假命题既p或q是真命题,由复合命题的真假值来判断.本题主要考查复合命题的真假,是基础题.3.【答案】C【解析】解:A.命题的逆命题为:若xy>0,则x,y大于0,为假命题,x,y可能都小于0,故A错误,湖南省涟源市第一中学2018-2019年高二上学期第二次月考数学(理)试题(解析版)5 / 15B .命题的逆命题为:若x 2+x-2=0,则x=1,由x 2+x-2=0得x=1或x=-2,即命题的逆命题为假命题,则命题的否命题为假命题,故B 错误, C .命题的逆命题为:若x >|y|,则x >y , 若y≥0,则不等式等价为x >y ,成立,若y <0,则x >y 也成立,综上x >y 成立,即命题C 是真命题,故C 正确, D .若tanx=1,则x=+kπ,k ∈Z ,即原命题为假命题,则命题的逆否命题为假命题,故D 错误, 故选:C .A .求出命题的逆命题,然后进行判断即可B .先求出命题的逆命题,判断真假,结合逆否命题的等价性判断即可C .求出命题的逆命题,进行判断即可D .求出原命题的真假,结合逆否命题的等价性进行判断即可本题主要考查命题的真假判断,涉及四种命题之间的关系,利用逆否命题的等价性是解决本题的关键. 4.【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分ABC ). 由z=2x-y 得y=2x-z , 平移直线y=2x-z ,由图象可知当直线y=2x-z 经过点C 时,直线y=2x-z 的截距最小, 此时z 最大. 由,解得,即C (5,2)代入目标函数z=2x-y,得z=2×5-2=8.故选:B.作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.5.【答案】A【解析】解:不等式x2+ax+1≥0对一切x∈(0,]成立⇔a≥,x∈(0,].令f(x)=,x∈(0,].=>0,∴函数f(x)在x∈(0,]上单调递增,∴当x=时,函数f(x)取得最大值,=.∴a的最小值为-.故选:A.不等式x2+ax+1≥0对一切x∈(0,]成立⇔a≥,x∈(0,].令f(x)=,x∈(0,].利用导数研究其单调性极值与最值即可得出.本题考查了利用导数研究其单调性极值与最值、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于中档题.6.【答案】A【解析】解:抛物线x2=-y中p=,则其准线方程为y=,故选:A.湖南省涟源市第一中学2018-2019年高二上学期第二次月考数学(理)试题(解析版)7 / 15直接求出准线方程即可.本题考查了抛物线的准线方程,属于基础题. 7.【答案】D【解析】解:∵∠PF 1F 2=15°,∠PF 2F 1=75°, ∴,△PF 1F 2为直角三角形,∠F 1PF 2=90°, 设|PF 1|=m ,|PF 2|=n ,|F 1F 2|=2c , 则n=2csin75°,m=2csin15°, 又|PF 1|+|PF 2|=m+n=2a ∴2csin15°+2csin75°=2a , ∴e===.故选:D .依题意,△PF 1F 2为直角三角形,设|PF 1|=m ,|PF 2|=n ,可求得m ,n 与c 的关系,从而可求椭圆的离心率.本题考查椭圆的简单性质,求得|PF 1|、|PF 2|与|F 1F 2|之间的关系是关键,考查分析与运算能力,属于中档题. 8.【答案】C【解析】解:设等比数列{a n }的公比为q ,由a 1=1,且4a 1,2a 2,a 3成等差数列, 得4a 2=4a 1+a 3,即4q=4+q 2,解得q=2. 所以a 2+a 3+a 4==14.故选:C .设出等比数列的公比,由a 1=1,且4a 1,2a 2,a 3成等差数列列式求出公比,然后代入a 2+a 3+a 4求值.本题考查了等比数列的通项公式,考查了等差数列的性质,是基础的运算题.9.【答案】C【解析】解:∵,∴由正弦定理可得∴sinAcosA=sinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=∴△ABC的形状是等腰三角形或直角三角形故选:C.由,利用正弦定理可得,进而可得sin2A=sin2B,由此可得结论.本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于中档题.10.【答案】A【解析】解:F1(-c,0),F2(c,0),c>0,设P(x1,y1),则|PF1|=a+ex1,|PF2|=a-ex1.在△PF1F2中,由余弦定理得cos120°=-=,解得x12=.∵x12∈(0,a2],∴0≤<a2,即4c2-3a2≥0.且e2<1∴e=≥.故椭圆离心率的取范围是e∈.故选:A.先根据椭圆定义可知|PF1|+|PF2|=2a,再利用余弦定理化简整理得cos∠PF1F2=-1,进而根据均值不等式确定|PF1||PF2|的范围,进而确定cos∠PF1F2的最小值,求得a和b的关系,进而求得a和c的关系,确定椭圆离心率的取值范围.湖南省涟源市第一中学2018-2019年高二上学期第二次月考数学(理)试题(解析版)本题主要考查了椭圆的应用.当P点在短轴的端点时∠F1PF2值最大,这个结论可以记住它.在做选择题和填空题的时候直接拿来解决这一类的问题.11.【答案】a≤-2或a=1【解析】解:∵“p且q”是真命题,∴命题p、q均为真命题,由于∀x∈[1,2],x2-a≥0,∴a≤1;又因为∃x∈R,x2+2ax+2-a=0,∴△=4a2+4a-8≥0,即(a-1)(a+2)≥0,∴a≤-2或a≥1,综上可知,a≤-2或a=1.故答案为:a≤-2或a=1根据命题“p且q”是真命题,得到两个命题都是真命题,当两个命题都是真命题时,第一个命题是一个恒成立问题,分离参数,根据x的范围,做出a的范围,第二个命题是一元二次方程有解问题,利用判别式得到结果.本题考查命题真假的判断与应用,是一个综合题,这种题目一般是以解答题目出现,是一个不错的题目,但解起来容易出错.12.【答案】49【解析】解:等差数列中,∵a3=5,a5=9,∴===49.故答案为:49.9 / 15利用等差数列的通项公式和前n项和公式求解.本题考查等差数列的前7项和公式的求法,解题时要认真审题,注意等差数列的通项公式的合理运用.13.【答案】a n=2n-1(n≥1).【解析】解:n≥2时,a n=S n-S n-1=2n-1,n=1时也满足上式,故答案为a n=2n-1(n≥1).先根据a n和S n的关系:a n=S n-S n-1(n≥2),再验证n=1时通项是否成立本题第一问考查了已知前n项和为Sn求数列{an}的通项公式,根据a n和S n 的关系:a n=S n-S n-1(n≥2)求解数列的通项公式.另外,须注意公式成立的前提是n≥2,所以要验证n=1时通项是否成立,若成立则:a n=S n-S n-1(n≥1);若不成立,则通项公式为分段函数.14.【答案】【解析】解:∵A和B都为三角形的内角,且cosA=,cosB=,∴sinA==,sinB==,∴sinC=sin(A+B)=sinAcosB+cosAsinB=×+×=,又b=3,∴由正弦定理=得:c===.故答案为:由A和B都为三角形的内角,且根据cosA及cosB的值,利用同角三角函数间的基本关系分别求出sinA和sinB的值,将sinC中的角C利用三角形的内角和定理变形后,将各自的值代入求出sinC的值,由sinC,b及sinB的值,利用正弦定理即可求出c的值.湖南省涟源市第一中学2018-2019年高二上学期第二次月考数学(理)试题(解析版)此题考查了同角三角函数间的基本关系,诱导公式,两角和与差的正弦函数公式,以及正弦定理,熟练掌握定理及公式是解本题的关键.15.【答案】①③【解析】解:①命题“若a>b,则2a>2b”的否命题是2a≤2b,则a≤b,是真命题,故①正确;②命题“若x,y都大于0,则xy>0”的逆命题为若xy>0,则x,y都大于0为假命题,当x,y都小于0也成立,故②错误.③若p是q的充分不必要条件,则¬q是¬p的充分不必要条件,即¬p是¬q 的必要不充分条件;故③正确,④当a=0时,方程ax2+x+a=0等价为x=0,此时也有唯一解,故④错误,故正确的命题是①③,故答案为:①③.①根据否命题的定义进行求解判断②根据逆命题的定义进行求解判断③根据逆否命题的等价性以及充分条件和必要条件的关系进行判断④根据充分条件和必要条件的定义进行判断本题主要考查命题的真假判断,涉及四种命题的关系,以及充分条件和必要条件的判断,利用定义法是解决本题的关键.16.【答案】解:由题意可得p:△∴p:0<a<6q:△=(a-3)2-4=(a-1)(a-5)<0∴1<a<5∵“p或q”为真命题,“p且q”为假命题,∴p,q中一真一假当p真q假时或即0<a≤1或5≤a<6当p假q真时,或,此时a不存在故0<a≤1或5≤a<6【解析】11 / 15由题意可得p:可求p△=(a-3)2-4=(a-1)(a-5)<0可求q由p或q”为真命题,“p且q”为假命题,可知p,q中一真一假,分类讨论求解本题一复合命题的真假关系的应用为载体,主要考查了二次方程的根的存在情况及二次函数的性质的简单应用,属于基础试题17.【答案】解:(1)∵x<3,∴x-3<0,∴f(x)=+x=+(x-3)+3=-(+(3-x))+3≤-2+3=-4+3=-1,当且仅当=3-x,即x=1时取等号,∴f(x)的最大值为-1.(2)∵x,y∈R+,∴+=(x+y)(+)=1+≥1+2×=1+.当且仅当y=,即x=2(-1),y=2(3-)时取“=”号.+的最小值:1+.【解析】(1)利用构造法通过转化基本不等式求解最值即可.(2)利用“1”的代换,转化表达式通过基本不等式求解最小值即可.本题考查基本不等式在最值中的应用,考查转化思想以及计算能力.18.【答案】(本小题满分10分)解:(1)∵在△ABC中,由正弦定理=,得b:c=sin B:sin C.又∵sin B:sin C=2:3,∴b:c=2:3,即=.(2)∵AB边上的高为3,A=60°,可求得b=6,又=,∴c=9.又根据余弦定理a2=b2+c2-2bc cos A,将b=6,c=9,A=60°代入上式,得a2=63,湖南省涟源市第一中学2018-2019年高二上学期第二次月考数学(理)试题(解析版)∴a=3.【解析】(1)在△ABC中,由正弦定理得b:c=sin B:sin C.结合已知可求的值.(2)由已知利用三角函数的定义可求b的值,由(1)可求c的值,根据余弦定理即可解得a的值.本题主要考查了正弦定理,三角函数的定义,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.19.【答案】解:(1)设{a n}的公比为q由已知得16=2q3,解得q=2a n=2×2n-1=2n(2)由(1)得a3=8,a5=32,则b3=8,b5=32设{b n}的公差为d,则有,解得∴b n=-16+12(n-1)=12n-28【解析】(1)利用等比数列的通项公式求出等比数列的公比,再利用通项公式求出数列的通项;(2)首先由(1)得出a3,a5进而得出b3=8,b5=32,然后利用等差数列的通项公式列方程组,求出首项和公差,即可得出答案.解决等差数列、等比数列的问题,一般利用的是通项公式及前n项和公式列方程组,求出基本量.20.【答案】(I)证明:∵a n=2a n-1+2n-1(n≥2),∴ ,∴.∴b n=b n-1+1.∴{b n}是首项为==2,公差为1的等差数列;(II)解:由(I)可得b n=2+(n-1)×1=n+1,∴,∴ ,令,其前n项和为Tn,则T n=2×2+3×22+4×23+…+n•2n-1+(n+1)•2n,2T n=2×22+3×23+…+n•2n+(n+1)•2n+1,两式相减得-T n=2×2+22+23+…+2n-(n+1)•2n+1=-(n+1)•2n+1=-n•2n+1,∴ .13 / 15∴S n=T n+n=n+n•2n+1.【解析】(I)利用已知a n=2a n-1+2n-1(n≥2),变形,两边同除以.即b n=b n-1+1即可证明{b n}是等差数列.(II)利用“错位相减法”即可得出.本题考查了通过变形转化为等差数列、等差数列的通项公式、“错位相减法”等基础知识与基本技能方法,属于难题.21.【答案】解:(Ⅰ)由已知得c=2,=,解得:a=2,又b2=a2-c2=4,∴椭圆的标准方程为+=1.(Ⅱ)若直线l在y轴上的截距是m,则可设直线l的方程为y=x+m,将y=x+m代入+=1得:4x2+6mx+3m2-12=0,△=36m2-16(3m2-12)>0,解得:-4<m<4,故实数m的取值范围是:(-4,4).(Ⅲ)设A、B的坐标分别为(x1,y1),(x2,y2),AB的中点为E(x0,y0),则x1+x2=-,y1+y2=,∴x0=-,y0=,∵AB是等腰△PAB的底边,∴PE⊥AB,∴K PE=-1,∴═-1,解得:m=2,∴|AB|=•=3,|PE|==,∴S△PAB=|AB|•|PE|=×3×=.【解析】(Ⅰ)由已知得c=2,=,可得a=2,又b2=a2-c2=4,即可求出椭圆方程,(Ⅱ)可设直线l的方程为y=x+m,根据判别式即可求出m的范围,(Ⅲ)联立直线方程与椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求出E的坐标,结合斜率求得m值,利用点到直线的距离公式求出P湖南省涟源市第一中学2018-2019年高二上学期第二次月考数学(理)试题(解析版)到AB的距离,和弦长公式,代入三角形面积公式求得△PAB的面积.本题考查椭圆标准方程的求法,考查了椭圆的简单性质,训练了直线与椭圆位置关系的应用,属中档题.15 / 15。
涟源市高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()A.y=sinx B.y=1g2x C.y=lnx D.y=﹣x3【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.2.(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.3.函数y=+的定义域是()A.{x|x≥﹣1} B.{x|x>﹣1且x≠3} C.{x|x≠﹣1且x≠3} D.{x|x≥﹣1且x≠3}4.下列语句所表示的事件不具有相关关系的是()A.瑞雪兆丰年B.名师出高徒C.吸烟有害健康D.喜鹊叫喜5.“x2﹣4x<0”的一个充分不必要条件为()A.0<x<4 B.0<x<2 C.x>0 D.x<46. 如图所示,程序执行后的输出结果为( )A .﹣1B .0C .1D .27. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 8. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)9. 用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1B .7C .﹣7D .﹣510.如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .11.已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)12.已知双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=1相切,则双曲线的离心率为()A.B.C. D.二、填空题13.若与共线,则y=.14.已知1a b>>,若10log log3a bb a+=,b aa b=,则a b+= ▲.15.给出下列命题:①把函数y=sin(x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x﹣);②若α,β是第一象限角且α<β,则cosα>cosβ;③x=﹣是函数y=cos(2x+π)的一条对称轴;④函数y=4sin(2x+)与函数y=4cos(2x﹣)相同;⑤y=2sin(2x﹣)在是增函数;则正确命题的序号.16.如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是.17.设f(x)是(x2+)6展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则实数m的取值范围是.18.设等差数列{a n}的前n项和为S n,若﹣1<a3<1,0<a6<3,则S9的取值范围是.三、解答题19.如图,点A是单位圆与x轴正半轴的交点,B(﹣,).(I)若∠AOB=α,求cosα+sinα的值;(II )设点P 为单位圆上的一个动点,点Q 满足=+.若∠AOP=2θ,表示||,并求||的最大值.20.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,S 2=4,且a 2,a 5,a 14成等比数列. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)从数列{a n }中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{b n },记该数列的前n 项和为T n ,求T n 的表达式.21.已知函数()xf x e x a =-+,21()x g x x a e=++,a R ∈. (1)求函数()f x 的单调区间;(2)若存在[]0,2x ∈,使得()()f x g x <成立,求的取值范围;(3)设1x ,2x 是函数()f x 的两个不同零点,求证:121x x e +<.22.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1x xe -.(a ∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.23.已知直角梯形ABCD 中,AB ∥CD ,,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC . (1)求证:FG ∥面BCD ;(2)设四棱锥D ﹣ABCE 的体积为V ,其外接球体积为V ′,求V :V ′的值.24.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且.(1)求A;(2)若,求bc的值,并求△ABC的面积.涟源市高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确;根据y=lnx的图象,该函数非奇非偶;根据单调性定义知y=﹣x3在(0,+∞)上单调递减.故选B.【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.2.【答案】C【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.3.【答案】D【解析】解:由题意得:,解得:x≥﹣1或x≠3,故选:D.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.4.【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D .【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.5. 【答案】B【解析】解:不等式x 2﹣4x <0整理,得x (x ﹣4)<0 ∴不等式的解集为A={x|0<x <4},因此,不等式x 2﹣4x <0成立的一个充分不必要条件,对应的x 范围应该是集合A 的真子集.写出一个使不等式x 2﹣4x <0成立的充分不必要条件可以是:0<x <2,故选:B .6. 【答案】B【解析】解:执行程序框图,可得 n=5,s=0满足条件s <15,s=5,n=4 满足条件s <15,s=9,n=3 满足条件s <15,s=12,n=2 满足条件s <15,s=14,n=1 满足条件s <15,s=15,n=0 不满足条件s <15,退出循环,输出n 的值为0.故选:B .【点评】本题主要考查了程序框图和算法,正确判断退出循环时n 的值是解题的关键,属于基础题.7. 【答案】B 【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x=为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.8. 【答案】B【解析】解:∵集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则a>3,故选:B.【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.9.【答案】C【解析】解:∵f(x)=x6﹣5x5+6x4+x2+0.3x+2=(((((x﹣5)x+6)x+0)x+2)x+0.3)x+2,∴v0=a6=1,v1=v0x+a5=1×(﹣2)﹣5=﹣7,故选C.10.【答案】D【解析】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C的实轴长为2m,焦距为2n,2则2m=|AF|﹣|AF1|=y﹣x=2,2n=2c=2,2∴双曲线C2的离心率e===.故选D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.11.【答案】A【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,则a>lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则,解得:1<a≤4.故实数a的取值范围为(1,4].故选:A.【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.12.【答案】D【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴=,,可得e=.故此双曲线的离心率为:.故选D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.二、填空题13.【答案】﹣6.【解析】解:若与共线,则2y﹣3×(﹣4)=0解得y=﹣6故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.14.【答案】 【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b bb a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,1b b b b b b b b a =⇒=>⇒=a b +=考点:指对数式运算 15.【答案】【解析】解:对于①,把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣),故①正确.对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cos α=cos β=,故②错误.对于③,当x=﹣时,2x+π=π,函数y=cos (2x+π)=﹣1,为函数的最小值,故x=﹣是函数y=cos (2x+π)的一条对称轴,故③正确.对于④,函数y=4sin (2x+)=4cos[﹣(2x+)]=4cos (﹣2)=4cos (2x ﹣),故函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同,故④正确.对于⑤,在上,2x ﹣∈,函数y=2sin (2x ﹣)在上没有单调性,故⑤错误,故答案为:①③④.16.【答案】 异面 .【解析】解:把展开图还原原正方体如图,在原正方体中直线AB 与CD 的位置关系是异面. 故答案为:异面.17.【答案】[5,+∞).【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.【解答】解:由题意可得f(x)=x6=x3.由f(x)≤mx在区间[,]上恒成立,可得m≥x2在区间[,]上恒成立,由于x2在区间[,]上的最大值为5,故m≥5,即m的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.18.【答案】(﹣3,21).【解析】解:∵数列{a n}是等差数列,∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=6.∵﹣3<3a3<3,0<6a6<18,∴两式相加即得﹣3<S9<21.∴S9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ)点A是单位圆与x轴正半轴的交点,B(﹣,).可得sin α=,cos α=,∴cos α+sin α=.(Ⅱ)因为P (cos2θ,sin2θ),A (1,0)所以==(1+cos2θ,sin2θ),所以===2|cos θ|,因为,所以=2|cos θ|∈,||的最大值.【点评】本题考查三角函数的定义的应用,三角函数最值的求法,考查计算能力.20.【答案】【解析】解:(Ⅰ)依题意得:,解得.∴a n =a 1+(n ﹣1)d=1+2(n ﹣1)=2n ﹣1. 即a n =2n ﹣1;(Ⅱ)由已知得,.∴T n =b 1+b 2+…+b n =(22﹣1)+(23﹣1)+…+(2n+1﹣1)=(22+23+…+2n+1)﹣n=.【点评】本题主要考查等比数列和等差数列的性质,考查了等比数列的前n 项和的求法,考查了化归与转化思想方法,是中档题.21.【答案】(1)()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞;(2)1a >或0a <;(3)证明见解析. 【解析】试题解析: (1)'()1xf x e =-.令'()0f x >,得0x >,则()f x 的单调递增区间为(0,)+∞;] 令'()0f x <,得0x <,则()f x 的单调递减区间为(,0)-∞. (2)记()()()F x f x g x =-,则21()2xx F x e x a a e=--+-,1'()2x xF x e e =+-.∵1220x x e e +-≥=,∴'()0F x ≥, ∴函数()F x 为(上的增函数, ∴当[]0,2x ∈时,()F x 的最小值为2(0)F a a =-.∵存在[]0,2x ∈,使得()()f x g x <成立,∴()F x 的最小值小于0,即20a a -<,解得1a >或0a <.1(3)由(1)知,0x =是函数()f x 的极小值点,也是最小值点,即最小值为(0)1f a =+, 则只有1a <-时,函数()f x 由两个零点,不妨设12x x <, 易知10x <,20x >,∴1222()()()()f x f x f x f x -=--2222()()xx e x a e x a -=-+-++2222x x e e x -=--,令()2x x h x e e x -=--(0x ≥),考点:导数与函数的单调性;转化与化归思想.22.【答案】(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在10,2⎛⎫ ⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦. 【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间; (Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,12)上无零点,只需要对x ∈(0,12)时f (x )>0恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;试题解析:(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,由f ′(x )>0,得x >2; 由f ′(x )<0,得0<x <2.故f (x )的单调减区间为(0,2],单调增区间为[2,+∞); (2)因为f (x )<0在区间上恒成立不可能,故要使函数上无零点,只要对任意的,f (x )>0恒成立,即对恒成立.令,则,再令,则,故m (x )在上为减函数,于是,从而,l (x )>0,于是l (x )在上为增函数,所以,故要使恒成立,只要a ∈[2﹣4ln2,+∞),综上,若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2; (3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; 当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减. 又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0, 所以,函数g (x )在(0,e]上的值域为(0,1]. 当a=2时,不合题意;当a ≠2时,f ′(x )=,x ∈(0,e]当x=时,f ′(x )=0.由题意得,f (x )在(0,e]上不单调,故,即①此时,当x 变化时,f ′(x ),f (x )的变化情况如下:又因为,当x →0时,2﹣a >0,f (x )→+∞,,所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2), 使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:即令h (a )=,则h,令h ′(a )=0,得a=0或a=2,故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增;当时,h ′(a )<0,函数h (a )单调递减.所以,对任意,有h (a )≤h (0)=0, 即②对任意恒成立. 由③式解得:.④综合①④可知,当a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使f (x i )=g (x 0)成立. 23.【答案】【解析】解:(1)证明:取AB 中点H ,连接GH ,FH , ∴GH ∥BD ,FH ∥BC , ∴GH ∥面BCD ,FH ∥面BCD ∴面FHG ∥面BCD , ∴GF ∥面BCD(2)V=又外接球半径R=∴V ′=π∴V :V ′=【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E 点三条棱互相垂直,故棱锥的外接球半径与以AE ,CD ,DE 为棱长的长方体的外接球半径相等,求出外接球半径是解答本题的关键点.24.【答案】【解析】解:(1)∵A 、B 、C 为△ABC 的三个内角,且cosBcosC ﹣sinBsinC=cos (B+C )=,∴B+C=,则A=;(2)∵a=2,b+c=4,cosA=﹣,∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc=(b+c)2﹣bc,即12=16﹣bc,解得:bc=4,则S=bcsinA=×4×=.△ABC【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键.。
2018-2019学年高二数学上学期第二次月考试题 文 (I)考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分120分,考试时间90分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.一、选择题(共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设P 是椭圆22143x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为 A.2 B.23 C.4 D.252. 中心在坐标原点的椭圆,焦点在x 轴上,焦距为4,离心率为22,则该椭圆的方程为 A.2211612x y += B.221128x y += C.221124x y += D.22184x y += 3. 若方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是A.(0,)+∞B.(0,2)C.(1,)+∞D.(0,1)4. 椭圆2221x y +=的通径长为 A.222 C.12D.1 5. 圆22420x y x +++=与直线l 相切于点(3,1)--,则直线l 的方程为A.40x y -+=B.40x y ++=C.20x y -+=D.20x y ++=6. 若变量,x y 满足240204x y x y y +-≥⎧⎪--≤⎨⎪≤⎩,则22x y +的最小值为A.165455452557. 与圆22(3)1x y -+=关于直线21y x =-对称的圆的方程为A.22(1)(2)1x y -+-=B. 22(1)(2)1x y +++=C.22(1)(2)1x y ++-=D. 22(1)(2)1x y -++=8. 对任意的实数m ,直线y mx b =+与椭圆2241x y +=恒有公共点,则b 的取值范围是 A.11(,)22- B.11[,]22- C.[2,2]- D.(2,2)-9. 直线3y kx =+与圆22(3)(2)4x y -+-=相交于M ,N 两点,若23MN ≥,则k 的取值范围是A.3[,0]4-B.3(,][0,)4-∞-+∞C.33[,]33-D.2[,0]3- 10. 过椭圆2222:1(0)x y C a b a b+=>>的左顶点且斜率为1的直线与圆222x y b +=交于不同的两点,则椭圆C 的离心率的取值范围是A.2(0,)2B.2(,1)2C.5(0,)5D.5(,1)5第Ⅱ卷 (非选择题, 共70分)二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)11. 过点(2,1)且与直线410x y ++=平行的直线方程为 .12. 圆221:9C x y +=与圆222:240C x y x y +++-=的公共弦长为 . 13. 已知椭圆22221(0)x y a b a b+=>>的左顶点为M ,上顶点为N ,右焦点为F ,若 0NM NF ⋅=,则椭圆的离心率为 .14. 设椭圆22154x y +=的左、右焦点分别为12,F F ,M 为椭圆上异于长轴端点的一点,122F MF θ∠=,12MF F ∆的内心为I ,则cos MI θ= .三、解答题(本大题共4小题,共50分,解答应写出文字说明,证明过程或演算步骤.)15. (本题满分12分)已知三角形ABC 中,)3,3(),0,2(),1,1(C B A .(Ⅰ)求AB 边上的高所在直线的方程;(Ⅱ)若直线l 过点A 且将三角形分成面积相等的两部分,求直线l 的方程.16. (本题满分12分)曲线342+-=x x y 与坐标轴的交点都在圆G 上.(Ⅰ)求圆G 的方程;(Ⅱ)直线0=++m y x 与圆G 交于B A ,两点,若2||=AB ,求实数m 的值.17. (本题满分12分) 已知椭圆22143x y +=及直线y x m =+. (Ⅰ)当直线和椭圆有公共点时,求实数m 的取值范围;(Ⅱ)若直线与椭圆交于A B 、两点,O 为坐标原点,且OA OB ⊥,求实数m 的值.18. (本题满分14分)已知椭圆C :()222210x y a b a b+=>>,F 为椭圆C 的左焦点,椭圆上的点与F 距离的最大值为2+,最小值为2,过F 的直线交椭圆于A B 、两点.(Ⅰ)求椭圆C的方程;面积的最大值,并求出此时直线AB的方程.(Ⅱ)O为坐标原点,求AOB哈三中xx 上学期高二第二次阶段性测试数学(文)试卷答案1-5 CDDDB 6-10 ACBAA11.460x y +-= 12. 41 15. (Ⅰ)y x =(Ⅱ)320x y -+=16. (Ⅰ)22(2)(2)5x y -+-=(Ⅱ)4m =-±17. (Ⅰ)[(Ⅱ)m =18. (Ⅰ)2214x y +=(Ⅱ)max 1S =,此时:(2AB y x =±+ 欢迎您的下载,资料仅供参考!。
涟源市一中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知双曲线的方程为﹣=1,则双曲线的离心率为()A.B.C.或D.或2.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如下图所示,则函数f(|x|)的图象是()A.B.C.D.3.满足集合M⊆{1,2,3,4},且M∩{1,2,4}={1,4}的集合M的个数为()A.1 B.2 C.3 D.44.已知偶函数f(x)=log a|x﹣b|在(﹣∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是()A.f(a+1)≥f(b+2)B.f(a+1)>f(b+2)C.f(a+1)≤f(b+2)D.f(a+1)<f(b+2)5.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()A.y=sinx B.y=1g2x C.y=lnx D.y=﹣x3【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.6. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为457. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 8. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位9. 设函数()()21,141,1x x f x x x ⎧+<⎪=⎨-≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-10.若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k )的是( )A. B. C. D.11.设函数f (x )=,f (﹣2)+f (log 210)=( )A .11B .8C .5D .212.已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.二、填空题13.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .14.已知正四棱锥O ABCD -的体积为23则该正四棱锥的外接球的半径为_________15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .16.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .17.设()xxf x e =,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.18.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .三、解答题19.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.20.已知函数()21ln ,2f x x ax x a R =-+∈.(1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.21.(本小题满分12分)已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和n S .22.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BDCE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长23.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2xf x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.24.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B=2sinAsinC . (Ⅰ)若a=b ,求cosB ; (Ⅱ)设B=90°,且a=,求△ABC 的面积.涟源市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=.焦点坐标在y轴时,a2=﹣2m,b2=﹣m,c2=﹣3m,离心率e==.故选:C.【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.2.【答案】B【解析】解:∵y=f(|x|)是偶函数,∴y=f(|x|)的图象是由y=f(x)把x>0的图象保留,x<0部分的图象关于y轴对称而得到的.故选B.【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.3.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.4.【答案】B【解析】解:∵y=log a|x﹣b|是偶函数∴log a|x﹣b|=log a|﹣x﹣b|∴|x﹣b|=|﹣x﹣b|∴x2﹣2bx+b2=x2+2bx+b2整理得4bx=0,由于x 不恒为0,故b=0 由此函数变为y=log a |x|当x ∈(﹣∞,0)时,由于内层函数是一个减函数, 又偶函数y=log a |x ﹣b|在区间(﹣∞,0)上递增 故外层函数是减函数,故可得0<a <1 综上得0<a <1,b=0∴a+1<b+2,而函数f (x )=log a |x ﹣b|在(0,+∞)上单调递减 ∴f (a+1)>f (b+2) 故选B .5. 【答案】B【解析】解:根据y=sinx 图象知该函数在(0,+∞)不具有单调性;y=lg2x =xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B 正确; 根据y=lnx 的图象,该函数非奇非偶;根据单调性定义知y=﹣x 3在(0,+∞)上单调递减. 故选B .【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.6. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 7. 【答案】D【解析】解:∵f (x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.8.【答案】C【解析】试题分析:()2222==+=+,故向上平移个单位.g x x x xlog2log2log1log考点:图象平移.9.【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 10.【答案】C【解析】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.11.【答案】B【解析】解:∵f(x)=,∴f(﹣2)=1+log24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.12.【答案】D二、填空题13.【答案】±(7﹣i).【解析】解:设z=a+bi(a,b∈R),∵(1+3i)z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===,|ω|=,∴.把a=3b 代入化为b 2=25,解得b=±5,∴a=±15.∴ω=±=±(7﹣i ).故答案为±(7﹣i ).【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.14.【答案】118【解析】因为正四棱锥O ABCD -的体积为22,设外接球的半径为R ,依轴截面的图形可知:22211(2)8R R R =-+∴= 15.【答案】 114 .【解析】解:根据题目要求得出:当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114. 故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.16.【答案】2- 【解析】1111]试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值 17.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.001()x x k f x e -'==,由0()0f x '<得,01x >,∴随机事件“0k <”的概率为23. 18.【答案】 ∃x 0∈R ,都有x 03<1 .【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x ∈R ,都有x 3≥1”的否定形式为:命题:“∃x 0∈R ,都有x 03<1”.故答案为:∃x 0∈R ,都有x 03<1.【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.三、解答题19.【答案】【解析】【命题意图】本题考查等差数列通项与前n 项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.20.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)证明见解析. 【解析】试题解析:(2)当2a =-时,()2ln ,0f x x x x x =++>,由()()12120f x f x x x ++=可得22121122ln 0x x x x x x ++++=, 即()()212121212ln x x x x x x x x +++=-,令()12,ln t x x t t t ϕ==-,则()111t t t tϕ-'=-=,则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,所以()()11t ϕϕ≥=,所以()()212121x x x x +++≥,又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 21.【答案】(本小题满分12分) 解: (Ⅰ)由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4, (3分)∴244(1)4n a n n =+-=,由0n a >得n a =. (6分)(Ⅱ)∵1112n n a a +==+, (9分)∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为11111)(1)2222n +++=. (12分) 22.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴DE DC BC BA =BC AB=,则24BC AB DE =⋅=,∴2BC =.∴在Rt ABC ∆中,12BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒, ∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==.23.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)244,4e ⎡⎤-⎣⎦【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。
涟源一中2018年下期高二文科数学第2次月考试卷
一、选择题(共10小题,每小题4分,共计40分在每小题列出的四个选项中,只有一项是符合题目要求的。
)
1、命题“若a b,则a c b c”的逆否命题为()
A.若a b,则a c b c B.若a b,则a c b c
C.若a c b c,则a b D.若a c b c,则a b
2
、已知是等差数列,且a2
5,a6a46,则( )
a a
n1
A.9B.8C.7D.4
3、在ABC中,已知a 8,B 60,C 75,则b等于()
A.42B.43C.46 D.32 3
4、a 0是ab 0的什么条件()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
5
、已知等比数列中,a1a230,a3a4120,则( )
a a a
n56
A.150 B.200C.360D.480
x y
P P
22
6、椭圆上一点到一个焦点的距离为6,到另一个焦点的距离为
1
259
()A.5B.6 C.4 D.10
(x
)(x
y5y)0
7、不等式组
表示的平面区域是0x
3
A.矩形B.三角形C.直角梯形D.等腰梯形8、不等式x2x 20的解集是( )
A .x x
2或x 1B .x 2x 1C .x 2x 1D
.11
x
x
22
9.已知m=a(a2),n=()(0),则m,n之间的大小关系是()
a22
A.m>n B.m<n C.m=n D.m≤n
10、设坐标原点为O,抛物线y22x与过焦点的直线l交于A、B两点,则OA OB等于
- 1 -
( )
3
3
3
2 A .
B .
C .
D .
4
4
二、填空题(共 5小题,每小题 4分,共 20分) 11、在
ABC 中, 若 (a c )(a c ) b 2
bc ,则 A=
1
12、数列
的通项为
,若 ,则项数 __________
a
a
S
9 n
n
n
n
n 1 n
x 2 0
13、设实数 x , y 满足
y 1 0 ,则 z
x y 的最大值是
x 2y 2 0
x
y
P
2
2
14、 、 是双曲线 的两个焦点, 在双曲线上且满足
,则
F F
1
2
32
1
PF
PF
1
2
9 16
F PF
1
2
_____________
15.若不等式 ax 2 4x a 1 2x 2 对任意实数 x 均成立,则实数 a 的取值范围是_________
三、解答题(本大题共 6个小题,共 60分)
16、(10分)已知命题 p : m 4 ; 命题 q :方程 4x 2 4(m 2)x 9 0无实根.
若 p
q 为真, p q 为假, p 为假,求 m 的取值范围.
17、已知二次函数,数列的前n项和为,点均在函数
的图像上。
(1)、求数列的通项公式;
- 2 -
(2)、设数列,,是数列的前n项和,求
18、(10分)在△ABC中,A、B、C的对边分别为a、b、c,且
cos C2s in
.
A sin C
cos B sin B
(1)求cos B的值;
(2)若b 7,a c 4,求△ABC的面积.
- 3 -
19、(10分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量 y (千辆/小 时 ) 与 汽 车 的 平 均 速 度 ( 千 米 / 小 时 ) 之 间 的 函 数 关 系 为 :
y
920
2
(
3 1600
0). (1)若要求在该时段内车流量超过 10千辆/小时,则汽车的平均速度应在什么范 围内?
(2)在该时段内,当汽车的平均速度 为多少时,车流量最大?最大车流量
为多少?(结果可保留分数形式)
20、(本题 10分)已知椭圆与双曲线 2x 2 2y 2 1共焦点,且过( 2,0 )
- 4 -
(1)求椭圆的标准方程;
(2)求斜率为2的一组椭圆的平行弦的中点轨迹方程。
1
21、(10分)已知,数列{a n}的前n项和为S n,点
f x)4
((,1)()
a N
p n*
x n
2n
a
n1在函数y=f(x)的图象上,且a1=1,a n>0.
(1)求数列{a n}的通项公式;
T T
(2)数列{b n}的首项b1=1,前n项和为T n,且16n2-8n-3,
n1n
2
a
2
a
n1
n
求数列{b n}的通项公式
文科数学参考答案及评分标准
一. 选择题(本大题共10小题,每小题4分,共40分)
- 5 -
题序 1 2 3 4 5 6 7 8 9 10
答案 D B C A D C D C A B
二. 填空题(本大题共 5小题,每小题 4分,共 20分)
题序 11
12 13 14
15
答案
120 99
2
90
a>2
16、(本题满分 10分) 解:命题 p : m
4
由方程 4x 2
4(m 2)x 9
0无实根,得
2
2
1 m 5
16(m 2) 16 9 16(m
4m 5) 0
,解得,
所以,命题 q : 1
m 5 (5分) Q p q
p q
p
为真,
为假,
为假,
p q
命题 为真,命题 为假,
m m 4
4
m
或
,解
得,
m 1
m 5 5
m
[5,
)
的取值范围是
(10分) 19、解:(1) 因为点
均在函数
的图像上,
所以 =n 2.
当 n =1时,a 1=S 1=1, 当 n ≥2时,a n =S n -S n -1=n 2- =2n -1.
所以 a n =2n -1 (
)
(2) 由(1)得知,
故
- 6 -
两式相减的:
18、(本题满分10分)
cos C2s in A sin C
cos C sin B 2s in A cos B
cos B sin C 解:(1)由得,
cos B sin B
2s in A cos B sin B cos C cos B sin C sin(B C)sin(A)sin A Q sin A
1
cos B
,. (5分)
2
(2)Q b2a2c22ac cos B a2c22ac 7
ac 31sin13333
(a c)3ac7
,,(10分)
2
S
ac B
ABC
2224
19、(本题满分10分)
920v
解:(1)由条件得210,
v 3v 1600
整理得v289v 16000, 即(v 25)(v 64)0, 解得25v 64.(5分)
920920
920 (2)依题意,y
,
160083
321600
3(v )
v
1600
当且仅当v
v
920
所以y
(/).
max
千辆小时
83
,即v
40时,上式等号成立,
(10分)
x y
22
1
20(13)解:(1)依题意得,将双曲线方程标准化为,则c=1
11
22
x y
22
Q椭圆与双曲线共焦点设椭圆方程为221
a a
1 20
Q椭圆过(2,0)1,即a22
a2a21
- 7 -
x
2
椭圆方程为y21
2
(2)依题意,设斜率为2的弦所在直线的方程为y=2x+b,弦的中点坐标为(x,y),则
y=2x+b
x 2 2
8b
2b
x x ,y y y21得9x2+8xb+2b2—2=0 1212
99 4b b
x ,y
即两式消掉b得y= 991 4 x
令△>0,64b2-36(2b2-2)>0,-3<b<3
1
4
x x
4所以平行弦得中点轨迹方程为:y= ( )
433
- 8 -。