深圳市龙城高级中学2016-2017高一上数学期末试卷
- 格式:doc
- 大小:339.50 KB
- 文档页数:4
2016-2017学年广东省深圳市南山区高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.(5分)(2016秋•深圳期末)已知全集U={0,1,2,3,4},集合A={1,2},B={0,2,4},则(∁U A)∩B等于()A.{0,4}B.{0,3,4}C.{0,2,3,4}D.{2}2.(5分)(2016秋•深圳期末)函数y=1﹣2x的值域为()A.[1,+∞)B.(1,+∞)C.(﹣∞,1]D.(﹣∞,1)3.(5分)(2016秋•深圳期末)直线3x+y+1=0的倾斜角是()A.30°B.60°C.120° D.150°4.(5分)(2016秋•深圳期末)如图是一个几何体的三视图,则该几何体的体积为()A.9πB.18πC.27πD.54π5.(5分)(2016秋•深圳期末)下列函数中既是偶函数,又在(0,+∞)上单调递减的为()A.B.y=x﹣2C.D.y=x26.(5分)(2016秋•深圳期末)已知直线l1:3x+2y+1=0,l2:x﹣2y﹣5=0,设直线l1,l2的交点为A,则点A到直线的距离为()A.1 B.3 C.D.7.(5分)(2016秋•深圳期末)方程的实数根的所在区间为()A.(3,4) B.(2,3) C.(1,2) D.(0,1)8.(5分)(2016秋•深圳期末)计算其结果是()A.﹣1 B.1 C.﹣3 D.39.(5分)(2016秋•深圳期末)已知b>0,log3b=a,log6b=c,3d=6,则下列等式成立的是()A.a=2c B.d=ac C.a=cd D.c=ad10.(5分)(2016秋•深圳期末)已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,使得a⊥α,a⊥β;②存在两条平行直线a,b,使得a∥α,a∥β,b∥α,b∥β;③存在两条异面直线a,b,使得a⊂α,b⊂β,a∥β,b∥α;④存在一个平面γ,使得γ⊥α,γ⊥β.其中可以推出α∥β的条件个数是()A.1 B.2 C.3 D.411.(5分)(2016秋•深圳期末)设集合A={x|2x≤8},B={x|x≤m2+m+1},若A ∪B=A,则实数m的取值范围为.()A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)12.(5分)(2016秋•深圳期末)定义函数序列:,f2(x)=f(x)),则函数y=f2017(x)的(f1(x)),f3(x)=f(f2(x)),…,f n(x)=f(f n﹣1图象与曲线的交点坐标为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2016秋•深圳期末)函数y=+1g(x﹣1)的定义域是.14.(5分)(2016秋•深圳期末)设函数f(x)=,则方程f(x)=2的所有实数根之和为.15.(5分)(2016秋•深圳期末)设点A(﹣5,2),B(1,4),点M为线段AB 的中点.则过点M,且与直线3x+y﹣2=0平行的直线方程为.16.(5分)(2016秋•深圳期末)下列命题中①若log a3>log b3,则a>b;②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;④函数既是奇函数又是减函数.其中正确的命题有.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)(2016秋•深圳期末)在正方体ABCD﹣A1B1C1D1中:(Ⅰ)求证:AC∥平面A1BC1;(Ⅱ)求证:平面A1BC1⊥平面BB1D1D.18.(12分)(2016秋•深圳期末)已知过点P(m,n)的直线l与直线l0:x+2y+4=0垂直.(Ⅰ)若,且点P在函数的图象上,求直线l的一般式方程;(Ⅱ)若点P(m,n)在直线l0上,判断直线mx+(n﹣1)y+n+5=0是否经过定点?若是,求出该定点的坐标;否则,请说明理由.19.(12分)(2016秋•深圳期末)已知函数(其中a为非零实数),且方程有且仅有一个实数根.(Ⅰ)求实数a的值;(Ⅱ)证明:函数f(x)在区间(0,+∞)上单调递减.20.(12分)(2016秋•深圳期末)研究函数的性质,并作出其图象.21.(12分)(2016秋•深圳期末)已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(Ⅰ)求证:BM⊥平面ADM;(Ⅱ)若点E是线段DB上的中点,求三棱锥E﹣ABM的体积V1与四棱锥D﹣ABCM 的体积V2之比.22.(12分)(2016秋•深圳期末)已知函数f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.设a>0,将函数f(x)的图象先向右平移a个单位长度,再向下平移a2个单位长度,得到函数g(x)的图象.(Ⅰ)若函数g(x)有两个零点x1,x2,且x1<4<x2,求实数a的取值范围;(Ⅱ)设连续函数在区间[m,n]上的值域为[λ,μ],若有,则称该函数为“陡峭函数”.若函数g(x)在区间[a,2a]上为“陡峭函数”,求实数a的取值范围.2016-2017学年广东省深圳市南山区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.(5分)(2016秋•深圳期末)已知全集U={0,1,2,3,4},集合A={1,2},B={0,2,4},则(∁U A)∩B等于()A.{0,4}B.{0,3,4}C.{0,2,3,4}D.{2}【解答】解:∵∁U A={0,3,4},∴(∁U A)∩B={0,4},故选:A2.(5分)(2016秋•深圳期末)函数y=1﹣2x的值域为()A.[1,+∞)B.(1,+∞)C.(﹣∞,1]D.(﹣∞,1)【解答】解:函数y=1﹣2x,其定义域为R.∵2x的值域为(0,+∞),∴函数y=1﹣2x的值域为(﹣∞,1),故选D.3.(5分)(2016秋•深圳期末)直线3x+y+1=0的倾斜角是()A.30°B.60°C.120° D.150°【解答】解:直线3x+y+1=0的斜率为:,直线的倾斜角为:θ,tan,可得θ=120°.故选:C.4.(5分)(2016秋•深圳期末)如图是一个几何体的三视图,则该几何体的体积为()A.9πB.18πC.27πD.54π【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的圆锥,圆锥的底面直径为6,故底面半径r=3,圆锥的高h=6,故圆锥的体积V==18π,故选:B5.(5分)(2016秋•深圳期末)下列函数中既是偶函数,又在(0,+∞)上单调递减的为()A.B.y=x﹣2C.D.y=x2【解答】解:对于A:y=,函数在(0,+∞)递增,不合题意;对于B:y=是偶函数,在(0,+∞)递减,符合题意;对于C:y=,不是偶函数,不合题意;对于D:y=x2在(0,+∞)递增,不合题意;故选:B.6.(5分)(2016秋•深圳期末)已知直线l1:3x+2y+1=0,l2:x﹣2y﹣5=0,设直线l1,l2的交点为A,则点A到直线的距离为()A.1 B.3 C.D.【解答】解:联立,得,∴A(1,﹣2),∴点A到直线的距离为d==1.故选:A.7.(5分)(2016秋•深圳期末)方程的实数根的所在区间为()A.(3,4) B.(2,3) C.(1,2) D.(0,1)【解答】解:令f(x)=lnx﹣,易知f(x)在其定义域上连续,f(2)=ln2﹣=ln2﹣ln>0,f(1)=ln1﹣1=﹣1<0,故f(x)=lnx﹣,在(1,2)上有零点,故方程方程的根所在的区间是(1,2);故选:C.8.(5分)(2016秋•深圳期末)计算其结果是()A.﹣1 B.1 C.﹣3 D.3【解答】解:原式=+﹣lg5+|lg2﹣1|=+﹣lg5﹣lg1+1=1,故选:B9.(5分)(2016秋•深圳期末)已知b>0,log3b=a,log6b=c,3d=6,则下列等式成立的是()A.a=2c B.d=ac C.a=cd D.c=ad【解答】解:b>0,3d=6,∴d=log36,∴log36•log6b=log3b,∴a=cd故选:C10.(5分)(2016秋•深圳期末)已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,使得a⊥α,a⊥β;②存在两条平行直线a,b,使得a∥α,a∥β,b∥α,b∥β;③存在两条异面直线a,b,使得a⊂α,b⊂β,a∥β,b∥α;④存在一个平面γ,使得γ⊥α,γ⊥β.其中可以推出α∥β的条件个数是()A.1 B.2 C.3 D.4【解答】解:当α、β不平行时,不存在直线a与α、β都垂直,∴a⊥α,a⊥β⇒α∥β,故①正确;对②,∵a∥b,a⊂α,b⊂β,a∥β,b∥α时,α、β位置关系不确定②不正确;对③,异面直线a,b.∴a过上一点作c∥b;过b上一点作d∥a,则a与c相交;b与d相交,根据线线平行⇒线面平行⇒面面平行,正确对④,∵γ⊥α,γ⊥β,α、β可以相交也可以平行,∴不正确.故选B.11.(5分)(2016秋•深圳期末)设集合A={x|2x≤8},B={x|x≤m2+m+1},若A ∪B=A,则实数m的取值范围为.()A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)【解答】解:集合A={x|2x≤8}={x|0<x≤3},因为A∪B=A,所以B⊆A,所以0<m2+m+1≤3,解得﹣2≤m≤1,即m∈[﹣2,1].故选:B.12.(5分)(2016秋•深圳期末)定义函数序列:,f2(x)=f(x)),则函数y=f2017(x)的(f1(x)),f3(x)=f(f2(x)),…,f n(x)=f(f n﹣1图象与曲线的交点坐标为()A.B.C.D.【解答】解:由题意f1(x)=f(x)=.f2(x)=f(f1(x))==,f3(x)=f(f2(x))==,…f n(x)=f(f n﹣1(x))=,∴f2017(x)=,由得:,或,由中x≠1得:函数y=f2017(x)的图象与曲线的交点坐标为,故选:A二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2016秋•深圳期末)函数y=+1g(x﹣1)的定义域是(1,2] .【解答】解:要使函数有意义,可得:,解得:x∈(1,2].函数y=+1g(x﹣1)的定义域是(1,2].故答案为:(1,2].14.(5分)(2016秋•深圳期末)设函数f(x)=,则方程f(x)=2的所有实数根之和为.【解答】解:∵f(x)=,则方程f(x)=2∴x>0时,x=2,x=3,x≤0时,x2=2,x=,∴+3=故答案为:15.(5分)(2016秋•深圳期末)设点A(﹣5,2),B(1,4),点M为线段AB 的中点.则过点M,且与直线3x+y﹣2=0平行的直线方程为3x+y+3=0.【解答】解:M(﹣2,3),设与直线3x+y﹣2=0平行的直线方程为:3x+y+m=0,把点M的坐标代入可得:﹣6+3+m=0,解得m=3.故所求的直线方程为:3x+y+3=0.故答案为:3x+y+3=0.16.(5分)(2016秋•深圳期末)下列命题中①若log a3>log b3,则a>b;②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;④函数既是奇函数又是减函数.其中正确的命题有②④.【解答】解:若log a3>log b3>0,则a<b,故①错误;函数f(x)=x2﹣2x+3的图象开口朝上,且以直线x=1为对称轴,当x=1时,函数取最小值2,无最大值,故函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);故②正确;g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)可能存在零点;故③错误;数满足h(﹣x)=﹣h(x),故h(x)为奇函数,又由=﹣e x<0恒成立,故h(x)为减函数故④正确;故答案为:②④.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)(2016秋•深圳期末)在正方体ABCD﹣A1B1C1D1中:(Ⅰ)求证:AC∥平面A1BC1;(Ⅱ)求证:平面A1BC1⊥平面BB1D1D.【解答】证明:(Ⅰ)因为AA1∥CC1,所以四边形ACC1A1为平行四边形,…(2分)所以AC∥A1C1,又A1C1⊂平面A1BC1,AC⊄平面A1BC1,AC∥平面A1BC1;…(5分)(Ⅱ)易知A1C1⊥B1D1,因为BB1⊥平面A1B1C1D1,所以BB1⊥A1C1,…(7分)因为BB1∩B1D1=B1,所以A1C1⊥平面BB1D1D,因为A1C1⊂平面A1BC1,所以平面A1BC1⊥平面BB1D1D.…(10分)18.(12分)(2016秋•深圳期末)已知过点P(m,n)的直线l与直线l0:x+2y+4=0垂直.(Ⅰ)若,且点P在函数的图象上,求直线l的一般式方程;(Ⅱ)若点P(m,n)在直线l0上,判断直线mx+(n﹣1)y+n+5=0是否经过定点?若是,求出该定点的坐标;否则,请说明理由.【解答】解:(Ⅰ)点P在函数的图象上,,即点…(2分)由x+2y+4=0,得,即直线l0的斜率为,又直线l与直线l0垂直,则直线l的斜率k满足:,即k=2,…(4分)所以直线l的方程为,一般式方程为:2x﹣y+1=0.…(6分)(Ⅱ)点P(m,n)在直线l0上,所以m+2n+4=0,即m=﹣2n﹣4,…(8分)代入mx+(n﹣1)y+n+5=0中,整理得n(﹣2x+y+1)﹣(4x+y﹣5)=0,…(10分)由,解得,故直线mx+(n﹣1)y+n+5=0必经过定点,其坐标为(1,1).…(12分)19.(12分)(2016秋•深圳期末)已知函数(其中a为非零实数),且方程有且仅有一个实数根.(Ⅰ)求实数a的值;(Ⅱ)证明:函数f(x)在区间(0,+∞)上单调递减.【解答】解:(Ⅰ)由,得,又a≠0,即二次方程ax2﹣4x+4﹣a=0有且仅有一个实数根(且该实数根非零),所以△=(﹣4)2﹣4a(4﹣a)=0,解得a=2(此时实数根非零).(Ⅱ)由(Ⅰ)得:函数解析式,任取0<x1<x2,则f(x1)﹣f(x2)==,∵0<x1<x2,∴x2﹣x1>0,2+x1x2>0,x1x2>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),∴函数f(x)在区间(0,+∞)上单调递减.20.(12分)(2016秋•深圳期末)研究函数的性质,并作出其图象.【解答】(本小题满分12分)解:(1)函数的定义域为{x/x∈R,x≠±2}…(1分)(2)函数的奇偶性:∵∴f(x)是偶函数…(3分)(3)∵,当x∈[0,2)时,且递减;当x∈(2,+∞)时,f(x)>1,递减且以直线x=2,y=1为渐近线;又f(x)是偶函数∴f(x)当x∈(﹣2,0]时,且递增;当x∈(﹣∞,﹣2)时,f(x)>1,递增且以直线x=﹣2,y=1为渐近线;…(8分)(4)函数f(x)的图象如图所示.…(12分)21.(12分)(2016秋•深圳期末)已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(Ⅰ)求证:BM⊥平面ADM;(Ⅱ)若点E是线段DB上的中点,求三棱锥E﹣ABM的体积V1与四棱锥D﹣ABCM 的体积V2之比.【解答】(本小题满分12分)证明:(Ⅰ)因为矩形ABCD中,AB=2,AD=1,M为CD的中点,所以,所以AM2+BM2=AB2,所以BM⊥AM.…(3分)因为平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,又BM⊂平面ABCM,且BM⊥AM,∴BM⊥平面ADM.…(6分)解:(Ⅱ)因为E为DB的中点,所以,…(8分)又直角三角形ABM的面积,梯形ABCM的面积,所以,且,…(11分)所以.…(12分)22.(12分)(2016秋•深圳期末)已知函数f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.设a>0,将函数f(x)的图象先向右平移a个单位长度,再向下平移a2个单位长度,得到函数g(x)的图象.(Ⅰ)若函数g(x)有两个零点x1,x2,且x1<4<x2,求实数a的取值范围;(Ⅱ)设连续函数在区间[m,n]上的值域为[λ,μ],若有,则称该函数为“陡峭函数”.若函数g(x)在区间[a,2a]上为“陡峭函数”,求实数a的取值范围.【解答】(本小题满分12分)解:(Ⅰ)由,即f(x)=x2﹣4x+2,…(1分)由题设可知g(x)=(x﹣a)2﹣4(x﹣a)+2﹣a2=x2﹣(2a+4)x+4a+2,…(2分)因为g(x)有两个零点x1,x2,且x1<4<x2,∴g(4)=16﹣4(2a+4)+4a+2<0,,又a>0,于是实数a的取值范围为.…(5分)(Ⅱ)由g(x)=x2﹣(2a+4)x+4a+2可知,其对称轴为x=a+2,…(6分)①当0<a≤2时,a+2≥2a,函数g(x)在区间[a,2a]上单调递减,最小值λ=g(2a)=﹣4a+2,最大值μ=g(a)=﹣a2+2,则,显然此时a不存在,…(8分)②当2<a≤4时,a<a+2<2a,最小值λ=g(a+2)=﹣a2﹣2,又,最大值μ=g(a)=﹣a2+2,则,,又2<a≤4,此时a亦不存在,…(10分)③当a>4时,a<a+2<2a,最小值λ=g(a+2)=﹣a2﹣2,又,故最大值μ=g(2a)=﹣4a+2,则,,即,综上可知,实数a的取值范围为.…(12分)。
深圳市2016-2017学年度第一学期期末考试高一数学试卷满分150分 ,考试用时120分钟适用深圳第二高级中学,考试内容:必修1,必修3.参考公式:线性回归方程^^^y b x a =+中系数计算公式121()()()niii nii x x y y bx x ==--=-∑∑ ay bx =- 样本数据12,,,n x x x 的标准差,222121[()()()]n s x x x x x x n=-+-++- ,其中x ,y 表示样本均值.一、选择题: 本卷共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}{}{}()====N M C ,N M U U 则3,2,2.1,0,4,3,2,1,0 ( ) A. {}2 B. {}3 C. {}432,, D. {}4321,0,,, 2.函数y= | lg (x-1)| 的图象是 ( )3.设0.3222,0.3,log 0.3a b c ===,则,,a b c 的大小关系是 ( ) A .a b c << B .c b a << C .c a b << D .a c b <<4.已知2()22xf x x =-,则在下列区间中,()0f x =有实数解的是( )A .(-3,-2) B.(-1,0) C. (2,3) D. (4,5)5、若奇函数()f x 在区间[3,7]上是增函数且最小值为5,则()f x 在区间[]7,3--上是( ) A .增函数且最大值为5- B .增函数且最小值为5- C .减函数且最小值为5- D .减函数且最大值为5-C6、设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射是( )7.某校现有高一学生210人、高二学生270人、高三学生300人,现采用分层抽样的方法从中抽取若干学生进行问卷调查,如果从高一学生中抽取的人数为7,那么从高三学生中抽取的人数是A .10B .9C .8D .78.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8180,则此射手的命中率是 A 、31 B 、32 C 、41 D 、529、根据下面的基本语句可知,输出的结果T 为 i:=1; T:=1;For i:=1 to 10 do; Begin T:=T+1; End 输出TA 、10B 、11C 、55D 、5610.函数)1(log )(++=x a x f a x 在]1,0[上的最大值与最小值之和为a ,则a 的值为( )A. 41B. 21C. 2D. 4二、填空题:(本大题共4小题,每小题5分,共20分。
2016-2017学年广东省深圳市高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分).1.(5分)函数的零点为1,则实数a的值为()A.﹣2 B.C.D.22.(5分)下列方程表示的直线倾斜角为135°的是()A.y=x﹣1 B.y﹣1=(x+2)C.+=1 D.x+2y=03.(5分)设a、b是两条不同的直线,α、β是两个不同的平面,则下列四个命题①若a⊥b,a⊥α,则b∥α②若a∥α,α⊥β,则a⊥β③a⊥β,α⊥β,则a∥α④若a⊥b,a⊥α,b⊥β,则α⊥β其中正确的命题的个数是()A.0个 B.1个 C.2个 D.3个4.(5分)以下四个命题中,正确命题是()A.不共面的四点中,其中任意三点不共线B.若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面C.若直线a,b共面,直线a,c共面,则直线b,c共面D.依次首尾相接的四条线段必共面5.(5分)如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()A.B.1 C.D.6.(5分)下列函数f(x)中,满足“对任意x1,x2∈(﹣∞,0),当x1<x2时,都有f(x1)<f(x2)”的函数是()A.f(x)=﹣x+1 B.f(x)=x2﹣1 C.f(x)=2x D.f(x)=ln(﹣x)7.(5分)已知三棱锥的四个面中,最多共有()个直角三角形?A.4 B.3 C.2 D.18.(5分)一个体积为8cm3的正方体的顶点都在球面上,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm29.(5分)2001年至2013年北京市电影放映场次的情况如图所示.下列函数模型中,最不合适近似描述这13年间电影放映场次逐年变化规律的是()A.y=ax2+bx+c B.y=ae x+b C.y=a ax+b D.y=alnx+b10.(5分)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4 B.2 C.D.811.(5分)函数f(x)=ln,则f(x)是()A.奇函数,且在(0,+∞)上单调递减B.奇函数,且在(0,+∞)上单凋递增C.偶函数,且在(0,+∞)上单调递减D.偶函数,且在(0,+∞)上单凋递增12.(5分)正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.有无数条B.有2条C.有1条D.不存在二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)在正方体ABCD﹣A1B1C1D1中,若AD的中点为M,DD1的中点为N,则异面直线MN与BD所成角的大小是.14.(5分)已知A(3,2),B(﹣4,1),C(0,﹣1),点Q线段AB上的点,则直线CQ的斜率取值范围是.15.(5分)边长为2的两个等边△ABD,△CBD所在的平面互相垂直,则四面体ABCD的体积是.16.(5分)在函数①y=2x;②y=2﹣2x;③f(x)=x+x﹣1;④f(x)=x﹣x﹣3中,存在零点且为奇函数的序号是.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(10分)已知A(5,﹣1),B(m,m),C(2,3)三点.(1)若AB⊥BC,求m的值;(2)求线段AC的中垂线方程.18.(12分)已知集合A={a|一次函数y=(4a﹣1)x+b在R上是增函数},集合B=.(1)求集合A,B;(2)设集合,求函数f(x)=x﹣在A∩C上的值域.19.(12分)已知四棱锥P﹣ABCD的正视图1是一个底边长为4、腰长为3的等腰三角形,图2、图53分别是四棱锥P﹣ABCD的侧视图和俯视图.(1)求证:AD⊥PC;(2)求四棱锥P﹣ABCD的侧面积.20.(12分)如图,已知四棱锥P﹣ABCD,侧面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,设平面PAD∩平面PBC=l.(Ⅰ)求证:l∥平面ABCD;(Ⅱ)求证:PB⊥BC.21.(12分)如图,AB是圆O的直径,PA垂直圆所在的平面,C是圆上的点.(I)求证:平面PAC⊥平面PBC;(II)若AC=1,PA=1,求圆心O到平面PBC的距离.22.(12分)已知函数f(x)=lg(a>0)为奇函数,函数g(x)=+b(b∈R).(Ⅰ)求a;(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;(Ⅲ)当x∈[,]时,关于x的不等式f(1﹣x)≤lgg(x)有解,求b的取值范围.2016-2017学年广东省深圳市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分).1.(5分)函数的零点为1,则实数a的值为()A.﹣2 B.C.D.2【解答】解:∵函数的零点为1,即解得a=﹣,故选B.2.(5分)下列方程表示的直线倾斜角为135°的是()A.y=x﹣1 B.y﹣1=(x+2)C.+=1 D.x+2y=0【解答】解:根据题意,若直线倾斜角为135°,则其斜率k=tan135°=﹣1,依次分析选项:对于A、其斜率k=1,不合题意,对于B、其斜率k=,不合题意,对于C、将+=1变形可得y=﹣x+5,其斜率k=﹣1,符合题意,对于D、将x+2y=0变形可得y=﹣x,其斜率k=﹣,不合题意,故选:C.3.(5分)设a、b是两条不同的直线,α、β是两个不同的平面,则下列四个命题①若a⊥b,a⊥α,则b∥α②若a∥α,α⊥β,则a⊥β③a⊥β,α⊥β,则a∥α④若a⊥b,a⊥α,b⊥β,则α⊥β其中正确的命题的个数是()A.0个 B.1个 C.2个 D.3个【解答】解:①可能b∈α,命题错误②若α⊥β,只有a与α,β的交线垂直,才能够推出a⊥β,命题错误③a可能在平面α内,命题错误④命题正确.故选B.4.(5分)以下四个命题中,正确命题是()A.不共面的四点中,其中任意三点不共线B.若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面C.若直线a,b共面,直线a,c共面,则直线b,c共面D.依次首尾相接的四条线段必共面【解答】解:不共面的四点中,其中任意三点不共线,故A为真命题;若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E可能不共面,故B为假命题;若直线a,b共面,直线a,c共面,则直线b,c可能不共面,故C为假命题;依次首尾相接的四条线段可能不共面,故D为假命题;故选:A5.(5分)如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()A.B.1 C.D.【解答】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D.6.(5分)下列函数f(x)中,满足“对任意x1,x2∈(﹣∞,0),当x1<x2时,都有f(x1)<f(x2)”的函数是()A.f(x)=﹣x+1 B.f(x)=x2﹣1 C.f(x)=2x D.f(x)=ln(﹣x)【解答】解:根据已知条件知f(x)需在(﹣∞,0)上为增函数;一次函数f(x)=﹣x+1在(﹣∞,0)上为减函数;二次函数f(x)=x2﹣1在(﹣∞,0)上为减函数;指数函数f(x)=2x在(﹣∞,0)上为增函数;根据减函数的定义及对数函数的单调性,f(x)=ln(﹣x)在(﹣∞,0)上为减函数;∴C正确.故选C.7.(5分)已知三棱锥的四个面中,最多共有()个直角三角形?A.4 B.3 C.2 D.1【解答】解:如果一个三棱锥V﹣ABC中,侧棱VA⊥底面ABC,并且△ABC中∠B是直角.因为BC垂直于VA的射影AB,所以VA垂直于平面ABC的斜线VB,所以∠VBC是直角.由VA⊥底面ABC,所以∠VAB,∠VAC都是直角.因此三棱锥的四个面中∠ABC;∠VAB;∠VAC;∠VBC都是直角.所以三棱锥最多四个面都是直角三角形.故选:A8.(5分)一个体积为8cm3的正方体的顶点都在球面上,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm2【解答】解:正方体体积为8,可知其边长为2,体对角线为=2,即为球的直径,所以半径为,表面积为4π2=12π.故选B.9.(5分)2001年至2013年北京市电影放映场次的情况如图所示.下列函数模型中,最不合适近似描述这13年间电影放映场次逐年变化规律的是()A.y=ax2+bx+c B.y=ae x+b C.y=a ax+b D.y=alnx+b【解答】解:根据图象得出单调性的规律,单调递增,速度越来越快,y=ax2+bx+c,单调递增,速度越来越快,y=ae x+b,指数型函数增大很快,y=e ax+b,指数型函数增大很快,y=alnx+b,对数型函数增大速度越来越慢,所以A,B,C都有可能,D不可能.故选:D.10.(5分)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4 B.2 C.D.8【解答】解:三视图复原的几何体是长方体,长方体长、宽、高分别是:2,2,3,所以这个几何体的体积是2×2×3=12,长方体被一个平面所截,得到的几何体的是长方体的,如图所示,则这个几何体的体积为12×=8.故选D.11.(5分)函数f(x)=ln,则f(x)是()A.奇函数,且在(0,+∞)上单调递减B.奇函数,且在(0,+∞)上单凋递增C.偶函数,且在(0,+∞)上单调递减D.偶函数,且在(0,+∞)上单凋递增【解答】解:由x(e x﹣e﹣x)>0,得f(x)的定义域是(﹣∞,0)∪(0,+∞),而f(﹣x)=ln=ln=f(x),∴f(x)是偶函数,x>0时,y=x(e x﹣e﹣x)递增,故f(x)在(0,+∞)递增,故选:D.12.(5分)正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.有无数条B.有2条C.有1条D.不存在【解答】解:由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共线l,在平面ADD1A1内与l平行的线有无数条,且它们都不在平面D1EF内,由线面平行的判定定理知它们都与面D1EF平行;故选A二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)在正方体ABCD﹣A1B1C1D1中,若AD的中点为M,DD1的中点为N,则异面直线MN与BD所成角的大小是60°.【解答】解:如图,连接BC1,DC1,则:MN∥BC1,且△BDC1为等边三角形;∴MN与BD所成角等于BC1与BD所成角的大小;又∠DBC1=60°;∴异面直线MN与BD所成角的大小是60°.故答案为:60°.14.(5分)已知A(3,2),B(﹣4,1),C(0,﹣1),点Q线段AB上的点,则直线CQ的斜率取值范围是.【解答】解:k CA==1,k CB==.∵点Q线段AB上的点,则直线CQ的斜率取值范围是:.故答案为:.15.(5分)边长为2的两个等边△ABD,△CBD所在的平面互相垂直,则四面体ABCD的体积是1.【解答】解:如图,取DB中点O,连结AO,CO,∵△ABD,△CBD边长为2的两个等边△‘∴AO⊥BD,CO⊥BD,又∵面ABD⊥面BDC;∴AO⊥面BCD,AO=,四面体ABCD的体积v=,故答案为:1.16.(5分)在函数①y=2x;②y=2﹣2x;③f(x)=x+x﹣1;④f(x)=x﹣x﹣3中,存在零点且为奇函数的序号是④.【解答】解:函数①y=2x不存在零点且为非奇非偶函数,故不满足条件;函数②y=2﹣2x存在零点1,但为非奇非偶函数,故不满足条件;函数③f(x)=x+x﹣1不存在零点,为奇函数,故不满足条件;函数④f(x)=x﹣x﹣3存在零点1且为奇函数,故满足条件;故答案为:④.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(10分)已知A(5,﹣1),B(m,m),C(2,3)三点.(1)若AB⊥BC,求m的值;(2)求线段AC的中垂线方程.【解答】解:(1),…(2分)…(5分)(2)…(6分)中垂线的斜率…(7分)AC的中点是()…(8分)中垂线的方徎是化为6x﹣8y﹣13=0…(10分)18.(12分)已知集合A={a|一次函数y=(4a﹣1)x+b在R上是增函数},集合B=.(1)求集合A,B;(2)设集合,求函数f(x)=x﹣在A∩C上的值域.【解答】解:(1)∵集合A={a|一次函数y=(4a﹣1)x+b在R上是增函数},∴4a﹣1>0,解得:a>,故…(1分),由得:当0<a<1时,log a<1=log a a,解得:0<a<,当a>1时,log a<1=log a a,解得:a>,而a>1,故a>1,∴…(6分)(2)…(7分)∵函数y=x在(0,+∞)是增函数,在(0,+∞)上是减函数,∴在(0,+∞)是增函数…(9分)所以当时…(12分)有…(11分)即函数的值域是…(12分)19.(12分)已知四棱锥P﹣ABCD的正视图1是一个底边长为4、腰长为3的等腰三角形,图2、图53分别是四棱锥P﹣ABCD的侧视图和俯视图.(1)求证:AD⊥PC;(2)求四棱锥P﹣ABCD的侧面积.【解答】(1)证明:依题意,可知点P在平面ABCD上的正射影是线段CD的中点E,连接PE,则PE⊥平面ABCD.…(1分)∵AD⊂平面ABCD,∴AD⊥PE.…(2分)∵AD⊥CD,CD∩PE=E,CD⊂平面PCD,PE⊂平面PCD,∴AD⊥平面PCD.…(4分)∵PC⊂平面PCD,∴AD⊥PC.…(5分)(2)解:依题意,在等腰三角形PCD中,PC=PD=3,DE=EC=2,在Rt△PED中,,…(6分)过E作EF⊥AB,垂足为F,连接PF,∵PE⊥平面ABCD,AB⊂平面ABCD,∴AB⊥PE.∵EF⊂平面PEF,PE⊂平面PEF,EF∩PE=E,∴AB⊥平面PEF.∵PF⊂平面PEF,∴AB⊥PF.依题意得EF=AD=2.在Rt△PEF中,,…(9分)∴四棱锥P﹣ABCD的侧面积.…(12分)20.(12分)如图,已知四棱锥P﹣ABCD,侧面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,设平面PAD∩平面PBC=l.(Ⅰ)求证:l∥平面ABCD;(Ⅱ)求证:PB⊥BC.【解答】(本题满分为12分)证明:(Ⅰ)∵BC⊄平面PAD,AD⊂平面PAD,AD∥BC,∴BC∥平面PAD…(2分)又BC⊂平面PBC,平面PAD∩平面PBC=l,∴BC∥l.…(4分)又∵l⊄平面ABCD,BC⊂平面ABCD,∴l∥平面ABCD.…(6分)(Ⅱ)取AD中点O,连OP、OB,由已知得:OP⊥AD,OB⊥AD,又∵OP∩OB=O,∴AD⊥平面POB,…(10分)∵BC∥AD,∴BC⊥平面POB,∵PB⊂平面POB,∴BC⊥PB.…(12分)21.(12分)如图,AB是圆O的直径,PA垂直圆所在的平面,C是圆上的点.(I)求证:平面PAC⊥平面PBC;(II)若AC=1,PA=1,求圆心O到平面PBC的距离.【解答】解:(1)证明:由AB是圆的直径得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC∴BC⊥平面PAC,…(4分)又∴BC⊂平面PBC,所以平面PAC⊥平面PBC…(6分)(2)过A点作AD⊥PC于点D,则由(1)知AD⊥平面PBC,…(8分)连BD,取BD的中点E,连OE,则OE∥AD,又AD⊥平面PBCOE⊥平面PBC,所以OE长就是O到平面PBC的距离.…(10分)由中位线定理得…(12分)22.(12分)已知函数f(x)=lg(a>0)为奇函数,函数g(x)=+b(b∈R).(Ⅰ)求a;(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;(Ⅲ)当x∈[,]时,关于x的不等式f(1﹣x)≤lgg(x)有解,求b的取值范围.【解答】解:(Ⅰ)由为奇函数得:f(﹣x)+f(x)=0,即,(2分)所以,解得a=1,(4分)(Ⅱ)当b>1时,设,则h(x)是偶函数且在(0,+∞)上递减又所以h(x)在(0,+∞)上有惟一的零点,方徎g(x)=ln|x|有2个实数根.…(8分)(Ⅲ)不等式f(1﹣x)≤lgg(x)等价于,即在有解,故只需,(10分)因为,所以,函数,所以,所以b≥﹣13,所以b的取值范围是[﹣13,+∞).(12分)。
深圳中学2016-2017学年第一学期期末考试高一数学试题+答案数学试题答案第 1 页共 6 页深圳中学 2016-2017学年第一学期期末考试试题科目:数学模块:必修2(标准、实验、国际)命题人:柯友生审核: 刘斌直注意事项:用蓝色或黑色钢笔或圆珠笔将答案答在答题..卷.上,答在试题卷上无效下列公式供选用:1(')3V h S S =台体, ''1()2S c c h =+正棱台侧,34π3V r =?球. 一、选择题:(8小题,每题4分,共32分)1.斜率为3,在y 轴上的截距为4的直线方程是( A )A. 340x y -+=B.3120x y --=C. 340x y --=D. 3120x y --=2.在空间,下列命题中正确的是 ( C )A .没有公共点的两条直线平行B .与同一直线垂直的两条直线平行C .平行于同一直线的两条直线平行D .已知直线a 不在平面α内,则直线//a 平面α3.若两个平面互相平行,则分别在这两个平面内的直线( D )A .平行B .异面C .相交D .平行或异面4.直线b ax y +=(b a +=0)的图象可能是( D )5. 过点(1,3)-,且垂直于直线230x y -+=的直线方程为( A )(A)210x y +-= (B) 250x y +-=(C) 250x y +-= (D)270x y -+=6.右图是一个几何体的三视图,那么这个几何体是( B ) A .三棱锥B .四棱锥C .四棱台侧视图俯视图正视图C D 1o o x y x y。
广东省深圳市2016-2017学年高一上学期期末考试数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}|13,|21,A x x B x x x z =-<<=-<<∈,则A B =A. {}0B.[]1,1-C. {}1,0,1,2-D.[]2,3D =-2.函数log 1x y -=的定义域为A. (]1,2B. ()1,2C. ()2,+∞D.(),2-∞3.已知512ln ,log 2,log x y z e π===,则A. x y z <<B. z x y <<C. z y x <<D. y z x <<4.函数()3xf x x =+的零点所在的区间为 A. ()2,1-- B.()1,0- C.()0,1 D.()1,25.直线()12:310,:2110l ax y l x a y ++=+++=,若12//l l ,则a 的值为A. 3-B. 2C. 3-或2D. 3或2-6.已知直线l α⊥,直线m ⊂平面β,有下面四个命题:(1)//,l m αβ⇒⊥(2)//,l m αβ⊥⇒(3)//l m αβ⇒⊥(4)//l m αβ⊥⇒其中正确的命题是A. (1)(2)B. (1)(3)C.(2)(4)D.(3)(4)7.如图,直三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,若11,AB AC AA BC ===,则异面直线1AC 与11B C 所成的角为A. 30B. 45C. 60D. 908.某几何体的三视图如下图,其正视图中的曲线部分为班歌圆弧,则该几何体的表面积为A. 219cm π+B. 2224cm π+C. 2104cm π+D. 2134cm π+9.直线3y kx =+被圆()()22234x y -+-=截得的弦长为则直线的倾斜角为 A. 6π或56π B. 3π或3π- C. 6π或6π- D. 6π 10.已知指数函数()167x f x a -=+(0a >且1a ≠)的图象恒过定点P ,若定点P 在幂函数()g x 的图象上,则幂函数()g x 的图象是11.已知()()()2log 44,1,3,1,a ax x x f x a xb x ⎧-+≥⎪=⎨-+≤⎪⎩在(),-∞+∞上满足()()21210f x f x x x ->-,则b 的取值范围是 A. (),0-∞ B. [)1,+∞ C. ()1,1- D.[)0,112.在平面直角坐标系中,已知()3,3A 是C 上一点,折叠该圆两次使点A 分别圆上不相同的两点(异于点A )重合,两次的折痕方程分别为10x y -+=和70x y +-=,若C 上存在点P ,使90MPN ∠=,其中,M N 的坐标分别为()(),0,0m m -,则m 的最大值为A. 4B.5C. 6D. 7 第Ⅰ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.两条直线20ax y a -+=和()210a x ay a -++=相互垂直,则a = .14.在三棱锥A BCD -中,侧棱AB,AC,AD 两两垂直,,,ABC ACD ADB ∆∆∆的面积分别为,222,则该三棱锥的外接球的表面积为 . 15.已知点P 为线段[]2,2,4y x x =∈上任意一点,点Q 为圆()()22:321C x y -++=上一动点,则线段PQ 的最小值为 .16. 已知函数()21,2,3,2,1x x f x x x ⎧-<⎪=⎨≥⎪-⎩,若方程()0f x a -=有三个不同的实数根,则实数a 的取值范围为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)设集合{}(){}222|40,|2110,A x x x B x x a x a =+==+++-= 若A B B = ,求a 的值.18.(本题满分12分)某企业生产一种机器的固定成本为0.5万元,但每生产1败台时,又需要可变成本(即另外增加的投入)0.25万元,市场对此商品的年需求量为5百台,销售收入(单位:万元)函数为:()()215052R x x x x =-≤≤,其中x 是生产的数量(单位:百台). (1)将利润表示为产量的函数;(2)年产量是多少时,企业所得利润最大?19.(本题满分12分)分别求出满足下列条件的直线方程:(1)经过点()3,2P -且在x 轴上的截距等于在y 轴上的截距的2倍;(2)经过直线2740x y +-=与72110x y --=的交点,且和()()3,1,5,7A B -等距离.20.(本题满分12分)在直三棱柱111ABC A B C -中,190,2,,ACB AC BC AA D E ∠==== 分别是棱,AB BC 的中点,点F 在棱1AA 上.(1)求证:直线11//AC 平面DEF ; (2)若F 为棱1AA 的中点,求三棱锥1A DEF -的体积.21.(本题满分12分)已知圆M 过两点()()1,1,1,1A B --,且圆心M 在直线20x y +-=上.(1)求圆M 的方程;(2)设P 是直线3480x y ++=上的动点,PC,PD 是圆M 的两条切线,C,D 为切点,求四边形PCMD 的面积的最小值.22.(本题满分12分)已知函数()42x x a g x -=是奇函数,()()lg 101.x f x bx =++是偶函数. (1)求a b +的值;(2)若对任意的[)0,t ∈+∞,不等式()()22220g t t g t k -+->恒成立,求实数k 的取值范围; (3)设()()12h x f x x =+,若存在(],1x ∈-∞,使不等式()()lg 109g x h a >+⎡⎤⎣⎦成立,求实数a 的取值范围.广东省深圳市2016-2017学年上学期期末考试。
2016-2017学年第一学期期末考试高一数学试卷第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|(1)0}M x x x =-=,那么A.0M ∈B.1M ∉C.1M -∈D. 0M ∉ 2.角90o化为弧度等于 A.3π B. 2π C. 4π D. 6π3.函数y =A.(0,)+∞B. ),1(+∞C. [0,)+∞D. ),1[+∞4.下列函数中,在区间(,)2ππ上为增函数的是A. sin y x =B. cos y x =C. tan y x =D. tan y x =-5.已知函数0x f (x )cos x,x ≥=<⎪⎩,则[()]=3f f π-A.12cos B. 12cos -C. 2D. 2±6.为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点A. 向左平行移动1个单位长度B. 向右平行移动1个单位长度C. 向左平行移动π个单位长度D. 向右平行移动π个单位长度7.设12log 3a =,0.21()3b =,132c =,则A.c b a << .B.a b c << .C.c a b <<D.b a c <<8.动点(),A x y 在圆221x y +=上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间0t =时,点A 的坐标是1(,)22,则当012t ≤≤时,动点A 的纵坐标y 关于(单位:秒)的函数的单调递增区间是 A. []0,1B. []1,7C. []7,12D. []0,1和[]7,12第Ⅱ卷(非选择题 共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在答题纸上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.若00<>ααcos ,sin ,则角α在第____________象限. 10.函数2()2f x x x =--的零点是____________. 11.sin11cos19cos11sin19+oooo的值是____________. 12.函数()21f x x =-在[0,2]x ∈上的值域为____________.13.已知函数)0,0)(sin()(πϕϕ<<>+=A x A x f 的最大值是1,其图象经过点1(,)32M π,则3()4f π= ____________.14.已知函数()f x 是定义在[3,0)(0,3]-U 上的奇函数, 当(0,3]x ∈时,()f x 的图象如图所示, 那么满足不等式()21x f x ≥- 的x 的取值范 围是____________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知集合{1,2,3,4,5,6}U =,{1,2,3,5}A =,{3,5,6}B =. (Ⅰ)求A B I ; (Ⅱ)求()U C A B U .16.(本小题满分13分)求下列各式的值. (Ⅰ)11219()lg1002-+-;(Ⅱ)21113322(2)(6)a b a b -÷)3(6561b a -.17.(本题满分13分)已知2α3ππ<<,4sin 5α=-. (Ⅰ)求cos α的值; (Ⅱ)求sin 23tan αα+的值.已知二次函数2()1()f x ax x R =+∈的图象过点(1,3)A -. (Ⅰ)求函数()f x 的解析式;(Ⅱ)证明()f x 在)0,(-∞上是减函数.19.(本小题满分14分)(Ⅰ)求函数()f x 的最小正周期及单调递增区间; (Ⅱ)求()f x 在区间已知元素为实数的集合S 满足下列条件:①0S ∉,1S ∉;②若a S ∈,则11S a∈-. (Ⅰ)若{2,2}S -⊆,求使元素个数最少的集合S ;(Ⅱ)若非空集合S 为有限集,则你对集合S 的元素个数有何猜测?并请证明你的猜测正确.参考答案及评分标准一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.9. 二; 10. 1,2-; 11. 12; 12. [1,3]-;13. 14. [3,2](0,1]--U . 15.(本小题满分13分)已知集合{1,2,3,4,5,6}U =,{1,2,3,5}A =,{3,5,6}B =. (Ⅰ)求A B I ; (Ⅱ)求()U C A B U .解:(Ⅰ) {3,5}A B =I . ---------------------------------------------------5分 (Ⅱ){4,6}U C A =,(){3,4,5,6}U C A B =U .----------------------------------------------------13分求下列各式的值. (Ⅰ)11219()lg1002-+-;(Ⅱ)21113322(2)(6)a b a b -÷)3(6561b a -.(Ⅰ)解:原式=3+2-2 ------------------------------------------3分(每式1分)=3. ------------------------------------------------5分 (Ⅱ)解:原式=653121612132)]3()6(2[-+-+-÷-⨯ba--------------------11分(每式2分)=4a. -----------------------------------------------------------13分 17.(本题满分13分)已知2α3ππ<<,4sin 5α=-. (Ⅰ)求cos α的值; (Ⅱ)求sin 23tan αα+的值. 解:(Ⅰ)因为2α3ππ<<,4sin 5α=-, 故3cos 5α=-. -------------------------------------------------6分 (Ⅱ)sin sin 23tan 2sin cos 3cos αααααα+=+⨯. 4()4352()()3355()5-=⨯-⨯-+⨯-24425=-------------------------------------13分 18.(本小题满分14分)已知二次函数2()1()f x ax x R =+∈的图象过点(1,3)A -. (Ⅰ)求函数()f x 的解析式;(Ⅱ)证明()f x 在)0,(-∞上是减函数.解:(Ⅰ)Q 二次函数2()1()f x ax x R =+∈的图象过点(1,3)A -.∴31)1(2=+-a 即2=a∴函数的解析式为2()21()f x x x R =+∈-----------------------------------------6分(Ⅱ)证明:设x 1,x 2是)0,(-∞上的任意两个不相等的实数, 且x 1<x 2则210x x x ∆=->222121()()21(21)y f x f x x x ∆=-=+-+=22212()x x -=21212()()x x x x -+Q )0,(,21-∞∈x x0,021<<∴x x 021<+∴x x又210x x x ∆=->0))((22112<+-∴x x x x即0<∆y∴函数f(x)在)0,(-∞上是减函数.--------- -----------14分19.(本小题满分14分)(Ⅰ)求函数()f x 的最小正周期及单调递增区间; (Ⅱ)求()f x 在区间解:(Ⅰ)因为2()cos cos f x x x x=+1cos 2222x x +=+112cos 2222x x =++1sin 262x π⎛⎫=++ ⎪⎝⎭.所以函数的周期为22T π==π. 由()222262k x k k ππππ-≤+≤π+∈Z ,解得33k x k πππ-≤≤π+.所以()f x 的单调递增区间为()[,]33k k k πππ-π+∈Z .------------- 6分 (Ⅱ)由(Ⅰ)知()1sin 262f x x π⎛⎫=++ ⎪⎝⎭. 因为63x ππ-≤≤,所以2666x ππ5π-≤+≤.所以1111sin 2122622x π⎛⎫-+≤++≤+ ⎪⎝⎭.即()302f x ≤≤. 故()f x 在区间[,]63ππ-上的最大值为32,最小值为0.---------------14分 20.(本小题满分13分)已知元素为实数的集合S 满足下列条件:①1,0S ∉;②若a S ∈,则11S a∈-. (Ⅰ)若{}2,2S -⊆,求使元素个数最少的集合S ;(Ⅱ)若非空集合S 为有限集,则你对集合S 的元素个数有何猜测?并请证明你的猜测正确. 解:((Ⅰ)()111121211211212S S S S ∈⇒=-∈⇒=∈⇒=∈----;()11131221312321132S S S S -∈⇒=∈⇒=∈⇒=-∈----,∴使{}2,2S -⊂的元素个数最少的集合S 为1132,1,,2,,232⎧⎫--⎨⎬⎩⎭.-------------5分(Ⅱ)非空有限集S 的元素个数是3的倍数. 证明如下:⑴设,a S ∈则0,1a ≠且1111111111a a S S S a S a a a a a-∈⇒∈⇒=∈⇒=∈----- ()*假设11a a =-,则()2101a a a -+=≠。
2016-2017学年高一上学期期末数学试卷一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax 2﹣2x ﹣1=0}只有一个元素则a 的值是( ) A .0B .0或1C .﹣1D .0或﹣12.sin36°cos6°﹣sin54°cos84°等于( )A .B .C .D .3.若tan α=2,tan β=3,且α,β∈(0,),则α+β的值为( )A .B .C .D .4.已知sin α+cos α=(0<α<π),则tan α=( )A .B .C .D .或5.设a=sin ,b=cos,c=tan,则( )A .b <a <cB .b <c <aC .a <b <cD .a <c <b6.已知x ∈[0,1],则函数的值域是( )A .B .C .D .7.若,则=( )A .B .C .﹣D .8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点(x 0,0)成中心对称,,则x 0=( )A .B .C .D .9.已知函数f (x )=的值域为R ,则实数a 的范围是( )A .[﹣1,1]B .(﹣1,1]C .(﹣1,+∞)D .(﹣∞,﹣1)10.将函数y=3sin (2x+)的图象向右平移个单位长度,所得图象对应的函数( )A .在区间(,)上单调递减 B .在区间(,)上单调递增C.在区间(﹣,)上单调递减D.在区间(﹣,)上单调递增11.函数f(x)=|sinx|+2|cosx|的值域为()A.[1,2] B.[,3] C.[2,] D.[1,]12.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是()A.(2,3)B.C.D.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则= .14. = .15.已知,试求y=[f(x)]2+f(x2)的值域.16.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f()|对一切x∈R 恒成立,则以下结论正确的是(写出所有正确结论的编号).①;②|≥|;③f(x)的单调递增区间是(kπ+,kπ+)(k∈Z);④f(x)既不是奇函数也不是偶函数.二、解答题17.若,,,则= .18.已知函数f(x)=ax﹣(a,b∈N*),f(1)=且f(2)<2.(Ⅰ)求a,b的值;(Ⅱ)判断并证明函数y=f (x )在区间(﹣1,+∞)上的单调性.19.已知函数f (x )=2﹣3(ω>0)(1)若是最小正周期为π的偶函数,求ω和θ的值;(2)若g (x )=f (3x )在上是增函数,求ω的最大值.20.已知函数f (x )=2x 2﹣3x+1,,(A ≠0)(1)当0≤x ≤时,求y=f (sinx )的最大值;(2)若对任意的x 1∈[0,3],总存在x 2∈[0,3],使f (x 1)=g (x 2)成立,求实数A 的取值范围;(3)问a 取何值时,方程f (sinx )=a ﹣sinx 在[0,2π)上有两解?[附加题](共1小题,满分10分)21.已知函数f (x )=(1)求函数f (x )的零点;(2)若实数t 满足f (log 2t )+f (log 2)<2f (2),求f (t )的取值范围.2016-2017学年高一上学期期末数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax2﹣2x﹣1=0}只有一个元素则a的值是()A.0 B.0或1 C.﹣1 D.0或﹣1【考点】元素与集合关系的判断.【分析】根据集合A={x|ax2﹣2x﹣1=0}只有一个元素,可得方程ax2﹣2x﹣1=0只有一个根,然后分a=0和a≠0两种情况讨论,求出a的值即可.【解答】解:根据集合A={x|ax2﹣2x﹣1=0}只有一个元素,可得方程ax2﹣2x﹣1=0只有一个根,①a=0,,满足题意;②a≠0时,则应满足△=0,即22﹣4a×(﹣1)=4a+4=0解得a=﹣1.所以a=0或a=﹣1.故选:D.2.sin36°cos6°﹣sin54°cos84°等于()A.B.C.D.【考点】两角和与差的正弦函数.【分析】利用诱导公式与两角差的正弦即可求得答案.【解答】解:∵36°+54°=90°,6°+84°=90°,∴sin36°cos6°﹣sin54°cos84°=sin36°cos6°﹣cos36°sin6°=sin(36°﹣6°)=sin30°=,故选A.3.若tanα=2,tanβ=3,且α,β∈(0,),则α+β的值为()A.B.C.D.【考点】两角和与差的正切函数.【分析】由条件求得α+β的范围,再结合tan(α+β)=的值,可得α+β的值.【解答】解:∵tanα=2,tanβ=3,且α,β∈(0,),则α+β∈(0,π),再根据tan(α+β)===﹣1,∴α+β=.故选:C.4.已知sinα+cosα=(0<α<π),则tanα=()A.B.C.D.或【考点】同角三角函数间的基本关系.【分析】已知等式两边平方,利用同角三角函数间的基本关系化简,求出2sinαcosα的值小于0,得到sinα>0,cosα<0,再利用完全平方公式及同角三角函数间的基本关系求出sinα与cosα的值,即可求出tanα的值.【解答】解:将已知等式sinα+cosα=①两边平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα=,∴2sinαcosα=﹣<0,∵0<α<π,∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,∴sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则tanα=﹣.故选B5.设a=sin,b=cos,c=tan,则()A.b<a<c B.b<c<a C.a<b<c D.a<c<b【考点】三角函数线.【分析】利用三角函数的诱导公式,结合三角函数的单调性进行比较即可.【解答】解:sin=cos(﹣)=cos(﹣)=cos,而函数y=cosx在(0,π)上为减函数,则1>cos>cos>0,即0<b<a<1,tan>tan=1,即b<a<c,故选:A6.已知x∈[0,1],则函数的值域是()A.B.C.D.【考点】函数单调性的性质;函数的值域.【分析】根据幂函数和复合函数的单调性的判定方法可知该函数是增函数,根据函数的单调性可以求得函数的值域.【解答】解:∵函数y=在[0,1]单调递增(幂函数的单调性),y=﹣在[0,1]单调递增,(复合函数单调性,同增异减)∴函数y=﹣在[0,1]单调递增,∴≤y≤,函数的值域为[,].故选C.7.若,则=()A.B.C.﹣D.【考点】三角函数的化简求值.【分析】利用诱导公式、二倍角的余弦公式,求得要求式子的值.【解答】解:∵=cos(﹣α),则=2﹣1=2×﹣1=﹣,故选:C.8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点(x,0)成中心对称,,则x=()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象的对称性,得出结论.【解答】解:∵函数图象的两条相邻的对称轴之间的距离为==,∴ω=2,∴f(x)=sin(2x+).令2x+=kπ,k∈Z,求得x=kπ﹣,故该函数的图象的对称中心为(kπ﹣,0 ),k∈Z.根据该函数图象关于点(x,0)成中心对称,结合,则x=,故选:B.9.已知函数f(x)=的值域为R,则实数a的范围是()A.[﹣1,1] B.(﹣1,1] C.(﹣1,+∞)D.(﹣∞,﹣1)【考点】分段函数的应用.【分析】利用函数的单调性,函数的值域列出不等式组求解即可.【解答】解:函数f(x)=,当x≥3时,函数是增函数,所以x<3时,函数也是增函数,可得:,解得a>﹣1.故选:C.10.将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间(,)上单调递减B.在区间(,)上单调递增C.在区间(﹣,)上单调递减D.在区间(﹣,)上单调递增【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据左加右减上加下减的原则,即可直接求出将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数的解析式,进而利用正弦函数的单调性即可求解.【解答】解:将函数y=3sin(2x+)的图象向右平移个单位长度,所得函数的解析式:y=3sin[2(x﹣)+]=3sin(2x﹣).令2kπ﹣<2x﹣<2kπ+,k∈Z,可得:kπ+<x<kπ+,k∈Z,可得:当k=0时,对应的函数y=3sin(2x﹣)的单调递增区间为:(,).故选:B.11.函数f(x)=|sinx|+2|cosx|的值域为()A.[1,2] B.[,3] C.[2,] D.[1,]【考点】三角函数值的符号;函数的值域.【分析】先将函数y=|sinx|+2|cosx|的值域⇔当x∈[0,]时,y=sinx+2cosx的值域,利用两角和与差的正弦函数化简,由正弦函数的性质求出函数的值域.【解答】解:∵函数y=|sinx|+2|cosx|的值域⇔当x∈[0,]时,y=sinx+2cosx的值域,∴y=sinx+2cosx=(其中θ是锐角,、),由x∈[0,]得,x+θ∈[θ, +θ],所以cosθ≤sin(x+θ)≤1,即≤sin(x+θ)≤1,所以,则函数y=|sinx|+2|cosx|的值域是[1,],故选:D.12.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0](x+2)=0(a>1)时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga恰有3个不同的实数根,则a的取值范围是()A.(2,3)B.C.D.【考点】函数奇偶性的性质;根的存在性及根的个数判断.【分析】根据题意f(x﹣2)=f(x+2),可得f(x+4)=f(x),周期T=4,且是偶函数,当x(x+2)∈[﹣2,0]时,f(x)=()x﹣1,可以做出在区间(﹣2,6]的图象,方程f(x)﹣loga(x+2)的图象恰有3个不同的=0(a>1)恰有3个不同的实数根,即f(x)的图象与y=loga交点.可得答案.【解答】解:由题意f(x﹣2)=f(x+2),可得f(x+4)=f(x),周期T=4,当x∈[﹣2,0]时,f(x)=()x﹣1,∴可得(﹣2,6]的图象如下:从图可看出,要使f(x)的图象与y=log(x+2)的图象恰有3个不同的交点,a则需满足,解得:.故选C.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则= 0 .【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】因为,所以可以直接求出:,对于,用表达式的定义得,从而得出要求的答案.【解答】解:∵∴而=∴故答案为:014. = ﹣4.【考点】三角函数的化简求值.【分析】切化弦后通分,利用二倍角的正弦与两角差的正弦即可化简求值.【解答】解:原式====﹣4.故答案为:﹣4.15.已知,试求y=[f(x)]2+f(x2)的值域[1,13] .【考点】函数的值域.【分析】根据,求出y=[f(x)]2+f(x2)的定义域,利用换元法求解值域.【解答】解:由题意,,则f(x2)的定义域为[,2],故得函数y=[f(x)]2+f(x2)的定义域为[,2].∴y=(2+log2x)2+2+2log2x.令log2x=t,(﹣1≤t≤1).则y=(2+t)2+2t+2=t2+6t+6.开口向上,对称轴t=﹣3.∴当t=﹣1时,y取得最小值为1.当t=1时,y取得最大值为13,故得函数y的值域为[1,13].故答案为[1,13].16.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f()|对一切x∈R 恒成立,则以下结论正确的是①②④(写出所有正确结论的编号).①;②|≥|;③f(x)的单调递增区间是(kπ+,kπ+)(k∈Z);④f(x)既不是奇函数也不是偶函数.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用辅助角公式化简f(x),根据f(x)≤|f()|可得,a,b的值.然后对个结论依次判断即可.【解答】解:由f(x)=asin 2x+bcos 2x=sin(2x+φ).∵f(x)≤|f()|对一切x∈R恒成立∴当x=时,函数取得最大值,即2×+φ=,解得:φ=.故得f(x)=sin(2x+).则f()=sin(2×+)=0,∴①对.②f()=sin(2×+)=f()=sin(2×+)=,∴|≥|,∴②对.由2x+,(k∈Z)解得: +kπ≤x≤+kπ,(k∈Z)∴f(x)的单调递增区间是(kπ,kπ+)(k∈Z);∴③不对f(x)的对称轴2x+=+kπ,(k∈Z);∴③解得:x=kπ+,不是偶函数,当x=0时,f(0)=,不关于(0,0)对称,∴f(x)既不是奇函数也不是偶函数.故答案为①②④.二、解答题17.若,,,则=.【考点】角的变换、收缩变换;同角三角函数间的基本关系;两角和与差的余弦函数.【分析】根据条件确定角的范围,利用平方关系求出相应角的正弦,根据=,可求的值.【解答】解:∵∴∵,∴,∴===故答案为:18.已知函数f(x)=ax﹣(a,b∈N*),f(1)=且f(2)<2.(Ⅰ)求a,b的值;(Ⅱ)判断并证明函数y=f(x)在区间(﹣1,+∞)上的单调性.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)由,,,从而求出b=1,a=1;(Ⅱ)由(1)得,得函数在(﹣1,+∞)单调递增.从而有f(x1)﹣f(x2)=,进而,故函数在(﹣1,+∞)上单调递增.【解答】解:(Ⅰ)∵,,由,∴,又∵a,b∈N*,∴b=1,a=1;(Ⅱ)由(1)得,函数在(﹣1,+∞)单调递增.证明:任取x1,x2且﹣1<x1<x2,=,∵﹣1<x1<x2,∴,∴,即f(x1)<f(x2),故函数在(﹣1,+∞)上单调递增.19.已知函数f(x)=2﹣3(ω>0)(1)若是最小正周期为π的偶函数,求ω和θ的值;(2)若g(x)=f(3x)在上是增函数,求ω的最大值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,利用周期公式ω,根据偶函数的性质,求θ的值.(2)根据g(x)=f(3x)求出g(x)的解析式,g(x)在上是增函数,可得,即可求解ω的最大值.【解答】解:(1)由=2(ω>0)∵又∵y=f(x+θ)是最小正周期为π的偶函数,∴,即ω=2,且,解得:∵,∴当l=0时,.故得为所求;(2)g(x)=f(3x),即g(x)=2(ω>0)∵g(x)在上是增函数,∴,∵ω>0,∴,故得,于是k=0,∴,即ω的最大值为,此时.故得ω的最大值为.20.已知函数f(x)=2x2﹣3x+1,,(A≠0)(1)当0≤x≤时,求y=f(sinx)的最大值;(2)若对任意的x1∈[0,3],总存在x2∈[0,3],使f(x1)=g(x2)成立,求实数A的取值范围;(3)问a取何值时,方程f(sinx)=a﹣sinx在[0,2π)上有两解?【考点】三角函数的最值;二次函数的性质;正弦函数的图象.【分析】(1)由已知可得,y=f(sinx)=2sin2x﹣3sinx+1设t=sinx,由x可得0≤t≤1,从而可得关于 t的函数,结合二次函数的性质可求(2)依据题意有f(x1)的值域是g(x2)值域的子集,要求 A的取值范围,可先求f(x1)值域,然后分①当A>0时,g(x2)值域②当A<0时,g(x2)值域,建立关于 A的不等式可求A的范围.(3)2sin2x﹣3sinx+1=a﹣sinx化为2sin2x﹣2sinx+1=a在[0,2π]上有两解令t=sinx则2t2﹣2t+1=a在[﹣1,1]上解的情况可结合两函数图象的交点情况讨论.【解答】解:(1)y=f(sinx)=2sin2x﹣3sinx+1设t=sinx,x,则0≤t≤1∴∴当t=0时,y max =1(2)当x 1∈[0,3]∴f (x 1)值域为当x 2∈[0,3]时,则有①当A >0时,g (x 2)值域为②当A <0时,g (x 2)值域为而依据题意有f (x 1)的值域是g (x 2)值域的子集则或∴A ≥10或A ≤﹣20(3)2sin 2x ﹣3sinx+1=a ﹣sinx 化为2sin 2x ﹣2sinx+1=a 在[0,2π]上有两解 换t=sinx 则2t 2﹣2t+1=a 在[﹣1,1]上解的情况如下:①当在(﹣1,1)上只有一个解或相等解,x 有两解(5﹣a )(1﹣a )≤0或△=0∴a ∈[1,5]或②当t=﹣1时,x 有惟一解③当t=1时,x 有惟一解故a ∈(1,5)∪{}.[附加题](共1小题,满分10分)21.已知函数f (x )=(1)求函数f (x )的零点;(2)若实数t 满足f (log 2t )+f (log 2)<2f (2),求f (t )的取值范围.【考点】分段函数的应用;函数零点的判定定理.【分析】(1)分类讨论,函数对应方程根的个数,综合讨论结果,可得答案.(2)分析函数的奇偶性和单调性,进而可将不等式化为|log 2t|<2,解得f (t )的取值范围.【解答】解:(1)当x <0时,解得:x=ln =﹣ln3,当x ≥0时,解得:x=ln3,故函数f (x )的零点为±ln3; (2)当x >0时,﹣x <0,此时f (﹣x )﹣f (x )===0,故函数f (x )为偶函数,又∵x ≥0时,f (x )=为增函数,∴f (log 2t )+f (log 2)<2f (2)时,2f (log 2t )<2f (2), 即|log 2t|<2, ﹣2<log 2t <2,∴t ∈(,4)故f (t )∈(,)。
2016-2017学年度第一学期高一级数学科期末考试试卷本试卷分选择题和非选择题两部分,共8页,满分为150分.考试用时120分钟.注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上.2、选择题每小题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4、考生必须保持答题卡的整洁和平整.第一部分选择题(共 60 分)一、 选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项涂在答题卡相应的位置.) 1.已知集合(){}{}30,ln 1M x Z x x N x x =∈-≤=<,则M N ⋂=( ) A .{1,2}B .{2,3}C .{0,1,2}D .{1,2,3}2.函数xx x f 2ln )(-=的零点所在区间是( ) A .)1,1(eB .)2,1(C . )3,2(D .)3,(e3.若m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是( ) A .若m ⊂β,α⊥β,则m ⊥α B .若m ⊥β,m ∥α,则α⊥β C .若α∩γ=m ,β∩γ=n ,m ∥n ,则α∥β D .若α⊥γ,α⊥β,则β⊥γ 4.已知函数()22x xf x e+=,设0.512111lg log 533a b c ⎛⎫=== ⎪⎝⎭,,,则有( ) A .()()()f a f b f c <<B . ()()()f b f a f c <<C .()()()f b f c f a <<D . ()()()f a f c f b <<5.将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的左视图为()6.一种专门侵占内存的计算机病毒,开机时占据内存2KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,若该病毒占据64MB 内存(1MB=210KB ),则开机后经过( )分钟.A. 45B. 44C. 46D.477.若当x R ∈,函数()x f x a =始终满足0()1f x <≤,则函数1()log a f x x=的图象大致为( )A B C D8. 在平面直角坐标系中,下列四个结论:①每一条直线都有点斜式和斜截式方程; ②倾斜角是钝角的直线,斜率为负数;③方程12y k x +=-与方程()12y k x +=-可表示同一直线; ④直线l 过点()00,P x y ,倾斜角为90,则其方程为x x =;其中正确的个数为:A.1B.2C.3D.49.如右上图所示,圆柱形容器的底面直径等于球的直径2R ,把球放在在圆柱里,注入水,使水面与球正好相切,然后将球取出,此时容器中水的深度是( ) A 2R . B.43R C . 23R D. 3R10.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A.4+B. 4+C. 4+D. 4+11.如图,正方体AC1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为H ,则以下命题中,错误的是( )A.点H 是△A 1BD 的垂心B.AH 垂直于平面CB 1D 1C.AH 的延长线经过点C 1D.直线AH 和BB 1所成角为45°12.已知函数()y f x =是定义域为R 的偶函数.当0x ≥时,25(02)16()11(2)2xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 的方程[]2()()0,,f x af x b a b R ++=∈有且仅有6个不同实数根,则实数a 的取值范围是( ) A .59,24⎛⎫-- ⎪⎝⎭ B. 9,14⎛⎫-- ⎪⎝⎭ C. 59,24⎛⎫--⋃ ⎪⎝⎭9,14⎛⎫-- ⎪⎝⎭ D. 5,12⎛⎫-- ⎪⎝⎭第二部分非选择题(共90分)二、填空题:(本大题共4小题,每小题5分,共20分.答案填在答卷上.)13.计算302log 5213lg2lg 55⎛⎫-+- ⎪⎝⎭的结果是 * .14. 已知42,lg a x a ==,则x = * .15.过点(1,2)且在两坐标轴上的截距相等的直线的方程是 * .16.已知:在三棱锥P ABQ 中,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH ,则多面体BCHF ADGE -的体积与三棱锥P ABQ 体积之比是 * .三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤,并写在答题卷相应位置.) 17. (本小题满分10分)如图,在平行四边形OABC 中,O 为坐标原点, 点C (1,3(1)求OC 所在直线的斜率;(2)过点C 做CD ⊥AB 于点D ,求CD 所在直线的方程. 18.(本小题满分12分) 如图,正方形ABCD 所在平面与三角形CDE 所在平面相交于CD ,AE ⊥平面CDE ,且AE=1,AB=2. (1)求证:AB ⊥平面ADE ; (2)求凸多面体ABCDE 的体积.19.(本小题满分12分) 已知函数2()()31x f x a a R =+∈+为奇函数, (1)求a 的值;(2)当01x ≤≤时,关于x 的方程()1f x t +=有解,求实数t 的取值范围; (3)解关于x 的不等式)22()(2m x f mx x f -≥-20. (本小题满分12分)某家庭进行理财投资,根据长期收益率市场调查和预测,投资债券等稳键型产品A 的收益)(x f 与投资金额x 的关系是x k x f 1)(=,()(x f 的部分图像如图1);投资股票等风险型产品B 的收益)(x g 与投资金额x 的关系是x k x g 2)(=,()(x g 的部分图像如图2);(收益与投资金额单位:万元). (1)根据图1、图2分别求出)(x f 、)(x g 的解析式;(2)该家庭现有10万元资金,并全部投资债券等稳键型产品A 及股票等风险型产品B 两种产品,问:怎样分配这10万元投资,才能使投资获得最大收益,其最大收益为多少万元?21. (本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,AC ⊥BC , AC =BC =CC 1=2,M ,N 分别为AC ,B 1C 1的中点. (1)求线段MN 的长; (2)求证:MN ∥平面ABB 1A 1;(3)线段CC 1上是否存在点Q ,使A 1B ⊥平面MNQ ?说明理由.22.(本小题满分12分)已知函数2()(,,)f x ax bx c a b c R =++∈.(1)若0,0,0a b c <>=,且()f x 在[0,2]上的最大值为98,最小值为2-, 试求,a b 的值; (2)若1c =,01a <<,且()||2f x x≤对任意[1,2]x ∈恒成立, 求b 的取值范围(用a 来表示).2016-2017学年度第一学期图2图11.8 0 y 0.45图1。
4.函数f(x)=sin(-x)是()(A)奇函数,且在区间(0,)上单调递增(B)奇函数,且在区间(0,)上单调递减(C)偶函数,且在区间(0,)上单调递增(D)偶函数,且在区间(0,)上单调递减4(B)关于直线x=-对称2016-2017学年度第一学期期末试卷高一数学试卷满分:150分考试时间:120分钟A卷[必修模块4]本卷满分:100分三题号一二本卷总分171819分数一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.如果θ是第三象限的角,那么()(A)sinθ>0(B)cosθ>0(C)tanθ>0(D)以上都不对2.若向量a=(1,-2),b=(x,4)满足a⊥b,则实数x等于()(A)8(B)-8(C)2(D)-23.若角α的终边经过点(-4,3),则tanα=()(A)43(B)-43(C)34(D)-34π2π2π25.函数f(x)=sin x-cos x的图象()π2π2(A)关于直线x=ππ4对称6. 如图,在△ABC 中,点 D 在线段 BC 上,且 BD=2DC ,若 AD = λ AB + μ AC ,则 =()(C )关于直线 x = π 2对称(D )关于直线 x = - π 2对称λμ(A )12(B )13A(C )2(D )23BD C7. 定义在 R 上,且最小正周期为 π 的函数是 ()(A ) y = sin | x | (B ) y = cos | x | (C ) y =| sin x | (D ) y =| cos 2 x |8. 设向量 a , b 的模分别为 2 和 3,且夹角为 60 ,则 | a + b | 等于 ()(A ) 13(B )13 (C ) 19 (D )199. 函数 y = 2 2 sin(ωx + ϕ) (其中 ω > 0, 0 < ϕ < π )的图象的一部分如图所示,则()π (A ) ω = , 8 π (B ) ω = , 8 π (C ) ω = , 4 π (D ) ω =, 4ϕ =ϕ =ϕ =ϕ =3 π4 π4 π2 3 π4y2 2O 2 6 x-2 2CMP NAO B12. 若θ 为第四象限的角,且 s in θ = -,则 cos θ = ______; sin 2θ = ______. 2) 15. 已知 sin x + sin y = 1ϕ 可能等于10. 如图,半径为 1 的 M 切直线 AB 于 O 点,射线 OC 从 OA 出发,绕着点 O ,顺时针方向旋转到 OB ,在旋转的过程中,OC 交 M 于点 P ,记∠PMO =x ,弓形 PNO (阴影部分)的面积S = f ( x ) ,那么 f ( x )的图象是( )yyy yπ π 2 Oπ 2 π x(A )π π 2 Oππ 2 π x O(B )π 2 π x(C ) πO π 2 π x(D )二、填空题:本大题共 6 小题,每小题 4 分,共 24 分. 把答案填在题中横线上.11. 若向量 a = (-1, 与向量 b = ( x ,4) 平行,则实数 x =______.1313. 将函数 y = cos 2 x 的图象向左平移π4个单位,所得图象对应的函数表达式为______.14. 若 a , b 均为单位向量,且 a 与 b 的夹角为120 ,则 a - b 与 b 的夹角等于______.1,cos x + cos y = ,则 cos( x - y ) = _____.3 5π 5π16. 已知函数 f ( x ) = sin(ωx + ϕ) (ω > 0, ϕ ∈(0, π)) 满足 f ( ) = f ( ) = 0 ,给出以下四个结论:6 6○1 ω = 3 ; ○2 ω ≠ 6 k , k ∈ N *;○3 3 π ;○4 符合条件的 ω 有无数个,且均为整数.4其中所有正确的结论序号是______.三、解答题:本大题共 3 小题,共 36 分. 解答应写出文字说明,证明过程或演算步骤.17.(本小题满分 12 分)π 1已知 ϕ ∈ (0, π) ,且 tan(ϕ + ) = - 4 3(Ⅰ)求 tan 2ϕ 的值;.(Ⅱ)求 sin ϕ + cos ϕ2cos ϕ - sin ϕ的值.18.(本小题满分 12 分)π已知函数 f ( x ) = cos x ⋅ cos( x - ) .3(Ⅰ)求函数 f ( x ) 的单调增区间;(Ⅱ)若直线 y = a 与函数 f ( x ) 的图象无公共点,求实数 a 的取值范围.19.(本小题满分 12 分)如图,在直角梯形 ABCD 中, AB //CD , AB ⊥ BC , AB = 2 , C D = 1 , BC = a (a > 0) ,P 为线段AD (含端点)上一个动点,设 AP = xAD , PB ⋅ PC = y ,则得到函数 y = f ( x ) .(Ⅰ)求 f (1)的值;DC(Ⅱ)对于任意 a ∈ (0, +∞) ,求函数 f ( x ) 的最大值.PABB 卷[学期综合]本卷满分:50 分二题号 一本卷总分678分数一、填空题:本大题共 5 小题,每小题 4 分,共 20 分. 把答案填在题中横线上.1.设全集U = R ,集合 A = {x | x < 0} , B = {x || x |> 1} ,则 A ( U B ) = _____.⎥-⎢2⎥(x∈N)的值域为_____.(其中[x]表示不大于x的最大整数,例如[3.15]=3,4.函数f(x)=⎢⎧x-2,x<0,2.已知函数f(x)=⎨若f(a)=2,则实数a=.⎩ln x,x>0,3.定义在R上的函数f(x)是奇函数,且f(x)在(0,+∞)是增函数,f(3)=0,则不等式f(x)>0的解集为_____.⎡x+1⎤⎡x⎤⎣2⎦⎣⎦[0.7]=0.)5.在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是______.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.6.(本小题满分10分)x30m30m已知函数f(x)=logx-1 4x+1.(Ⅰ)若f(a)=12,求a的值;(Ⅱ)判断函数f(x)的奇偶性,并证明你的结论.7.(本小题满分10分)已知函数f(x)=3x,g(x)=|x+a|-3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.(Ⅱ)判断是否存在常数 a , b , c ,使得 y = x 为函数 f ( x ) 的一个承托函数,且 f ( x ) 为函数 y = 13 , -913. y = cos(2 x + 225 16.○2 ○38.(本小题满分 10 分)设函数 f ( x ) 的定义域为 R ,如果存在函数 g ( x ) ,使得 f ( x )≥ g ( x ) 对于一切实数 x 都成立,那么称 g ( x )为函数 f ( x ) 的一个承托函数.已知函数 f ( x ) = ax 2 + bx + c 的图象经过点 (-1,0) .(Ⅰ)若 a = 1 , b = 2 .写出函数 f ( x ) 的一个承托函数(结论不要求注明);1 x2 +22的一个承托函数?若存在,求出 a , b , c 的值;若不存在,说明理由.2016-2017 学年度第一学期期末试卷高一数学试题参考答案及评分标准A 卷 [必修 模块 4] 满分 100 分一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.1.C2.A3.D4.D5.B6.A7.C8.C9.B 10.A.二、填空题:本大题共 6 小题,每小题 4 分,共 24 分.11. -212. 2 2 4 2π2 ) (或 y = - sin 2 x )14. 15015. - 208注:第 16 题少选得 2 分,多选、错选不得分.三、解答题:本大题共 3 小题,共 36 分.17.(本小题满分 12 分)所以tan2ϕ=2tanϕ2cosϕ-sinϕ的分子分母同时除以cosϕ,得sinϕ+cosϕ4.3)=cos x⋅(cos x cosπ2cos2x+=3sin2x+cos2x+=12sin(2x+)+2≤2x+3≤x≤kπ+所以f(x)的单调递增区间为[kπ-π3,kπ+],(k∈Z).所以函数f(x)=12sin(2x+)+4的值域为[-解:(Ⅰ)由tan(ϕ+π1tanϕ+11)=-,得=-,………………3分431-tanϕ3解得tanϕ=-2.………………5分4=.………………8分1-tan2ϕ3(Ⅱ)由tanϕ=-2,得cosϕ≠0.将分式sinϕ+cosϕtanϕ+12cosϕ-sinϕ=2-tanϕ18.(本小题满分12分)解:(Ⅰ)f(x)=cos x⋅cos(x-π=-1………………12分π3+sin x sin3)………………2分=134sin2x………………3分14414………………4分π614,………………6分由2kπ-ππ6≤2kπ+π2,得kπ-ππ6,π6π(Ⅱ)因为sin(2x+)∈[-1,1],6π113,].644因为直线y=a与函数f(x)的图象无公共点,13所以a∈(-∞,-)(,+∞).44………………8分………………10分………………12分,19.(本小题满分 12 分)解:(Ⅰ)如图,以点 B 为原点,以 AB ,BC 所在的直线分别为 x ,y 轴建立直角坐标系,则 B (0,0), A ( 2,0), C (0,a), D ( 1,a), AD(1,a), AB(2,0), BC (0,a).………………2 分由 AP xAD , 得 AP (x,ax).y所以 PBPA AB (2 x, ax),PC PB BC (2 x,a ax).………4 分所以 yPB PC (2 x)2a 2 x a 2 x 2 ,D CPA B x即 f(x) (a 2 1)x 2 (a 2 4)x 4 . ………………6 分所以 f(1) 1 .………………7 分(注:若根据数量积定义,直接得到 f(1) 1 ,则得 3 分)(Ⅱ)由(Ⅰ),知函数 f(x) (a 21)x 2 (a 2 4)x 4 为二次函数,其图象开口向上,a 2 4且对称轴为 x,………………8 分2(a 2 1)a 2 4 (a 2 1) 3 1 3 1因为对称轴 x , x [0,1] ……10 分2(a 2 1)2(a 2 1) 2 2(a 2 1) 2所以当 x0 时, f(x)取得最大值 f(0) 4 .………………12 分B 卷 [学期综合]满分 50 分一、填空题:本大题共 5 小题,每小题 4 分,共 20 分.1. [ 1,0)2.2 2或 e 23. ( 3,0) (3, )4. {0,1}5. [10,20]注:第 2 题少解不得分.二、解答题:本大题共 3 小题,共 30 分.6.(本小题满分 10 分)a 1 1 a 1解:(Ⅰ)由 f(a) log ,得2 , ………………2 分 4 a 1 2 a 1解得 a3 .………………4 分- x + 1 x + 1(Ⅱ)由函数 f ( x ) = log 4x - 1 x - 1 有意义,得x + 1 x + 1> 0 . ………………5 分所以函数 f ( x ) 的定义域为{x | x > 1 ,或 x < -1} .………………6 分因为 f (- x ) = log 4 - x - 1 x - 1 = log ( )-1 = - log4 x - 1 4 x + 1= - f ( x ) ,所以 f (- x ) = - f ( x ) ,即函数 f ( x ) 为奇函数.………………10 分7.(本小题满分 10 分)解: (Ⅰ)由函数 f ( x ) = 3x , g (x ) =| x + a | -3 ,得函数 h ( x ) = f [ g ( x )] = 3|x + a |-3 .………………1 分因为函数 h ( x ) 的图象关于直线 x = 2 对称,所以 h (0) = h (4) ,即 3|a |-3 = 3|a +4|-3 ,解得 a = -2 .………………3 分(Ⅱ)方法一:由题意,得 g [ f ( x )] =| 3x + a | -3 .由 g [ f ( x )] =| 3x + a | -3 = 0 ,得 | 3x + a |= 3 ,………………5 分当 a ≥3 时,由 3x > 0 ,得 3x + a > 3 ,所以方程 | 3x + a |= 3 无解,即函数 y = g [ f ( x )] 没有零点;………………6 分当 -3≤a < 3 时,因为 y = 3x + a 在 R 上为增函数,值域为 (a , +∞) ,且 -3≤a < 3 ,所以有且仅有一个 x 0 使得 3x 0 + a = 3 ,且对于任意的 x ,都有 3x + a ≠ -3 ,所以函数 y = g [ f ( x )] 有且仅有一个零点;………………8 分当 a < -3 时,因为 y = 3x + a 在 R 上为增函数,值域为 (a , +∞) ,且 a < -3 ,所以有且仅有一个x使得3x0+a=3,有且仅有一个x使得3x1+a=-3,01所以函数y=g[f(x)]有两个零点.综上,当a≥3时,函数y=g[f(x)]没有零点;当-3≤a<3时,函数y=g[f(x)]有且仅有一个零点;当a<-3时,函数y=g[f(x)]有两个零点.………………10分方法二:由题意,得g[f(x)]=|3x+a|-3.由g[f(x)]=|3x+a|-3=0,得|3x+a|=3,………………5分即3x+a=3,或3x+a=-3,整理,得3x=3-a,或3x=-3-a.○1考察方程3x=3-a的解,由函数y=3x在R上为增函数,且值域为(0,+∞),得当3-a>0,即a<3时,方程3x=3-a有且仅有一解;当3-a≤0,即a≥3时,方程3x=3-a有无解;………………7分○2考察方程3x=-3-a的解,由函数y=3x在R上为增函数,且值域为(0,+∞),得当-3-a>0,即a<-3时,方程3x=-3-a有且仅有一解;当-3-a≤0,即a≥-3时,方程3x=-3-a有无解.………………9分综上,当a≥3时,函数y=g[f(x)]没有零点;当-3≤a<3时,函数y=g[f(x)]有且仅有一个零点;当a<-3时,函数y=g[f(x)]有两个零点.………………10分注:若根据函数图象便得出答案,请酌情给分,没有必要的文字说明减2分.8.(本小题满分10分)解:(Ⅰ)答案不唯一,如函数y=0,y=x等.………………3分(Ⅱ)因为函数f(x)=ax2+bx+c的图象经过点(-1,0),所以a-b+c=0.○1○由 ○,得 b = 1 由 f ( x )≥x 对 x ∈ R 恒成立,得 ax 2 - 1 当 a ≠ 0 时,由题意,得 ⎨ 所以 a = 1因为 y = x 为函数 f ( x ) 一个承托函数,且 f ( x ) 为函数 y = 1 1 x 2 + 的一个承托函数, 2 21 所以 x ≤f ( x )≤ x2 + 2 1 2 对 x ∈ R 恒成立.所以1≤f (1)≤1 ,即 f (1) = a + b + c = 1 .○2 ………………5 分1 12 , a + c = . ………………6 分 2 21 1 所以 f ( x ) = ax2 + x + - a . 2 21 x + - a ≥0 对 x ∈ R 恒成立. 221 1 当 a = 0 时,得 - x + ≥0 对 x ∈ R 恒成立,显然不正确; ………………7 分2 2⎧a > 0, ⎪ 1 1 ⎪⎩∆ = 4 - 4a ( 2 - a )≤0,即 (4a -1)2≤0 ,所以 a = 1 4. ………………9 分代入 f ( x )≤ 1 1 1 1 1 x 2 + ,得 x 2 - x + ≥ 0 , 2 2 4 2 4化简,得 ( x - 1)2≥0 对 x ∈ R 恒成立,符合题意.1 1 , b = , c = . ------------------ 10 分 42 4。
龙城高级中学2016-2017学年度第一学期期末考试
高一数学试题
命题人:庄素娟 考试时间:120分钟 满分:150分
第Ⅰ卷 选择题(共60分)
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,
只有一项符合题目要求)
1.已知全集U ={0,1,2}且∁U A ={2},则集合A 的真子集共有 A.3个 B.4个 C.5个 D.6个 2.若0.9
0.48
1.54,8
,0.5a b c -===,则
A.c b a >>
B.a c b >>
C.b a c >>
D.b c a >> 3.函数
()f x =
的定义域为
A .(1,3)
B .(2,3)
C .(2,)+∞
D .(3,)+∞ 4.函数|
||
|ln x x x y =
的图象可能是
A B C D 5.为了大力弘扬中华优秀传统文化,某校购进了《三国演义》、《水浒传》、《红楼梦》和《西游记》若干套,如果每班每学期可以随机领取两套不同的书籍,那么该校高一(1)班本学期领到《三国演义》和《水浒传》的概率为 A.
23 B. 12 C. 14 D. 16
6.若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为
A.8
B.15
C.16
D.32 ······7.某学校数学兴趣班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是
A .10
B .11
C .12
D .13
8.设 ()f x 是定义在[]1,2a -上偶函数,则()2
1f x ax bx =++在[]2,0-上是
A.增函数
B.减函数
C.先增后减函数
D.与,a b 有关,不能确定
9.给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是 A .4 B .3 C .2 D .1
10.函数2
()ln(1)f x x x
=+-
的零点所在的大致区间是 A.(0,1) B.(1,2) C.(2,3) D.(3,4)
11.已知函数()f x =的定义域是R ,则m 的取值范围是 A.04m <≤ B.01m ≤≤ C.4m ≥ D.04m ≤≤
12.定义在D 上的函数()f x 若同时满足:①存在0M >,使得对任意的12,x x D ∈,都有
12|()()|f x f x M -<;②()f x 的图像存在对称中心.则称()f x 为“P -函数”.已知函数
121
()21
x x
f x -=+和2())f x x =,则以下结论一定正确的是 A.1()f x 和 2()f x 都是P -函数 B.1()f x 是P -函数,2()f x 不是P -函数 C.
1()f x 不是P -函数,2()f x 是P -函数 D.1()f x 和 2()f x 都不是P -函数
第Ⅱ卷 非选择题(共90分)
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知幂函数()f x 的图象经过点(8,,那么(4)f =_____________. 14.某产品的广告费用x 与销售额y 的统计数据如下表:
根据上表可得回归方程ˆˆˆy
bx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 万元.
15.如果函数2
2
()23f x ax x a =++-在区间[]2,4上具有单调性,则实数a 取值范围是
16.设有限集合{}12,,,n A a a a =,则12n a a a ++
+叫做集合A 的和,记作A S .若集合
{}*21,,4P x x n n N n ==-∈≤,集合P 的含有3个元素的全体子集分别记为
12,,
,k P P P ,则=+++K P P P S S S 21 .
三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17.(本小题10分)
(1
(2
)计算:2
33log log lg25lg4ln()e ++.
18.(本小题12分)
若函数)1,0(3)3()(≠>-++=a a b a k x f x
且是指数函数. (1)求b k ,的值;
(2)求解不等式()()2743f x f x ->-.
19.(本小题12分)
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机抽取两个球,求取出的球的编号之积不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2<-m n 的概率.
20.(本小题12分)
深圳统计局就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)1500,1000[).
0.0005300035000.00030.0004200015000.00020.0001
4000
25001000月收入(元)
频率/组距
(1)求居民月收入在)3500,3000[的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中分层抽样方法抽出100人作进一步分析,则月收入在)3000,2500[的这段应抽多少人? 21.(本小题12分)
甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为()G x (万元),其中固定成本为2万元,并且每生产1百台的生产成本为1万元
(总成本=固定成本+生产成本),销售收入20.4 4.20.2(05)()11.2(5)x x x R x x ⎧-++≤≤=⎨>⎩
,假
定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题. (1)写出利润函数()y f x =的解析式(利润=销售收入—总成本); (2)甲厂生产多少台新产品时,可使盈利最多?
22.(本小题12分) 已知定义在R 上的函数()2
()1x a f x a R x +=
∈+是奇函数,函数()2mx
g x x
=+的定义域为(2,)-+∞.
(1)求a 的值; (2)若()2mx
g x x
=
+在(2,)-+∞上单调递减,根据单调性的定义求实数m 的取值范围; (3)在(2)的条件下,若函数()()()h x f x g x =+在区间()
-1,1上有且仅有两个不同的零点,求实数m 的取值范围.。