第11章第2节幂级数
- 格式:ppt
- 大小:924.50 KB
- 文档页数:36
第11章 级数1.写出下列级数的前5项:(1) 11(1)3n nn -∞=-∑;(2) 113(21)242n n n ∞=⨯-⨯∑;(3) 21(ln )nn n ∞=∑;(4) 1!nn n n∞=∑解答:(1)23451111133333-+-+-;(2) 1131351357135792242462468246810∙∙∙∙∙∙∙∙∙∙+++++∙∙∙∙∙∙∙∙∙∙;(3) 2345611111(ln 2)(ln 3)(ln 4)(ln 5)(ln 6)+++++; (4)234511212312341234512345∙∙∙∙∙∙∙∙∙∙+++++。
所属章节:第十一章第一节 难度:一级2.写出下列级数的通项: (1)2341357++++;(2)261220-+-;(3)22242462468x x+++⨯⨯⨯⨯⨯⨯解答:(1) 21n n -;(2)1(1)(1)n n n --+;(3)2242nx n∙ 。
所属章节:第十一章第一节难度:一级3.已知级数的部分和S n ,写出该级数,并求和: (1)1n n S n+=;(2)212nn nS -=;解答:(1) 一般项为111121u S +===,111,2,3,1(1)n n n n n u S S n nn n n -+-=-=-==--,故该级数为212(1)n n n∞=--∑,该级数的和为1lim lim1n n n n S n→∞→∞+==;(2) 一般项为1112u S ==,11121211,2,3,222nn n n n nn nu S S n -----=-=-==,故该级数为112nn ∞=∑,该级数的和为21lim lim12nnnn n S →∞→∞-== 。
所属章节:第十一章第一节 难度:一级4.根据定义求出下列级数的和:(1) 1326n n nn ∞=+∑;(2) 11(2)n n n ∞=+∑;(3) 1(1)(2)(3)n nn n n ∞=+++∑;(4) 1n ∞=∑解答:(1) 111113211332()()1162321123n n nn nn n n ∞∞∞===+=+=+=--∑∑∑;(2) 1111111111113()(1)(2)222324354n n n n n n ∞∞===-=-+-+-+=++∑∑;(3) 111123111111[()]()()2(1)(2)(3)2122322334n n nn n n n n n ∞∞===-+-⋅=-++⨯=++++++∑∑;(4) 11n n ∞∞===-∑∑111n ∞==-∑11=-=-所属章节:第十一章第一节难度:一级5.证明下列级数发散:(1) 121n n n ∞=+∑;(2) 12nn n∞=∑;(3)11nn n n ∞=⎛⎫ ⎪+⎝⎭∑;(4) 111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑解答:(1) 由于10212nn u n =→≠+,所以级数121n nn ∞=+∑发散;(2) 由于2nnu n=→+∞≠,所以级数12nn n∞=∑发散;(3)由于1()01nn nu n e =→≠+,所以级数11nn n n ∞=⎛⎫ ⎪+⎝⎭∑发散;(4) 由于1111011(1)()(1)n n nn n nnnnnnn u n en nn ++=≥=→≠+++,所以级数111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑发散。
幂级数概念公司内部档案编码:[OPPTR-OPPT28-OPPTL98-§ 11. 3 幂级数一、函数项级数的概念函数项级数: 给定一个定义在区间I上的函数列{u n(x)}, 由这函数列构成的表达式u1(x)+u2(x)+u3(x)+ × × × +u n(x)+ × × ×称为定义在区间I上的(函数项)级数, 记为∑∞=1) (nnxu.收敛点与发散点:对于区间I内的一定点x0, 若常数项级数∑∞=1) (nnxu收敛, 则称点x0是级数∑∞=1) (nnxu的收敛点. 若常数项级数∑∞=1)(nnxu发散, 则称点x0是级数∑∞=1) (nnxu的发散点.收敛域与发散域:函数项级数∑∞=1) (nnxu的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域.和函数:在收敛域上, 函数项级数∑∞=1) (nnxu的和是x的函数s(x),s(x)称为函数项级数∑∞=1) (nnxu的和函数, 并写成∑∞==1)()(nnxuxs.∑u n(x)是∑∞=1) (nnxu的简便记法, 以下不再重述.在收敛域上, 函数项级数∑u n(x)的和是x的函数s(x),s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ).这函数的定义就是级数的收敛域, 部分和:函数项级数∑∞=1)(n n x u 的前n 项的部分和记作s n (x ),函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ × × × +u n (x ). 在收敛域上有)()(lim x s x s n n =∞→或s n (x )?s (x )(n ??) .余项:函数项级数∑∞=1)(n n x u 的和函数s (x )与部分和s n (x )的差r n (x )=s (x )-s n (x )叫做函数项级数∑∞=1)(n n x u 的余项.函数项级数∑u n (x )的余项记为r n (x ), 它是和函数s (x )与部分和s n (x )的差 r n (x )=s (x )-s n (x ). 在收敛域上有0)(lim =∞→x r n n .二、幂级数及其收敛性 幂级数:函数项级数中简单而常见的一类级数就是各项都幂函数的函数 项级数, 这种形式的级数称为幂级数, 它的形式是a 0+a 1x +a 2x 2+ × × × +a n x n + × × × ,其中常数a 0, a 1, a 2, × × × , a n , × × ×叫做幂级数的系数. 幂级数的例子:1+x +x 2+x 3+ × × × +x n+ × × × , !1 !2112⋅⋅⋅++⋅⋅⋅+++n x n x x .注: 幂级数的一般形式是a 0+a 1(x -x 0)+a 2(x -x 0)2+ × × × +a n (x -x 0)n + × × × , 经变换t =x -x 0就得a 0+a 1t +a 2t 2+ × × × +a n t n + × × × . 幂级数1+x +x 2+x 3+ × × × +x n + × × ×可以看成是公比为x 的几何级数. 当|x |<1时它是收敛的; 当|x |?1时, 它是发散的. 因此它的收敛 域为(-1, 1), 在收敛域内有11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.定理1 (阿贝尔定理) 如果级数∑∞=0n n n x a 当x =x 0 (x 010)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当x =x 0时发散, 则适合不等式|x |?|x 0|的一切x 使这幂级数发散.定理1 (阿贝尔定理) 如果级数∑a n x n 当x =x 0 (x 010)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑a n x n当x =x 0时发散, 则适合不等式|x |?|x 0|的一切x 使这幂级数发散.提示: ∑a n x n是∑∞=0n n n x a 的简记形式.证 先设x 0是幂级数∑∞=0n nn x a 的收敛点, 即级数∑∞=0n n n x a 收敛. 根据级数收敛的必要条件, 有0lim 0=∞→nn n x a , 于是存在一个常数M , 使 | a n x 0n |£M (n =0, 1, 2, × × ×). 这样级数∑∞=0n n n x a 的的一般项的绝对值n n n n n nn n nn x x M x x x a x x x a xa ||||||||||00000⋅≤⋅=⋅=. 因为当|x |<|x 0|时, 等比级数nn x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n n n x a 收敛, 也就是级数∑∞=0n n n x a 绝对收敛.简要证明 设∑a n x n 在点x 0收敛, 则有a n x 0n ?0(n ??) , 于是数列{a n x 0n }有界, 即存在一个常数M , 使| a n x 0n |£M (n =0, 1, 2, × × ×).因为 n n n n n nn n n n x x M x x x a x x x a x a || |||| || ||00000⋅≤⋅=⋅=,而当||||0x x <时, 等比级数n n x x M ||0⋅∑∞=收敛, 所以级数∑|a n x n|收敛, 也就是级数∑a n x n绝对收敛.定理的第二部分可用反证法证明. 倘若幂级数当x =x 0时发散而有一点x 1适合|x 1|>|x 0|使级数收敛, 则根据本定理的第一部分, 级数当x =x 0时应收敛, 这与所设矛盾. 定理得证.推论 如果级数∑∞=0n n n x a 不是仅在点x =0一点收敛, 也不是在整个数轴上都收敛, 则必有一个完全确定的正数R 存在, 使得 当|x |<R 时, 幂级数绝对收敛; 当|x |?R 时, 幂级数发散;当x =R 与x =-R 时, 幂级数可能收敛也可能发散.收敛半径与收敛区间: 正数R 通常叫做幂级数∑∞=0n n n x a 的收敛半径? 开区间(?R ? R )叫做幂级数∑∞=0n n n x a 的收敛区间? 再由幂级数在x ??R 处的收敛性就可以决定它的收敛域? 幂级数∑∞=0n n n x a 的收敛域是(-R , R )(或[-R , R )、(-R ,R ]、[-R , R ]之一.规定: 若幂级数∑∞=0n n n x a 只在x =0收敛, 则规定收敛半径R =0 , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径R =+¥, 这时收敛域为(-¥, +¥).定理2如果ρ=+∞→||lim 1n n n a a , 其中a n 、a n +1是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10R ?定理2如果幂级数∑∞=0n n n x a 系数满足ρ=+∞→||lim 1nn n a a , 则这幂级数的收敛半径 ⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R ?定理2 如果ρ=+∞→||lim 1n n n a a , 则幂级数∑∞=0n n n x a 的收敛半径R 为? 当??0时ρ1=R ? 当??0时R ???? 当????时R ?0? 简要证明: || ||||lim ||lim 111x x a a x a x a n n n nn n n n ρ=⋅=+∞→++∞→. (1)如果0<r <+?, 则只当r |x |<1时幂级数收敛? 故ρ1=R .(2)如果r =0, 则幂级数总是收敛的, 故R =+?. (3)如果r =+?, 则只当x ?0时幂级数收敛, 故R =0.例1 求幂级数)1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑nx x x x n x n n n n n 的收敛半径与收敛域. 例1 求幂级数∑∞=--11)1(n n n nx 的收敛半径与收敛域.解 因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ,所以收敛半径为11==ρR .当x =1时, 幂级数成为∑∞=--111)1(n n n, 是收敛的;当x =-1时, 幂级数成为∑∞=-1)1(n n, 是发散的. 因此, 收敛域为(-1, 1].例2 求幂级数∑∞=0!1n n x n!1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域.例2 求幂级数∑∞=0!1n n x n 的收敛域.解 因为0)!1(!lim !1)!1(1lim||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ, 所以收敛半径为R =+¥, 从而收敛域为(-¥, +¥). 例3 求幂级数∑∞=0!n n x n 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为R =0, 即级数仅在x =0处收敛. 例4 求幂级数∑∞=022!)()!2(n nx n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径:幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当4|x |2<1即21||<x 时级数收敛; 当4|x |2?1即21||>x 时级数发散, 所以收敛半径为21=R .提示? 2222)1(221)1()12)(22()!()!2(])!1[()]!1(2[)()(x n n n xn n xn n x u x u n n n n +++=++=++. 例5 求幂级数∑∞=-12)1(n n nnx 的收敛域.解 令t =x -1, 上述级数变为∑∞=12n n n nt . 因为 21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ, 所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 此级数发散; 当t =-2时, 级数成为∑∞=-1)1(n n ,此级数收敛. 因此级数∑∞=12n n n nt 的收敛域为-2£t <2? 因为-2£x -1<2, 即-1£x <3, 所以原级数的收敛域为[-1, 3). 三、幂级数的运算设幂级数∑∞=0n nn x a 及∑∞=0n n n x b 分别在区间(-R , R )及(-R ¢, R ¢)内收敛, 则在(-R , R )与(-R ¢, R ¢)中较小的区间内有 加法: ∑∑∑∞=∞=∞=+=+000)(n n n n n n n n n n x b a x b x a , 减法: ∑∑∑∞=∞=∞=-=-0)(n n n n n n n n n n x b a x b x a ,设幂级数∑a n x n 及∑b n x n 分别在区间(-R , R )及(-R ¢, R ¢)内收敛, 则在(-R , R )与(-R ¢, R ¢)中较小的区间内有 加法: ∑a n x n +∑b n x n =∑(a n +b n )x n , 减法: ∑a n x n -∑b n x n =∑(a n -b n )x n .乘法: )()(0∑∑∞=∞=⋅n n n n n n x b x a =a 0b 0+(a 0b 1+a 1b 0)x +(a 0b 2+a 1b 1+a 2b 0)x 2+ × × ×+(a 0b n +a 1b n -1+ × × × +a n b 0)x n + × × ×性质1 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上连续.如果幂级数在x =R (或x =-R )也收敛, 则和函数s (x )在(-R , R ](或[-R ,R ))连续.性质2 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上可积? 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xn n x n n n xx n a dx x a dx x a dx x s (x ?I )? 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛区间(?R ? R )内可导? 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n n n n n n x na x a x a x s (|x |?R )?逐项求导后所得到的幂级数和原级数有相同的收敛半径. 性质1 幂级数∑a n x n 的和函数s (x )在其收敛域I 上连续.性质2 幂级数∑a n x n 的和函数s (x )在其收敛域I 上可积? 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xn n x n n n xx n a dx x a dx x a dx x s (x ?I )? 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑a n x n 的和函数s (x )在其收敛区间(?R ? R )内可导? 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='010)()()(n n n n n n n n n x na x a x a x s (|x |?R )?逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[?1? 1)?设和函数为s (x ), 即∑∞=+=011)(n n x n x s ? x ?[?1? 1)? 显然s (0)=1.在∑∞=++=0111)(n n x n x xs 的两边求导得x x x n x xs n n n n -=='+='∑∑∞=∞=+11)11(])([001. 对上式从0到x 积分, 得)1ln(11)(0x dx xx xs x--=-=⎰.于是, 当x 10时, 有)1ln(1)(x x x s --=. 从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )1ln(11000x dx xdx x xx n n --=-==⎰⎰∑∞=,所以, 当x 10时, 有)1ln(1)(x xx s --=,从而 ⎪⎩⎪⎨⎧=<<--=0 1 1||0 )1ln(1)(x x x x x s .例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[?1? 1)?设幂级数的和函数为s (x ), 即∑∞=+=011)(n n x n x s ? x ?[?1? 1)?显然S (0)?1? 因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )11( )1ln(11000<<---=-==⎰⎰∑∞=x x dx xdx x xx n n ,所以, 当1||0<<x 时, 有)1ln(1)(x xx s --=?从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .由和函数在收敛域上的连续性? 2ln )(lim )1(1==-+-→x S S x ?综合起来得⎪⎩⎪⎨⎧=⋃-∈--=0 1)1 ,0()0 ,1[ )1ln(1)(x x x x x s .提示? 应用公式)0()()(0F x F dx x F x -='⎰? 即⎰'+=xdx x F F x F 0)()0()(?11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x .例7 求级数∑∞=+-01)1(n nn 的和.解 考虑幂级数∑∞=+011n n x n , 此级数在[-1, 1)上收敛, 设其和函数为s (x ), 则∑∞=+-=-01)1()1(n nn s .在例6中已得到xs (x )=ln(1-x ), 于是-s (-1)=ln2, 21ln )1(=-s , 即21ln 1)1(0=+-∑∞=n n n .。
幂级数知识点总结高数大一幂级数知识点总结在高等数学的大一课程中,我们学习了许多重要的数学概念和理论。
其中,幂级数是一种十分重要且常见的数列展开形式。
在本文中,我将对幂级数及其相关概念进行总结和归纳。
一、幂级数的定义幂级数是一种特殊的函数展开形式,用无穷级数的形式表示。
一般形式如下:\[S(x) = \sum_{n=0}^{\infty} a_n x^n\]其中,\(x\) 是变量,\(\{a_n\}\) 是一组常数系数。
在幂级数的展开形式中,\(a_n\) 表示第 \(n\) 项的系数,\(x^n\) 表示变量 \(x\) 的指数幂。
二、收敛区间与收敛半径幂级数在一定范围内是收敛的,我们称这个范围为收敛区间。
收敛区间由收敛半径来衡量,收敛半径的计算公式如下:\[R = \lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right|\]其中,若极限存在,则收敛半径为 \(R\);若极限为无穷大,则收敛半径为无穷;若极限为零,则收敛半径为零。
三、常见的幂级数展开1. 几何级数:当 \(|x| < 1\) 时,几何级数展开为:\[S(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}\]2. 自然指数函数:幂级数展开可以得到自然指数函数的展开形式,即在 \(x_0\) 处展开的自然指数函数为:\[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}\]3. 三角函数:正弦函数和余弦函数的幂级数展开为:\[\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}\] \[\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}\]四、幂级数的运算性质1. 幂级数的加法和减法:对于两个幂级数,可分别对其系数进行加法和减法运算,得到一个新的幂级数。