基于AMESim的飞机液压系统仿真技术的应用研究
- 格式:pdf
- 大小:336.67 KB
- 文档页数:4
基于AMEsim的液压系统建模与仿真【摘要】本文介绍了基于AMEsim的液压系统建模与仿真,首先从研究背景和研究意义入手,说明了液压系统在工程领域中的重要性。
然后详细介绍了AMEsim软件的特点和优势,以及液压系统建模和仿真的方法和步骤。
通过案例分析,展示了AMEsim在液压系统中的应用效果,并探讨了参数优化的方法。
结论部分总结了基于AMEsim的液压系统建模与仿真的优势,并展望了未来的发展方向。
本文系统地介绍了基于AMEsim的液压系统建模与仿真的方法和实践经验,具有一定的参考价值和实用性。
【关键词】液压系统、AMEsim、建模、仿真、案例分析、参数优化、优势、未来发展方向1. 引言1.1 研究背景传统液压系统建模与仿真往往需要耗费大量时间和资源,且受到实验数据的限制,难以获得准确的仿真结果。
基于AMEsim的液压系统建模与仿真技术则能够准确模拟系统的动态行为,通过仿真分析获取系统参数和性能,为系统设计和优化提供重要参考。
开展基于AMEsim的液压系统建模与仿真研究具有重要意义,能够为液压系统的设计和优化提供有效手段,提高系统性能和工作效率。
为此,本文将深入探讨基于AMEsim的液压系统建模与仿真方法,在液压系统领域具有一定的理论和实践意义。
1.2 研究意义液压系统在工程领域中扮演着至关重要的角色,广泛应用于各种机械设备和工业系统中。
液压系统的建模与仿真是提高系统性能、降低成本和优化设计的关键步骤。
基于AMEsim的液压系统建模与仿真为工程师提供了一个高效、准确的工具,可以帮助他们更好地理解系统行为、预测系统性能,并进行有效的设计优化。
通过基于AMEsim的液压系统建模与仿真,工程师可以在计算机上快速建立系统模型,并模拟系统在不同工况下的工作状态。
这可以大大缩短设计周期,减少实验成本,提高系统的可靠性和性能稳定性。
通过参数优化和仿真分析,工程师可以更好地优化系统设计,提高系统效率,降低能耗和维护成本。
基于AMEsim的液压系统建模与仿真1. 引言1.1 液压系统的重要性在工业生产中,液压系统不仅能够提高生产效率和产品质量,还能够实现复杂的动作控制,如加工、装配、搬运等工艺。
液压系统还可以实现大功率、高速度、大扭矩等要求的动力传递,满足各种工程设备对动力传动的需求。
1.2 AMEsim在液压系统建模中的应用AMEsim是一款专业的多物理领域建模和仿真软件,广泛应用于液压系统建模中。
利用AMEsim软件,工程师们可以快速准确地对液压系统进行建模、仿真和优化,从而提高系统设计的效率和可靠性。
在液压系统建模中,AMEsim通过模拟液压元件的动态行为,可以帮助工程师们更好地理解系统的工作原理和特性。
通过简单易用的界面和丰富的库文件,工程师们可以快速构建复杂的液压系统模型,并进行参数化和优化。
AMEsim还具有强大的仿真和分析功能,可以帮助工程师们有效地验证设计方案,预测系统性能,并进行虚拟试验。
通过对液压系统建模过程中的各种运动学、动力学和热力学效应进行精确的仿真,工程师们可以在设计阶段就发现潜在问题,并进行改进。
AMEsim在液压系统建模中的应用为工程师们提供了一种高效、准确和可靠的工具,可以帮助他们优化系统设计、提高工作效率,并最终实现液压系统的性能和可靠性的提升。
2. 正文2.1 液压系统的工作原理液压系统是一种利用液体传递能量的系统,其工作原理是通过利用液体在封闭管路中的压力来传递动力。
液压系统由液压泵、执行元件、控制元件和液压储能装置组成,液压泵将机械能转换为液压能,并将液压液送入管路中,液压液通过管路传递到执行元件,使之产生相应的运动或力。
控制元件则用来控制液压系统的工作方式和速度,液压储能装置则用来储存液压能,以便在需要时释放能量。
液压系统的工作原理基于帕斯卡定律,即液体在封闭容器中的压力均匀分布。
当液压泵提供压力时,液压系统中的液压液会传递这个压力,使得执行元件产生运动或力。
液压系统的优点是传递力矩大、稳定性好、反应速度快、工作范围广等。
《基于AMESim的液压系统建模与仿真技术研究》篇一一、引言随着现代工业技术的不断发展,液压系统在各种机械设备中扮演着至关重要的角色。
为了更好地理解液压系统的性能,优化其设计,以及进行故障诊断和预测,建模与仿真技术显得尤为重要。
本文将介绍基于AMESim的液压系统建模与仿真技术研究,以期为相关领域的研发和应用提供有益的参考。
二、AMESim软件概述AMESim是一款功能强大的工程仿真软件,广泛应用于机械、液压、控制等多个领域。
它提供了一种直观的图形化建模环境,用户可以通过简单的拖拽和连接元件来构建复杂的系统模型。
此外,AMESim还支持多种物理领域的仿真分析,包括液压、气动、热力等。
三、液压系统建模在AMESim中,液压系统的建模主要包括以下几个方面:1. 液压元件建模:包括液压泵、液压马达、油缸、阀等元件的建模。
这些元件的模型可以根据实际需求进行参数设置和调整。
2. 流体属性设置:根据液压系统的实际工作情况,设置流体的属性,如密度、粘度等。
3. 系统拓扑结构构建:根据实际系统的结构,搭建系统拓扑结构,并设置各元件之间的连接关系。
4. 仿真参数设置:根据仿真需求,设置仿真时间、步长等参数。
四、液压系统仿真在完成液压系统的建模后,可以通过AMESim进行仿真分析。
仿真过程主要包括以下几个方面:1. 初始条件设置:设置系统的初始状态,如初始压力、流量等。
2. 仿真运行:根据设置的仿真时间和步长,运行仿真程序。
3. 结果分析:通过AMESim提供的可视化工具,分析仿真结果,如压力、流量、温度等参数的变化情况。
五、技术应用与优势基于AMESim的液压系统建模与仿真技术具有以下优势:1. 高效性:通过图形化建模环境,可以快速构建复杂的液压系统模型,提高建模效率。
2. 准确性:AMESim提供了丰富的物理模型和算法,可以准确模拟液压系统的实际工作情况。
3. 灵活性:用户可以根据实际需求,灵活地调整模型参数和仿真条件,以获得更符合实际的结果。
基于AMESim的飞机液压系统温度建模与仿真何兆民王少萍(北京航空航天大学北京 100191)摘要:介绍了AMESim通用液压仿真软件的特点和飞机液压系统热特性,建立了各种关键液压元件及整个液压系统的温度计算模型,并运用AMESim软件对液压系统在典型飞行状态下的温升情况进行了仿真计算,仿真结果与实验结果基本吻合,证明了建模的准确性。
关键词:飞机液压系统温度建模 AMESim中图分类号:TP391.9TEMPERATURE MODELING AND SIMULATION OF AIRCRAFT HYDRAULIC SYSTEM BASED ON AMESimHE Zhaomin WANG Shaoping(College of Automatic Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics,Beijing 100191 )Abstract:The thermal characteristic of aircraft hydraulic system and AMESim were introduced, the temperature calculate model of some crucial hydraulic components and the whole hydraulic system were established, the temperature characteristic of hydraulic system at typical work condition were calculated by AMESim, the emulate results is coincident with the experiment result, which proves that the modeling is reasonable.Key words:Aircraft hydraulic system;Temperature; Modeling;AMESim0 前言随着飞机液压系统向高压化、大功率方向发展,液压系统的发热问题越来越受到关注。
基于AMEsim的液压系统建模与仿真液压系统在许多工程领域中扮演了重要角色,如机床、建筑机械、航空航天、工程车辆、工业机械等。
为了设计和优化液压系统,需要建立准确的数学模型,并且对其进行仿真分析。
AMEsim是一款广泛用于液压系统建模和仿真的软件包。
本文将介绍液压系统的建模和仿真的主要步骤,以及如何使用AMEsim进行仿真。
液压系统的建模步骤1.系统结构的建立液压系统由多个组件组成,例如泵、液压缸、油箱、液压阀等。
在建立液压系统的模型之前,需要使用AMEsim建立系统的结构。
可以使用AMEsim提供的液压组件库中的组件来构建系统结构。
2.组件参数的设定建立系统结构后,需要设置组件的参数才能模拟系统的行为。
例如,泵的容积效率、流量和压力特性,液压缸的体积和摩擦损失等。
参数的设定需要基于实际系统的特性和厂家提供的数据。
这些参数可以在AMEsim中进行设置。
3.建立控制系统液压系统的控制系统是整个系统的关键部分。
控制系统可以通过电子控制、机械操作或者手动控制来完成。
在建立液压系统的模型时,需要选择合适的控制方式,并用AMEsim 建立控制系统的模型。
4.连通系统中的管路和接头液压系统中的管路和接头也是影响系统行为的重要因素。
在液压系统建模中,需要考虑管路和接头对系统的影响,并选择合适的管路和接头组件。
液压系统的仿真分析1.模拟操作通过模拟操作,可以观察系统的行为,例如运动速度、压力变化和液压油的流量。
在AMEsim中,可以使用虚拟仪表来显示这些参数,并进行实时监控。
2.故障诊断液压系统中可能会出现各种故障,例如泄漏、堵塞或者阀门失效。
在进行仿真时,可以模拟这些故障情况,并测试系统在不同故障情况下的行为。
3.优化设计液压系统的性能可以通过参数优化来改善。
例如,通过调整泵的速度,可以控制流量和压力,并优化系统的运行。
通过仿真,可以测试不同参数值对系统行为的影响,并找到最优的参数组合。
总结液压系统的建模和仿真可以为液压系统设计和优化提供重要指导。
第29卷第4期2019年12月㊀陕西国防工业职业技术学院学报J o u r n a l o f S h a a n x i I n s t i t u t e o fT e c h n o l o g yV o l 29N o 4D e c .2019收稿日期:2019-10-23作者简介:赵亚英(1976-),女,陕西咸阳人,工程硕士,副教授,主要研究方向为机电液综合控制.基于AM E s i m 仿真的液压压力控制系统研究与应用赵亚英(陕西国防工业职业技术学院,陕西西安㊀710300)摘㊀要:AM E s i m 软件的建模㊁参数设置,动态仿真的应用研究已经渗透到液压系统的工程应用,通过AM E s i m 的仿真简化了工程验收阶段的调试环节,对整个液压系统从设计到工程应用起到了事半功倍的作用.本文结合液压保压系统的基本原理,形成AM E s i m 软件的液压保压系统㊁检测及控制等多个环节的建模㊁设参㊁最终仿真,形成保压过程的动态仿真研究,执行件㊁控制调节元件的压力㊁位移曲线等多个调节曲线动态的体现了系统前期原理设计的合理性.关键词:AM E s i m ;保压;建模;仿真中图分类号:T H 137㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:94007-(2019)04-0034-05㊀㊀AM E s i m 软件在液压系统的仿真应用,通过对系统的建模㊁参数设置㊁最终的动态仿真曲线的形成,通过液压系统的仿真过程简化了工程中必须要进行的复杂的论证,并且要承担由于动态模拟的欠缺而形成的人力㊁财力上的损失.本文通过AM E s Gi m 软件仿真对保压系统进行建模仿真,对系统的动态正确运行提供了依据.1㊀AM E s i m 保压系统建模AM E s i m 应用广泛,基于AM E s i m 仿真的液压压力控制系统执行元件在工作循环的某一阶段内,需要保持一定压力时,则应采用保压回路.常见的保压回路有下列几种形式:利用蓄能器的保压回路,利用液压泵的保压回路,利用液控单向阀的保压回路.本文的压力保压系统采用液控单向阀的保压系统.保压系统如下图1所示.采用液控单向阀和电接点压力表的自动补油式保压回路.当电磁阀Y A 1通电时,换向阀左位工作,液压缸下腔进油,上腔的油液经液控单向阀回油箱,使液压缸向上运动;当电磁阀Y A 2通电时,换向阀右位工作,液压缸上腔压力升至电接点压力表上限设定的压力值时发信号,电磁铁Y A 2失电,换向阀处于中位,液压泵卸荷,液压缸由液控单向阀保压.当液压图1㊀保压原理图缸压力下降到电接点压力表的下限值时,电接点压力表发信号,电磁铁Y A 2通电,换向阀右位再次工作,液压泵给系统补油,压力上升.如此往复循环,自动的保持液压缸的压力在调定值范围内.从工作原理过程可以分析出,能够实现系统压力的自动保持,是依靠检测元件和换向阀共同配合实现的.其中电接点压力表是关键的检测元件.电接点压力表可以设上限㊁下限二位开关型接点装置,在压力达到设定值时发出信号或通断控制电路,提供压力系统工作进行自动控制或发信号.此系统的AM E s i m软件仿真的重点在于,不仅要仿真出保压系统的液压功能,同时还应该将此保压回路的保压控制过程用自动控制功能仿真出来.图2㊀保压回路仿真建模㊀㊀根据图1的系统原理,设计系统仿真建模如图2所示,由于此系统结构复杂,所以对系统的仿真先从液压部分分析建模及仿真参数设置及动态运行过程.1.1㊀液压系统建模根据保压回路的功能提取液压系统,建模图如下图3所示.图3㊀液压系统仿真建模图中1㊁2的作用很简单,就是为了产生所需要的流量,在建模过程的参数设置中,设定流量为10L/m i n,所以设置1的s h a f t s p e e d转速为1000,2的p u m p d i s p l a c e m e n t泵排量为10,两者相乘为10L/m i n.元件3的参数保持系统默认.元件4实现系统换向功能的主要元件,我们还是以力士乐品牌的换向阀的型号来进行系统建模.该换向阀的的中位机能为H型,换向阀的型号为4W E6H6X/S G24N.通过设计手册查出力士乐换向阀样本,得其流量随着流量增大压力降增大.由于系统的最大流量为10L/m i n,在流量为10L/m i n时,P A,A T和B T大约为0.3b a r,P B大约0.2b a r.参数设置见表1.5号元件是液控单向阀,其参数也可以查手册进行设置,结果设置如表1中参数值.6号元件的作用是测量液压缸上腔的压力,使保压功能能够实现的重要元件,但该元件的参数设置较简单,仿真系统采用默认值.7号元件是液压缸,为了节省建模时间,选择液压库中现成的单出杆液压缸模型,而没有选择H C D库中的元件.其参数设置见表1.其中比较重要的参数是a n g l e r o dm a k e sw i t hh o r i z o n t a l水平角度和l e a kGa g e c o e f f i c i e n t泄露系数,其中前者设定了液压缸的摆放方式,按原理图1所示的摆放方式,应该设置其53赵亚英:基于AM E s i m仿真的液压压力控制系统研究与应用值为-900;后者设定了液压缸的内泄漏.正是由于内泄漏的存在,液压缸上腔的压力才会逐渐渗漏到下腔中去,造成上腔压力降低,液压泵重新启动,为上腔加压,这一自动过程才能实现.1.2㊀检测系统建模位置检测部分的仿真建模框架如图4所示,根据保压系统原理图,液压缸在下行到碰触圆形工件之前,有一段空行程距离,接触工件后,液压缸的外负载力有一个随位移继续增加而增长的趋势,这在仿真中都要考虑到,所以位置检测部分增加了多了比较信号.表1㊀液压传动元件参数表元件编号参数设定值单位1S h a f t s pe e d 1000r /m i n2P u m p d i s pl a c e m e n t 10m 3/s4p o r t s Pt oAf l o wr a t ea tm a x i m u mv a l v eo p e n i n g 10L /m i n P o r t sPt oAc o r r e s p o n d i n gp r e s s u r ed r o p 0.3B a r p o r t s Bt oTfl o wr a t ea tm a x i m u mv a l v eo p e n i n g 10L /m i n p o r t sBt oTc o r r e s p o n d i n gp r e s s u r ed r o p 0.3B a r P o r t sPt oBf l o wr a t ea tm a x i m u mv a l v eo p e n i n g 10L /m i n P o r t sPt oBc o r r e s p o n d i n gp r e s s u r ed r o p0.2B a r P o r t sAt oTf l o wr a t ea tm a x i m u mv a l v eo p e n i n g 10L /m i n P o r t sAtoTc o r r e s p o n d i n gp r e s s u r ed r o p0.3B a r 5c h e c k v a l v ec r a c k i n gp r e s s u r e 0.5B a r n o m i n a l p r e s s u r ed r o p 1B a r 7P i s t o nd i a m e t e r 50m r o d d i a m e t e r30m l e n g t h o f s t r o k e 0.5mt o t a l m a s sb e i n g mo v e d 50K ga n gl e r o dm a k e sw i t hh o r i z o n t a l -900l e a k a gec o e f f i c i e n t 0.0001L /m i n元件8的作用是为了检测液压缸的位移,元件9的作用是将信号转换为负载(单位N ).元件10的作用是进行比较.当液压缸的位移(x )小于设置值(元件11)0.3m 时,外负载力由元件12设定;当液压缸位移(x )大于设置值(元件11)0.3m 时,外负载力的大小由液压缸的位移与0.3m (元件11)的差值为自变量的函数(元件13)计算得到,作为液压缸受到的外负载力.通过以上分析,可以分析出当液压缸的位移小于0.3m 时,外负载力为O N (不算液压缸自重),这时液压缸还没有碰触到工件;当液压缸位移大于0.3m 时,位移值与0.3m 的差值作为函数f (x )=100000∗x 的自变量,计算得到负载力,作用在液压缸上,模拟液压缸挤压工件所受到的力.这样,通过图4㊀位置检测部分仿真信号图4这部分仿真回路,完整地模拟了液压缸的位移和外负载力之间的关系,为系统正确的动态运行创造了条件.参数设置如表2所示,没有提到的元件参数设置保持默认值.表2㊀位置检测参数设置元件编号参数设置值单位11c o n s t a n t v a l u e 0.3m 12c o n s t a n t v a l u e0m 13e x p r e s s i o n i n t e r m s o f t h e i n pu t x 100000∗x N14s w i t c h t h r e s h o l d11.3㊀控制系统建模控制部分的仿真建模如图5所示,元件19㊁20的作用是设定压力的上㊁下限,模拟的是电接点压力表的上㊁下限动态范围.下限设定为28b a r ,上限设定为30b a r.图5㊀控制仿真建模元件16㊁21的作用是将液压缸上腔的压力之值和设定的上㊁下限进行比较,当小于28b a r 时,输出40m A 信号(元件22),当大于30b a r 时,输出信号0m A (元件17).将这两个结果求和(元件18),共同输入给图3中的元件4(换向阀),决定换向阀是左位工作(40m A )还是中位工作(0m A ),从而控制是加压状态(左位工作)还是中位工作的保压状态.元件的参数设置如表3所示.63陕西国防工业职业技术学院学报表3㊀控制环节参数设置元件编号参数设置值单位17v a l u e o f g a i n0m A19c o n s t a n t v a l u e 30B a r 20c o n s t a n t v a l u e 28B a r 22v a l u e o f g a i n40m A2㊀AM E s i m 仿真系统运行液压系统部分㊁位置检测部分㊁控制运行等3部分建模和参数设置完成之后,就可以进行动态运行仿真环节,进入仿真模式,将仿真时间设定为50s,运行参数的仿真结果.选择液压缸7,仿真活塞杆位移曲线,如图6所示.从图中可以观察到当液压缸下行碰触到工件前,运动速度较快,当碰触到工件后(位移超过0.3m ),有一段时间积蓄压力,如图6的第一个台阶所示.液压缸继续加压下行,到位移大约为0.36m 处,停止前进,进行保压,位移保持.图6㊀活塞杆位移曲线液压缸端口1处的压力曲线如图7所示.当压力达到正常值之后,保压系统正常启动后,压力保持在28b a r 和30b a r 之间.仿真元件换向阀4的输入信号i n p u t s i n gn a l 如图8所示.从仿真曲线可以分析出,刚开始,换向阀图7㊀液压缸端口压力曲线的输入信号为40M a ,液压缸快速下行,碰到工件后,压力上升,达到30b a r ,进入保压阶段.由于液压缸内部有泄漏,随着时间的延续,液压缸上腔压力有所下降,在34s ㊁44s 处,换向阀两次接通,自动补充压力,进行压力保压环节.图8㊀换向阀输入信号仿真结果3㊀结语从以上的AM E s i m 的仿真结果可以看出,此液压保压系统能完成系统保压功能,通过液控单向阀完成系统的及时补油,并通过位移检测和控制信号的比较对液压保压过程进行的仿真,通过对液压缸的位移仿真㊁压力仿真㊁换向阀的补油过程仿真,仿真曲线显示与系统保压原理吻合,动态曲线完整的显示了整个保压系统的工作过程.T h eR e s e a r c ha n dA p p l i c a t i o no fH yd r a u l i c P re s s u r eC o n t r o l S ys t e mB a s e do nA M E s i mS i m u l a t i o n Z HA OY a y i n g(S h a a n x i I n s t i t u t e o fT e c h n o l o g y Xi a nS h a a n x i 710300)A b s t r a c t :T h em o d e l l i n g ,p a r a m e t e r s e t t i n g o f t h e s o f t w a r eAM E s i ma n d t h e a p pl i c a t i o n r e s e a r c hh a v e p e r Gm e a t e d i n t o t h ea p p l i c a t i o no f t h eh y d r a u l i cs y s t e m.T h r o u g ht h eAM E s i m ,t h ed e b u g g i n g li n e ki nt h e s t a g e o f p r o j e c t a c c e p t a n c e i s s i m p l i f i e d ,a n d i t h a s a d o u b l e e f f e c t o n t h e h y d r a u l i c s y s t e mf r o md e s i g n i n g73赵亚英:基于AM E s i m 仿真的液压压力控制系统研究与应用t o t h eu s e t h r o u g hh a l f o f t h ew o r k.C o m b i n e dw i t h t h eb a s i c p r i n c i p l eo f h y d r a u l i c p r e s s u r eh o l d i n g s y sGt e m,t h i s p a p e r f o r m s t h em o d e l i n g o f t h e h y d r a u l i c p r e s s u r e h o l d i n g s y s t e mo fAM E s i ms o f t w a r e,s u c h a s t e s t i n g a n d c o n t r o l l i n g,s e t t i n g p a r a m e t e r s,f i n a l l y s i m u l a t i n g,f o r m i n g t h e d y n a m i c s i m u l a t i o n r e s e a r c ho f p r e s s u r eh o l d i n gp r o c e s s,e x e c u t i n gp a r t s,c o n t r o l l i n g t h e p r e s s u r eo fa d j u s t i n g e l e m e n t s,d i s p l a c e m e n t c u r v e a n d s oo n.K e y W o r d s:AM E s i m;M o d e l l i n g;S i m u l a t i o n参㊀考㊀文㊀献[1]㊀李明飞,吴勇,田野,徐保强.基于AM E S i m的带阻尼调节器的电液换向阀仿真研究[J].液压与气动,2015(02):91G93.[2]梁晓娟.基于AM E S i m三位四通阀动态仿真研究[J].煤矿机电,2009(05):34G36.[3]冯静,李卫民,甘元强.基于AM E S i m的溢流阀动态特性研究[J].机械工程师,2009(09):41G43.[4]苏明,陈伦军.基于AM E S i m的电磁高速开关阀动静态特性研究[J].液压与气动,2010(02):68G72.[5]孙成通,陈国华,蒋学华,韩虎.液压系统仿真技术与仿真软件研究[J].机床与液压,2008(10):140G143.[6]陈阳国,曾良才,吕敏建.基于AM E S i m的液压位置伺服系统故障仿真[J].机床与液压,2007,35(09):215G216.[7]秦贞超,周志鸿,周梓荣,马肖丽.基于A M E S i m的水压凿岩机冲击机构建模与仿真[J].液压气动与密封,2010,30(12):30G34.[8]张燕.国外声波钻机及其应用[J].探矿工程:岩土钻掘工程(岩土钻掘工程),2008,35(07):105G107.(上接第12页)之间也可以互相评价给分.教师可以通过任务和评价结果,准确性地把握学生的掌握程度和问题趋向,也有利于教师对下一节课教学内容的调整和补充.4㊀结语综上内容, MO O C+云班课 的高职英语翻转课堂教学模式适应当下教育现代化的高职英语教学改革的形势.高职英语翻转课堂教学突出教师主导,学生主体的师生角色,云班课辅助教学软件,基于MO O C大量的教学素材和渗透着课程思政的教学内容,使师生之间的教学活动有声有色的开展,学生乐习,有助于高素质的人才培养.T h eT e a c h i n g M o d e a n dA p p l i c a t i o no f F l i p C l a s so fH i g hV o c a t i o n a l E n g l i s hB a s e do n M O O C+C l o u dC l a s sWA N GZ h e n(S h a a n x i I n s t i t u t e o fT e c h n o l o g y X i a nS h a a n x i710300)A b s t r a c t:H i g hv o c a t i o n a l c o l l e g e f l i p c l a s s i s a n i n n o v a t i o n t o t h e t r a d i t i o n a l E g n l i s h t e a c h i n g i nh i g hv o c aGt i o n a l c o l l e g e s.I t c o m b i n e sMO O Cw i t hC l o u dC l a s s,a n d i s a p p l i e d i n t h eE n g l i s ht e a c h i n g c l a s so f h i g h v o c a t i o n a l c o l l e g e s.I t h i g h l i g h t s t h e t e a c h e rGs t u d e n t r o l e l e db y t e a c h e r s a n d s t u d e n t s,i n t r u d i n g t h e c o nGc e p t o f p o l i t i c a l i d e o l o g y w i t h t h e t e a c h i n g m e t h o do f n o r m a l i z a t i o n c o n d e n s e s t h e e f f e c t i v e a n d i n t e r e s t i n g E n g l i s ht e a c h i n g m a t e r i a l s,a n d f o r m s t h e t e a c h i n g m o d eo f t h eh i g hv o c a t i o n a l c o l l e g eE n g l i s hw i t ht h e m o d e o f MO O C+C l o u d c l a s s .C o m b i n i n g t h e a b o v e t e a c h i n g v i e w s,i t o f f e r s au n i v e r s a l f l i p c l a s sd eGs i g nb y a p p l y i n g t h eMO O C+C l o u d c l a s s t om y o w n t e a c h i n g a c t i v i t y.K e y W o r d s:MO O C+C l o u d c l a s s;F l i p c l a s s i nh i g hv o c a t i o n a l E n g l i s hc l a s s;T e a c h i n g m o d e参㊀考㊀文㊀献[1]㊀黄娇红.基于翻转课堂在小学教学中的可行性探究[J].科教文汇,2019(24):125G126.[2]雷隽博.基于MO O C的大学英语翻转课堂教学模式探究[J].黑龙江教育学院学报,2019(08):139G141.83陕西国防工业职业技术学院学报。
《基于AMESim的液压系统建模与仿真技术研究》篇一一、引言随着现代工业技术的飞速发展,液压系统在众多领域中发挥着至关重要的作用。
液压系统的设计与分析一直是工程领域的重要课题。
为了更有效地进行液压系统的设计与优化,研究人员开发了多种仿真软件,其中AMESim软件在液压系统建模与仿真方面具有广泛的应用。
本文旨在探讨基于AMESim的液压系统建模与仿真技术的研究。
二、AMESim软件及其在液压系统建模中的应用AMESim是一款多学科领域的仿真软件,广泛应用于机械、液压、控制等多个领域。
在液压系统建模中,AMESim提供了丰富的液压元件模型库,如泵、马达、缸体、阀等,可以方便地构建出复杂的液压系统模型。
此外,AMESim还提供了强大的仿真求解器和友好的用户界面,使得建模与仿真过程更加便捷。
三、液压系统建模流程基于AMESim的液压系统建模流程主要包括以下几个步骤:1. 确定系统需求与目标:明确液压系统的功能、性能指标及工作条件。
2. 建立系统模型:根据系统需求与目标,选择合适的液压元件模型,并构建出整个液压系统的模型。
3. 设置仿真参数:根据实际需求设置仿真时间、步长、初始条件等参数。
4. 进行仿真分析:运行仿真模型,观察并记录仿真结果。
5. 结果分析与优化:根据仿真结果,对液压系统进行性能分析,并针对存在的问题进行优化设计。
四、液压系统仿真技术研究液压系统仿真技术是利用计算机技术对液压系统进行模拟分析的一种方法。
基于AMESim的液压系统仿真技术具有以下优点:1. 高效性:可以快速地构建出复杂的液压系统模型,并进行大量的仿真分析。
2. 准确性:通过精确的数学模型和物理定律,可以准确地模拟液压系统的实际工作情况。
3. 灵活性:可以根据需求随时调整仿真参数和模型结构,以获得更好的仿真结果。
在液压系统仿真技术中,还需要注意以下几点:1. 模型验证:在进行仿真分析之前,需要对建立的模型进行验证,以确保其准确性。
基于AMEsim的液压系统建模与仿真液压系统是一种转换能源的系统,能够将机械能转换为压缩液体流体的形式,通过液压缸等执行器将压力能转换为机械能。
液压系统的主要组成部分包括液压泵、油箱、油管路、液压执行器、液压阀等。
为了对液压系统进行设计和优化,需要对系统进行建模和仿真。
本文将介绍基于AMEsim的液压系统建模与仿真方法。
步骤一:建立液压系统模型首先,需要在AMEsim中建立液压系统模型。
液压系统模型包含了各种液压元件,如液压泵、液压缸、液压阀、液压管道等,这些元件组合在一起形成了一个完整的液压系统。
在模型设计过程中,需要根据实际情况选择所需的元件,并将它们连接起来,以形成一个封闭的液压系统回路。
步骤二:定义液压系统参数在建立模型的过程中,需要定义各个液压元件的参数,如液压泵的压力、流量、效率等,液压缸的直径、行程等;并且还需要定义系统中液体的物理特性参数,如密度、粘度、压力等。
这些参数将影响系统的工作效率和性能,因此需要根据实际情况精确设置。
步骤三:进行系统仿真模型建立和液压系统参数设置完成后,就可以进行系统仿真。
仿真过程中,可以利用AMEsim提供的各种分析工具绘制系统各个位置的压力、速度、流量等参数变化曲线,以及每个关键部件的工作状态和效率等信息。
步骤四:分析仿真结果仿真结果将展示液压系统的工作状态和性能等信息。
可以通过分析仿真结果,来优化系统设计,改进液压元件选择和流体参数设置等方法,以提高液压系统的效率和性能。
总之,基于AMEsim的液压系统建模和仿真是一种非常有效的工具,可以帮助工程师深入理解液压系统的工作原理和性能,以优化设计和提高系统效果。
收稿日期:2005-11-15.作者简介:吴亚锋(1961-),男,陕西华县人,教授,博士生导师,主要从事振动与声音信号分析控制等方面的研究.文章编号:1000-1646(2007)04-0368-04基于AMESim 的飞机液压系统仿真技术的应用研究吴亚锋1,郭 军1,2(1.西北工业大学动力与能源学院,西安710072;2.中国运载火箭技术研究院长征航天控制工程公司,北京100076)摘 要:分析了AMESim 仿真平台的主要特点和功能,并以飞机前起落架液压收放系统为例,应用AMESim 建模仿真技术中的AMESim 图形化建模方法建立了系统元件的仿真模型,对飞机前起落架收放系统进行了系统仿真,仿真结果比较令人满意,与实验结果基本吻合.在分析了仿真结果的基础上,提出了AMESim 的批处理方式优化系统参数的方法,为飞机液压系统设计及分析提供了有价值的参考.关 键 词:AMESim 软件;建模;液压仿真;飞机起落架;批处理中图分类号:TH 137 文献标识码:AR esearch on simulation technique based on AMESim for aircraft hydraulic systemWU Ya 2feng 1,GUO J un 1,2(1.College of Propulsion and Energy ,Northwestern Polytechnical University ,Xi ’an 710072,China ; 2.Longmarch Aerospace Control Engineering Corporation ,China Academy of Launch Vehicle Technology ,Beijing 100076,China )Abstract :The main characteristic and function of AM ESim were introduced.Under the AM ESim environment ,a dynamic simulation for the former 2undercarriage of aircraft was conducted.The simulation model of the component was built with graphical modeling method ,and batch run was made for optimization of system parameters.The simulation results have provided the valuable reference for design and analysis of aircraft hydraulic system.K ey w ords :AM ESim ;modeling ;hydraulic simulation ;undercarriage ;batch run 现代飞机动力收放系统几乎都是液压驱动的.随着飞机特别是军用飞机的发展,对机载液压系统提出了更高的要求.对于飞机液压系统的设计,传统的设计方法主要通过设计者的知识和经验用真实的元部件构成一个动态系统,然后在这个系统上进行实验,研究结构参数对系统动态特性的影响.用这种方法进行参数调节比较困难,要花费大量的人力、物力和时间,而且一次成功的把握很小.随着计算机仿真技术的发展,在工程系统的设计中使用计算机对实际系统的动态特性进行数字仿真成为可能.在计算机上进行仿真实验,研究实际物理系统的各种工作状况,确定最佳参数匹配.这样使得系统和液压元件的设计缺陷在物理成型前就得到了处理,极大地缩短了设计周期、降低了设计成本.正是因为计算机数字仿真技术这种优越性,已经广泛地应用于飞机液压系统的设计、开发和改进过程中.飞机起落架及其收放控制系统是飞机一个重要的系统,其工作是否正常将直接影响到飞行安全和装备的完好性.本文使用AMESim 仿真软件平台对典型的前起落架收放系统进行了仿真试验,对系统工作过程进行了动态仿真,分析了仿真结果,为飞机液压系统设计及分析提供了有价值的参考.1 AM ESim 软件简介AMESim (Advanced Modeling Environment for Performing Simulations of Engineering Systems )高级第29卷第4期2007年8月沈 阳 工 业 大 学 学 报Journal of Shenyang University of TechnologyVol 129No 14Aug.2007工程系统仿真环境软件平台是法国IMAGINE 公司于1995年推出的图形化的开发环境,专门用于工程系统的建模、仿真和动态性能分析.AMESim 仿真环境包含的系列软件主要有5种:AMESim 、AMESet 、AMECustom 、AMERun 和AMEHlep.其中AMESim 可以进行完成系统仿真模型图的建立、模型的选择、参数的设定、仿真和动态性能的分析;AMESet 是模型和文档生成器,用于开发和维护自定义模型库;AMECustom 是数据库创建工具,用于为子模型或者超模型创建制定用户界面和参数设置,它可以使最终用户只能访问相关有用信息,而涉及到技术敏感性的信息可以在发布前进行加密;AMERun 是AMESim 的只运行版本;AMEHelp 是整个仿真环境的帮助系统.在系统建模过程中,需在AM ESim 软件中依次完成草图模式(Sketch mode )、子模型模式(Submodel mode )、参数模式(Parameter mode )、运行模式(Run mode ).其中,草图模式最为关键,需根据飞机前起落架收放系统的实际结构选择液压模型库中元件子模型构建整个系统的仿真模型图,如图1所示,值得注意的是图中9号元件———开锁作动筒(放起落架时,用以打开起落架的锁钩)的子模型需要根据其元件结构使用HCD (液压元件)库的基本模型单元设计.图1 前起落架液压收放系统原理图Fig.1 Hydraulic system of former 2undercarriage of aircraft2 前起落架收放系统仿真211 前起落架收放系统的工作原理如图1,在飞机着陆时放下起落架的工作过程是:飞行员将起落架开关置于放下位置,电磁阀8右端电磁铁通电,将高压油接通到放下管路.高压油首先进入开锁作动筒9的无杆腔推动活塞向左运动,使起落架的锁钩打开,开锁后活塞将中间油路打开,高压油就通过开锁作动筒9和液压锁10进入前起落架收放作动筒11的无杆腔,推动活塞放下前起落架.同时,开锁作动筒9和起落架作动筒11的有杆腔里的工作油液,经过电磁阀8回到油箱.由于在起落架放下时,在液压力、重力和气动力的共同作用下,使其放下速度较快,作动筒活塞运动到终点时容易与外筒发生撞击,为此在作动筒出口设置一个单向节流阀12,使油液流出作动筒时有较大的液阻,从而减少起落架放下速度和撞击.当飞机起飞后要收起起落架的工作过程是:飞行员将起落架收放开关置于收起位置,电磁阀8左端电磁铁通电,高压油一方面进入开锁作动筒9的油杆腔推动活塞使锁钩复位,同时进入作动筒11的有杆腔使起落架收起.作动筒11无杆腔回油依次经过液压锁10(此时高压油把液压锁打开)、单项阀14、电磁阀8回到油箱.212 前起落架收放系统仿真在AM ESim 仿真软件的Sketch mode 中从液压库子模型库依次选择元件模型完成系统图1的设计,系统的模型库中集成了大多数标准液压元件的仿真子模型,最大程度地避免了仿真者自行设计数学模型.同时,对于系统中的特定元件模型,可根据其物理结构,使用液压元件设计库里面的最小模型单元搭建完成.对于本系统来说,大多数关键元件的模型均可在液压库中选择,系统中9号元件———开锁作动筒作为特定元件,需用HCD 基本模型设计仿真子模型,并将其组成超元件模型连接在系统中.其开锁作动筒模型,如图2所示.图2 开锁作动筒模型Fig.2 Model of opening hydraulic jack a.基本元件模型 b.超元件模型在Sketch mode 中完成系统仿真图以后,仿真的关键就是实际系统元件模型的选择和设定参数.在飞机前起落架收放系统中,需要着重关注的仿真模型和参数设置是:主液压泵、主蓄能器、电磁阀、前起落架作动筒以及各自的参数设置.主液压泵选择了恒压泵模型,模型的数学公式为963第4期吴亚锋,等:基于AM ESim 的飞机液压系统仿真技术的应用研究 q2nom=k q Q((p3-p1)k p)(1)d(d i)d t=(q2nom/n p nom-d i)t au(2)式中:q2nom———名义流量;k q———流量比例因子;k p———压力比例因子;d i———排量;d(d i)/d t———排量变化率;n p nom———名义转速;t au———时间变化常数.泵的参数设置主要为:名义流量12L/min,额定压力1512MPa,额定转速4000r/min,机械效率95%.主蓄能器采用忽略热交换的液压蓄能器,模型的数学公式主要根据p・V n=C(3) 动态模型取绝热过程,n=114,参数设置:初始压力为1512MPa,预设气体压力为1118MPa,蓄能器容积为1L,入口孔径为12mm,流量系数为017,临界雷诺数为2320.系统的电磁阀模型采用了三位四通电液比例阀(Y型),即阀芯在中间位置处B2A2T三口相通,P口断开.之所以使用Y型三位四通阀主要考虑到在电磁阀没有工作的时候,B2A2T相通避免了起落架作动筒由于温度变化而产生的腔内油压过高.需设定的参数为:各段流道的流量为50L/min,各段流道相应的压降为0125MPa,比例阀的自然频率为80Hz,阻尼率为018.前起落架作动筒选择了双腔单杆液压缸模型,作为典型的液压缸模型需要设置的主要参数为:活塞直径65mm,杆径35mm,行程01554m,端口1死容积7613cm3,端口2死容积6314cm3,运动部件等效质量218kg.对于系统其他部件的参数可根据实际情况进行设置.213 仿真结果分析在仿真时间0~25s的时间里运行系统仿真,起始2s主液压泵开始运转,电磁阀不打开;在第2s结束时,通过设置的阀门信号开启模型打开电磁阀.系统仿真的主要控制点压力流量变化如图3、图4所示.图3主要显示了起落架放下时主泵出口的压力和流量变化(收起状态略),图中压力和流量变化规律很好地体现了恒压变量泵的压力流量特性.图4所示为起落架放下时作动筒无杆腔压力和流量变化,仿真结果与实验结果基本吻合.图3 前起落架放下时主液压泵的出口压力和流量Fig.3 Pressure and flow rate at outlet ofpump图4 前起落架放下时作动筒无杆腔压力与流量Fig.4 Pressure and flow rate in chamber with no rod inlet 值得注意的是对于本系统的仿真,负载变化仅考虑到起落架自重的因素,设定的是恒定值24500N;然而实际情况下,由于飞机在不同飞行马赫数、不同的飞行高度起落架所受到气动力影响要远远大于其本身自重的负载.为此,应用AM ESim的批处理功能,在负载起始值24500N、变化步长5000N、变化次数3次(向上)的情况下,运行批处理仿真.073 沈 阳 工 业 大 学 学 报第29卷图5为起落架放下时无杆腔随负载变化的情况,可以看出,1~4曲线分别为负载由初始值24500N 变化3次到39500N 时,无杆腔工作压力不断增大,工作时间不断增长,这也是与起落架放下时的实际工况相符的.图5 在负载变化情况下的起落架放下时无杆腔的压力变化Fig.5 Pressure change in chamber with no rod3 结 论1)AM ESim 提供了一条效果良好,而且方法简洁的仿真途径.应用Amesim 图形化的建模方法,避免了繁琐的公式推导,仿真结果比较令人满意,与实验结果基本吻合.2)利用AM ESim 的批处理功能设定模型元件的参数值,可以提供一组不同设定值下的仿真结果,可以方便地进行系统参数优化.可以断言,AMES im 仿真技术在包括飞机液压系统的各类工程领域中将会有越来越广泛的应用.参考文献:[1]李培滋,王占林.飞机液压传动与伺服控制[M ].北京:国防工业出版社,1979.(L I Pei 2zi ,WAN G Zhan 2lin.Hydraulic transmission and servo control of the aircraft [M ].Beijing :National Defense Industry Press ,1979.)[2]康凤举.现代仿真技术与应用[M ].北京:国防工业出版社,2001.(K AN G Feng 2ju.Technique of modern simulation and application [M ].Beijing :National Defense Industry Press ,2001.)[3]李永堂,雷步芳.液压系统建模与仿真[M ].北京:冶金工业出版社,2003.(L I Y ong 2tang ,L EI Bu 2fang.Modeling and simulation of hydraulic system [M ].Beijing :Metallurgy Industry Press ,2003.)[4]郭世伟,任中全,刘永军.基于功率键合图的MA T 2LAB 建模仿真在液压系统中的应用研究[J ].煤矿机械,2001(2):11-14.(GUO Shi 2wei ,REN Zhong 2quan ,L IU Y ong 2jun.Ap 2plication of simulation technique of MA TLAB using bond graph method in hydraulic system [J ].Coal Mine Machinery ,2001(2):11-14.)[5]秦家升,游善兰.AMESim 软件的特征及其应用[J ].工程机械,2004(12):6-8.(Q IN Jia 2sheng ,Y OU Shan 2lan.Characteristic and ap 2plication of AMESim [J ].Construction Machinery and Equipment ,2004(12):6-8.)[6]吴跃斌,谢英俊,徐立,等.1MN 级新型减摇鳍液压系统仿真[J ].机床与液压,2004(4):61-63.(WU Y ue 2bin ,XIE Y ing 2jun ,XU Li ,et al.The S imula 2tion of a new type of l MN fin stabilizer hydraulic system [J ].Machine T ool &Hydraulics ,2004(4):61-63.)[7]余佑官,龚国芳,胡国良.AMESim 仿真技术及其在液压系统中的应用[J ].液压气动与密封,2005(3):28-31.(YU Y ou 2guan ,G ON G Guo 2fang ,HU Guo 2liang.Sim 2ulation technique of AMESim and its application in hy 2draulic system [J ].Hydraulics Pneumatics &Seals ,2005(3):28-31.)[8]彭力明,王耘,赵国华.基于ADAMS/Hydraulics 的连续阀口流量数学模型的建立[J ].液压与气动,2004(3):11-13.(PEN G Li 2ming ,WAN G Yun ,ZHAO Guo 2hua.Mod 2eling smooth rate through orifice in ADAMS/Hy 2draulics [J ].Chinese Hydraulics &Pneumatics ,2004(3):11-13.)[9]暴宏志,刘永光.飞机起落架收放液压系统试验车的设计研究[J ].液压与气动,2002(11):18-20.(BAO Hong 2zhi ,L IU Y ong 2guang.Design and re 2search of testing machine of open and withdraw hy 2draulic system of plane undercarriage [J ].Chinese Hy 2draulic &Pneumatics ,2002(11):18-20.)[10]任新宇,郭迎清,姚华廷.基于AMESim 的航空发动机防喘调节器性能仿真研究[J ].航空动力学报,2004(4):572-276.(REN Xin 2yu ,GUO Y ing 2qing ,Y AO Hua 2ting.A simulation of the anti 2surging regulator performance for the aero 2engine using AMESim [J ].Journal of Aerospace Power ,2004(4):572-576.)[11]李谨,邓卫华.AMESim 与MA TLAB/Simulink 联合仿真技术及应用[J ].情报指挥控制系统与仿真技术,2004,26(5):61-64.(L I Jin ,DEN G Wei 2hua.United simulation technique with AMESim and MA TLAB/simulink [J ].Informa 2tion Command Control System &Simulation Technol 2ogy ,2004,26(5):61-64.)(责任编辑:王艳香 英文审校:王世杰)173第4期吴亚锋,等:基于AM ESim 的飞机液压系统仿真技术的应用研究 。