再探实际问题与二元一次方程组(1)
- 格式:doc
- 大小:17.50 KB
- 文档页数:7
实际问题与二元一次方程组第1课时实际问题与二元一次方程组(1)——探究1一、导学1.导入课题:前面我们结合实际问题,讨论了用方程组表示问题中的等量关系以及如何解方程组.本节课我们继续探究如何用二元一次方程组解决实际问题.2.学习目标:(1)会运用二元一次方程组解决一些实际生活中的应用问题,体会数学建模思想.(2)能根据题目中的已知量与未知量的联系正确设出未知数,列出方程组并求解.3.学习重、难点:重点:探究用二元一次方程组解决实际问题的过程.难点:寻找等量关系,并列出方程组,由方程组的解解释实际问题.4.自学指导:(1)自学内容:课本P99探究1.(2)自学时间:8分钟.(3)自学要求:同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.(4)探究提纲:①题目中哪些是已知量,哪些是未知量?有几个等量关系?②要检验饲养员李大叔的估计正确与否,就要求出每头大牛每天所需饲料和每头小牛每天所需饲料.③如果设每头大牛和每头小牛1天各约用饲料xkg和ykg,根据你发现的等量关系,可列方程组3015675 4220940.x yx y+=⎧⎨+=⎩④能列一元一次方程解这个问题吗?⑤请你解③中方程组,并交流一下你是如何解的.⑥饲养员李大叔的估计正确吗? 二、自学同学们可结合探究提纲相互研讨学习. 三、助学 1.师助生:(1)明了学情:教师深入课堂,了解学生的学习进度和自学中存在的问题.①能否找出等量关系,列出方程和方程组.②能否正确解出方程组. (2)差异指导:对少数学有困难和学法不当的学生进行点拨引导. 2.生助生:小组内学生相互提出学习疑点,相互帮助. 四、强化1.列方程组解应用题的基本思路和要注意的问题;列方程组解应用题的一般步骤.2.练习:某校七年级学生在会议室开会,每排坐12人,则有11人无座位;每排坐14人,则最后一排只有1人独坐.这间会议室共有座位多少排?该校七年级有多少学生?解:设这间会议室共有座位x 排,该校七年级有y 名学生,根据题意,得12111413.x y x y +=⎧⎨-=⎩,解得12155.x y =⎧⎨=⎩,答:这间会议室共有座位12排,该校七年级有155名学生. 五、评价1.学生学习的自我评价:各小组代表介绍本组学习收获和存在的问题.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):本节课的重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型.教学难点是利用相等关系将实际问题转化为数学问题.教学中,采取了让学生通过独立思考、自主探索、合作交流等方式,在思考、交流等数学活动中,养成严谨的思维方式和良好的学习习惯.(时间:12分钟 满分:100分)一、基础巩固(60分)1.(20分)现用190张铁皮做盒子,每张铁皮8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A )2.(20分)解下列方程组:解:(1)①+②,得4y=11. (2)整理,得解得114y =.89173 2.x y x y +=⎧⎨-=-⎩,①② 把114y =代入①, ①+②×3,得11x=11. 得11354x -=. 解得x=1.解得3112x =.把x=1代入②,得1-3y=-2. ∴这个方程组的解为解得y=1.311211.4x y ⎧⎪=⎨⎪=⎪⎪⎩, ∴这个方程组的解为11.x y =⎧⎨=⎩,3.(20分)一支部队第一天行军4h ,第二天行军5h ,两天共行军98km ,且第一天比第二天少走2km ,第一天和第二天行军的平均速度各是多少?解:设第一天行军的平均速度为xkm/h,第二天行军的平均速度为ykm/h.由题意,得4598 425x yx y+=⎧⎨+=⎩,,①②①+②,得8x=96,解得x=12,把x=12代入①,得48+5y=98. 解得y=10.∴这个方程组的解为1210. xy=⎧⎨=⎩,答:第一天行军的平均速度为12km/h,第二天行军的平均速度为10km/h.二、综合运用(20分)4.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?解:设大车一次可以运货x吨,小车一次可以运货y吨.由题意,得2315.5 5635.x yx y+=⎧⎨+=⎩,①②②-①×2,得x=4.把x=4代入①,得4×2+3y=15.5.解得y=2.5.∴3x+5y=3×4+5×2.5=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.三、拓展延伸(20分)5.某家商店的帐目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天,以同样的价格卖出同样的52支牙刷和28盒牙膏,收入518元.这个记录是否有误?如果有误,请说明理由.解:有误,理由:设一支牙刷的价格为x元,一盒牙膏的价格为y元.由题意,得39213965228518x yx y+=⎧⎨+=⎩,,即137132137129.5.x yx y+=⎧⎨+=⎩,方程组无解.∴这个记录有误.实际问题与二元一次方程组第2课时实际问题与二元一次方程组(2)——探究2一、导学1.导入课题:上节课我们学习了运用方程组解决一些实际问题,这节课我们继续学习建立二元一次方程组的数学模型解应用题.2.学习目标:(1)在对各类应用题的解答过程中,学会构建二元一次方程组的数学模型.(2)养成自觉反思求解过程和自觉检验方程的解是否正确的良好习惯.3.学习重点、难点:运用二元一次方程组解决有关设计的应用题.4.自学指导:(1)自学内容:课本P99探究2.(2)自学时间:10分钟.(3)自学要求:画出示意图,借助图形直观地分析理解题意.(4)探究提纲:①这里研究的实际上是长方形的面积的分割问题,你能画出示意图来帮助自己理解吗?②把一个长方形分成两个小长方形,有哪些分割方式?若保持宽不变,把长分成两段(即竖向分割,如上图所示),左边种植甲种作物,右边种植乙种作物,设AE=xm,BE=ym.(a)根据原长方形的长为200m,可列出方程:x+y=200.(b)因为长方形宽为100m,所以两小长方形面积分别为100xm2,100ym2,又因为甲、乙两种作物的单位面积产量比为1∶2,所以甲、乙两种作物的总产量比可表示为100x∶200y,于是再由甲、乙两种作物的总产量比为3∶4,列出方程:100x∶200y=3∶4.③你能求出由②中(a)、(b)的方程联立组成的方程组的解吗?④根据求出的结果应如何表述你的种植方案?⑤你还能设计其他种植方案吗(如右图)?二、自学同学们结合探究提纲相互研讨学习.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题.①能否顺利表示出甲、乙两种作物的总产量的比.②能否求出方程组的解并规范作答.(2)差异指导:对少数学有困难和学法不当的学生进行点拨引导.2.生助生:小组内学生之间相互交流、研讨、互帮互学.四、强化1.列二元一次方程组解应用题的一般步骤.2.展示设计出的其他种植方案,并相互交流.五、评价1.学生的自我评价:各小组代表介绍本组的学习得与失.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课用二元一次方程组解决问题的教学过程充分体现了以学生为主体,让学生积极参与的教学模式,充分发挥了学生的主动意识.在解决问题过程中学生的各种解题方法,扩大了学生的思维能力,通过让学生体验解题的技巧,从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(60分)1.(20分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数分别为x°、y°。
关于“再探实际问题与二元一次方程组”一节课的教学设计思考【摘要】本文主要阐述了人民教育出版社七年级下学期数学教材在第八章“二元一次方程组”第三小节“再谈实际问题与二元一次方程组”第一课时教学设计思考,以及在教、学过程中如何实施等问题。
主要内容包括:一、新课引入的设计;二、讲授新知的设计;三、课堂练习的设计;四、课堂小结的设计;五、布置作业、教学评价、板书的设计。
【关键词】二元一次方程组;估算;教学评价;数学思想;教学方法人民教育出版社七年级下学期数学教材在第八章“二元一次方程组”第三小节中,又特别安排了“再探实际问题与二元一次方程组”的内容,选择了三个具有一定综合性的问题:“牛饲料问题”、“种植计划问题”、“成本与产出问题”。
;提供给学生利用方程组为工具进行具有一定深度的思考,增加运用方程组解决实际问题的实践,将全章所强调的以方程组为工具,把实际问题模型化的思想提到了新的高度。
这一小节内容的问题形式包括:估算与精确计算的比较,如探究1;开放地寻求设计方案,如探究2;根据图表所表示的实际问题的数据信息列方程组,如探究3。
安排这节的目的在于:一方面,通过实际生活中的问题,进一步突出方程组这种数学模型应有的广泛性和有效性;另一方面,使学生能在解决实际问题的情境下运用所学知识,进一步提高分析问题和解决问题的综合能力。
下面就这一小节的第一课时,即探究1的教学过程设计谈一点自己粗浅的想法。
1.关于新课引入的设计建议播放反映新疆美丽自然风光和介绍新疆畜牧业发展较好的短片或照片,并配上巴哈尔古丽的演唱的歌曲《新疆好》。
其目的有三:一是激发和增强学生学习数学的兴趣;二是教师借机可对学生进行热爱祖国、热爱家乡的德育教育;三是为本节课的引入、探究活动中问题的展示,做了一个很好的引子。
2.关于讲授新知的设计探究1:养牛场原有30只母牛和15只小牛,1天约需饲料675kg,一周后又购进12只母牛和5只小牛,这时一天需用饲料940kg,饲养员李大叔估计平均每只母牛一天需要饲料18~20kg,每只小牛一天约需用饲料7~8kg,你能否通过计算检验他的估计?2.1先给学生充足的时间(大约5分钟~8分钟)进行独立思考、小组讨论,探索分析解决这个问题的方法。
新人教版七年级数学(下册)第八章导学案及参考答案第八章二元一次方程组课题:8.1二元一次方程组【学习目标】:弄懂二元一次方程、二元一次方程组和它的解的含义,并会检验一对数是不是某个二元一次方程组的解;【学习重点】:二元一次方程、二元一次方程组及其解的意义.【学习难点】:弄懂二元一次方程组解的含义.【导学指导】一、温故知新1.含有()个未知数,且未知数的次数为()的方程叫一元一次方程。
方程中“元”是指()“次”是指()2.使一元一次方程()的未知数的值叫一元一次方程的解。
3.写出一个—元一次方程(),并指出它的解是()。
二、自主学习:阅读课本93-94页回答下列问题1.含有()个未知数,且未知数的次数为()的方程叫二元一次方程。
方程中“元”是指()“次”是指()2.使二元一次方程()的未知数的值叫二元一次方程的解。
3.写出一个二元一次方程(),并指出它的解是()。
4.把两个方程合在一起,写成x+y=222x+y=40像这样,把两个二元一次方程合在一起,就组成了一个()5. ( )叫二一次方程组的解。
【课堂练习】1.课本95页1 ;22、x +y =2的正整数解是__________3.若13x y =-⎧⎨=-⎩是方程3x-ay=3的一个解,那么a 的值是__________。
4.下列各式中是二元一次方程是( )(A) 6x-y=7; (B) x 2 =3x+y ; (C)y=5;(D) x 1y=35. 下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩B .43624x y x y +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩D .35251025x y x y +=⎧⎨+=⎩6.方程组327413x y x y +=⎧⎨-=⎩的解是( ) A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩ C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩【要点归纳】本节课你有哪些收获?【拓展训练】1. 349x y +=中,如果2y = 6,那么x = 。
8.3 再探实际问题与二元一次方程组(一)一、基础过关1.某哨卡运回一箱苹果,若每个战士分6个,则少6个;若每个战士分5个,•则多5个,那么这个哨卡共有________名战士,箱中有_______个苹果.2.如果长方形的周长是20cm,长比宽多2cm.若设长方形的长为xcm,宽为ycm,•则所列方程组为_________.3.一张试卷有25道题,做对一道得4分,做错一道扣1分.•小英做了全部试题得70分,则她做对了________道题.4.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分.•一支青年足球队参加15场比赛,负4场,共得29分,则这支球队胜了()A.2场 B.5场 C.7场 C.9场5.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,•求两种球各有多少个?若设篮球有x个,排球有y个,依题意,得到的方程组是()A.23,32x yx y=-⎧⎨=⎩B.23,32x yx y=+⎧⎨=⎩C.23,23x yx y=-⎧⎨=⎩D.23,23x yx y=+⎧⎨=⎩6.甲、乙二人按2:5的比例投资开办了一家公司,约定除去各项开支外,•所得利润按投资比例分成.若第一年赢得14000元,那么甲、乙二人分别应分得()A.2000元,5000元 B.5000元,2000元C.4000元,10000元 D.10000元,4000元7.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,用多少张铁皮做盒身,多少张铁皮做盒底可以使盒身与盒底正好配套?二、综合创新8.(应用题)(1张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,•请问张强两次各购买香蕉多少千克.(2)宏泰毛纺厂购进由甲、乙两种原料配成的两种材料,已知一种材料按甲:乙=5:4配料,每吨50元;另一种材料按甲:乙=3:2配料,每吨48.6元.求甲、•乙两种原料的价格各是多少?9.(1)(2005年,南通)某校初三(2)班40名同学为“希望工程”捐款,•共捐款100元.捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.27,2366x yx y+=⎧⎨+=⎩B.27,23100x yx y+=⎧⎨+=⎩C.27,3266x yx y+=⎧⎨+=⎩D.27,32100x yx y+=⎧⎨+=⎩(2)(2005年,乌鲁木齐)为满足市民对优质教育的需求,•某中学决定改变办学条件,计划拆除一部分旧校舍、建造新校舍.拆除旧校舍每平方米需80元,•建造新校舍每平方米需700元.计划在年内拆除旧校舍与建造新校舍共7200平方米,•在实施中为扩大绿地面积,新建校舍只完成了计划的80%,•而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.①求原计划拆、建面积各是多少平方米?②若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?三、培优训练10.(探究题)某同学在A、B两家超市发现他看中的随身听的单价相同,•书包单价也相同.随身听和书包单价之和是452元,且随身听的单价比书包单价的4•倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?返购物券30元销售(不足100元不返券,购物券全场通用),•但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,•你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?四、数学世界小圆盖大圆桌子上有一个半径为1的大纸圆,另有许多直径为1的小纸圆.现在要用这些小的圆去盖住大圆,问:至少要用几个小圆?再探实际问题与二元一次方程组(二)一、基础过关1.某个体商店在一次买卖中同时卖出两件上衣,每件都是以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,则这家商店在这次买卖中()A.不赔不赚 B.赚9元 C.赔8元 D.赔18元2.甲、乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,•那么这艘轮船在静水中的航速与水速分别是()A.24千米/时,8千米/时 B.22.5千米/时,2.5千米/时C.18千米/时,24千米/时 D.12.5千米/时,1.5千米/时前哥哥x岁,妹妹y岁,依题意,得到的方程组是()A.23(2),2x yx y+=+⎧⎨=⎩B.23(2),2x yx y-=-⎧⎨=⎩C.22(2),3x yx y+=+⎧⎨=⎩D.23(2),3x yx y-=-⎧⎨=⎩4.某文具店出售单价分别为120元和80•元的两种纪念册,•两种纪念册每册都有30%的利润.某人共有1080元钱,欲买一定数量的某一种纪念册,若买单价为120•元的纪念册则钱不够,但经理知情后如数付给了他这种纪念册,结果文具店获利和卖出同数量的单价为80元的纪念册获利一样多,那么这个人共买纪念册()A.8册 B.9册 C.10册 D.11册5.革命老区百色某芒果种植基地,去年结余500万元,估计今年可结余960万元,•并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元?二、综合创新6.(应用题)(1)甲、乙两人在东西方向的公路上行走,甲在乙的西边300米处.若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟后相遇,问甲、乙两人的速度各是多少?(2)国际红十字红新月联合会2005年10月5日发布世界灾害报告,因2004年年底的印度洋海啸吞噬了22.5万人的生命,2004年全球因自然灾害死亡人数达25万,是2003年的3倍多、2002年的11倍;各种自然灾害中最严重的是洪水,孟加拉国、•印度和中国共有1.1亿人因洪水受灾.从灾害的种类来看,•“地震及海啸”造成的死难者人数最为突出,约为22万5400人.其次为“洪水”和强台风.其他灾害造成的死难人数约为11100人,并且洪水比强台风多造成500人遇难.求在洪水和强台风中遇难的人数各是多少?7.(1)某商场购进甲、乙两种服装后,都加价40%标价出售.•“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两服装共付款182元,两种服装标价之和为210元.•问这两种服装的进价和标价各是多少元?(2)为了解决农民工子女入学难的问题,•我市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”.据统计,•2004•年秋季有5000名农民工子女进入主城区中小学学习.预测2005•年秋季进入主城区中小学学习的农民工子女将此2004年有所增加.其中小学增加20%,中学增加30%,这样,2005年秋季将农民工子女在主城区中小学学习.①如果按小学每生每年收“借读费”500元,•中学每生每年收“借读费”1000元计算,求2005年新增1160名中小学生共免收多少“借读费”?②如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2005年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?三、培优训练8.(探究题)某球迷协会组织36名球迷拟租乘汽车赴比赛场地,•为参加亚洲杯决赛的中国队加油助威,可租用的汽车有两种:一种是每辆可乘8人,另一种是每辆可乘4人,要求租用的车子不留空位,也不超载.(1)请你给出不同的租车方案(至少三种);(2)若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,•请你设计出费用最少的租车方案,并说明理由.四、数学世界农民与魔鬼很久很久以前,有一位穷苦的农民,在路上遇见了一个魔鬼.魔鬼拉住农民的衣服说:“嗨,你的钱多得很啊!”农民答道:“不瞒你说,我穷得叮当响,全部家当,就是这口袋里的几个铜板.”魔鬼说:“我有一个主意,可以让你轻轻松松发大财.只要你从我身后这座桥上走过去,你的钱就会增加一倍.你从桥上再走回来,钱数又会增加一倍,每走过一次桥,你的钱都能增加一倍,但你必须保证,每次在你的钱数加倍以后,你都要给我24个铜板.否则,就要你的命!”农民挥挥手说:“好吧!”农民过了一次桥,钱数确实增加了一倍,就给了魔鬼24个铜板;第二次过桥,口袋的钱数又增加了一倍,他又给了魔鬼24个铜板;第三次过桥,口袋里的钱仍是又照例增加了一倍,不过增加以后总共只有24个铜板,统统被魔鬼抢去,分文不剩.那么这个农民在遇见魔鬼以前有多少钱呢?一、耐心填一填,一锤定音!1.在方程29x ay -=中,如果31x y =⎧⎨=⎩,是它的一个解,那么a 的值为______.2.大数和小数的差为12,这两个数的和为60,则大数是______,小数是______.3.买14支铅笔和6本练习本,共用5.4元.若铅笔每支x 元,练习本每本y 元,写出以x 和y 为未知数的方程为______.4.甲、乙两人速度之比是2:3,则他们在相同时间内走过的路程之比是______,他们在走相同路程所需时间之比是______.5.羊圈里白羊的只数比黑羊的脚数少2,黑羊的只数比白羊的脚数少187,则白羊有______只,黑羊有______只.二、精心选一选,慧眼识金!1.既是方程23x y -=的解,又是方程3410x y +=的解是( )A.12x y =⎧⎨=⎩ B.21x y =⎧⎨=⎩ C.43x y =⎧⎨=⎩ D.45x y =-⎧⎨=-⎩2.甲、乙两数这和为16,甲数的3倍等于乙数的5倍,若设甲数为x ,乙数为y ,则方程组(1)1635x y x y +=⎧⎨=⎩,;(2)1653x y x y +=⎧⎨=⎩,;(3)16530x y y x -=⎧⎨-=⎩,;(4)1653y x x y-=⎧⎪⎨=⎪⎩,中,正确的有( )A.1组B.2组C.3组D.4组3.某校150名学生参加竞赛,平均分为55分,其中及格学生平均分为77分,不及格学生平均分为47分,则不及格学生的人数为()A.49B.101C.40D.110三、用心做一做,马到成功!1.根据下图提供的信息,求每件T恤衫和每瓶矿泉水的价格.2.小明到商店买东西,下面是他和售货员阿姨的对话:“我买这种牙膏3支,这种牙刷5把”.“一共15元6角”.付款后,小明说:“阿姨,这支牙膏我不要了,换一把牙刷吧!”“还需找你2元”.从他们的对话中你能知道牙刷、牙膏的单价吗?四、综合运用,再接再厉!1.如图,周长为68cm的长方形ABCD被分成7个相同的长方形,求长方形ABCD的长和宽.2.长沙市某公园的门票价格如下表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?3.实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和。
《二元一次方程组》教学反思《二元一次方程组》教学反思 1本节课是第八章第一节的内容,主要学习二元一次方程(组)及其解的基本概念。
因为学生上学期已经学习了一元一次方程的知识,对方程已经有一定的了解,所以本节课学习起来相对来说难度不大。
同时,本节课在设计时力求由浅入深,同时对比一元一次方程组来学习,学生学习起来更容易接受和消化。
在教学环节设计时,我本着以学生为主体,老师是主导的原则,尽可能给学生提供充分的探索交流空间,使大多数同学融入到教学的每个环节中去,使学生在经历探究、思考、交流、归纳总结,及时练等活动中自然的获取知识。
首先,我通过引用学生感兴趣的篮球赛,赛后需要分析积分这样的事例自然的引出问题,同学们可以结合已有知识进行解决。
通过分析问题,引导学生通过交流寻找新的解决方法,这样更好的激发了学生的学习兴趣,激活了学生的思维,而这一问题的解决更是成为了本节课的主线,为解决这一问题,引出二元一次方程、二元一次方程组、及它们的解等相关概念。
同时引导学生类比一元一次方程的研究思路进行探究。
而这些探究过程也是非常有效的,在探究过程中,老师积极组织课堂提问,更加充分的调动学生的学习积极性、主动性,进而提高课堂学习效率。
对于本节课重难点的处理,我注重将其分解,逐个突破。
通过设置一系列有针对性的问题,引导学生关注重点,而四个跟踪练习环节则更好的帮助学生分解了难点。
整个教学过程学生表现积极,各个环节都能有序进行,比较成功的完成了预设的教学目标。
但也有不足,个别学生因计算能力不足,理解能力不够,并不能准确及时的完成相关练习,在今后的教学过程中,还应加强学生基础知识,尤其是计算能力和理解能力的提升。
《二元一次方程组》教学反思 21、这节课的主要内容是用代入法解二元一次方程组。
这种代入消元法的关键是如何选择一个方程,如何用含一个未知数的式子去表示另一个未知数。
所以在教学上要抓住这个关键来讲解。
2、在教学过程中,学生虽然学会了用代入法解二元一次方程组,但是在结构不同的方程组中,学生就有点不知所措,不懂选择哪个方程代入另一个方程,以至使运算简便。
再探实际问题与二元一次方程组(第1课时)山阳县城区一中贾礼勇一、教学内容:人教版七年级数学下册8.3再探实际问题与二元一次方程组P105-108二、设计思路教学设计思想:本节知识是探究如何用元二元一次方程解决实际问题。
在前面我们结合实际问题,讨论了如何分析数量关系、利用相等关系列方程组以及如何解方程组,在此基础上我们才可以进一步探究用二元一次方程组解决实际问题。
在课堂中教师出示例题,启发学生思考,师生共同探讨,学生找等量关系,列出方程,教师出示巩固性练习,学生解答,达到巩固所学知识的目的。
学情与教材分析由于七年级学生以形象思维为主,更加上争强好动的特点,采用动手操作这一手脑并用的方式,既可以解决数学知识抽象性与初中生思维形象性之间的矛盾,又可以使他们在丰富的情感体验中由“要我学”的被动性转变为“我要学”的主动性。
三、教学目标1、知识与技能(1)能正确分析实际问题中的数量关系,建立二元一次方程组模型并能解决实际问题。
(2)学会比较估算与精确计算,以及检验方程组的解是否符合题意,并正确回答。
(3)能将实际问题转化为数学问题,掌握列方程组解决实际问题的方法,进一步提高学生逻辑思维能力和分析问题、解决问题的能力。
2、过程与方法经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型,体会代数方法的优越性。
3、情感态度与价值观通过实际问题的建模,师生之间合作交流,使学生养成合作互助意识,提高数学交流和数学表达能力,体会探索带来的成功的喜悦,提高学习数学的兴趣。
四、教学重点让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。
五、教学难点在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题即二元一次方程组。
六、教学准备PPT多媒体课件,《南非世界杯足球赛》视频七、教学方法分析讨论,讲练结合,归纳点拨八、教学过程九、课后反思本节课是在学生学会用方程组表示问题中的条件以及能运用代入法、加减法解二元一次方程组的基础上,探究如何用二元一次方程组解决实际问题。
再探实际问题与二元一次方程组(1)教学目标
①经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;
②能够找出实际问题中的数和未知数,分析它们之间的数量关系,列出方程组;
③学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答;
④培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。
教学重点与难点
重点:以方程组为工具分析、解决含有多个未知数的实际问题。
难点:确定解题策略,比较估算与精确计算。
教学准备
教师:多媒体课件
教学设计
教学过程
设计意图说明
创设情境,提出问题
前面我们结合实际问题,讨论了用方程组表示问题中的条件以及如何解方程组。
本节我们继续探究
如何用方程组解决实际问题。
〔出示问题〕养牛场原有30只母牛和15只小牛,一天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg。
饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg。
你能否通过计算检验他的估计?
开门见山,直接提出本节学习目标,强化本章的中心问题。
以学生身边的实际问题展开讨论,突出数学与现实的联系。
探索分析,解决问题
学生思考、讨论。
判断李大叔的估计是否正确的方法有两种:
【一】先假设李大叔的估计正确,再根据问题中给定的数量关系来检验。
【二】根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确。
学生在比较探究后发现用方法二较简便。
设问1:如果选择方法二,如何计算平均
每只母牛和每只小牛1天各约需用饲料量?
〔有前面几节的知识准备,学生可以回答〕
列方程组求解。
主要思路:
实际问题→〔设未知数,列方程组〕→数学问题〔二元一次方程组〕
学生先独立思考,然后师生共同讨论解题过程。
解:设平均每只母牛和每只小牛1天各约需用饲料x kg和y kg。
找出相等关系列方程组
解这个方程组,得
这就是说,平均每只母牛和每只小牛1
天各约需用饲料20kg和5kg。
饲养员李大叔对母牛的食量估计正确,对小牛的食量估计不正确。
引导学生探寻解题思路,并对各种方法进行比较,方法一主要是估算的运用,而方法二是方程思想的应用。
分步到位,渗透模型化的思想。
规范解题步骤,培养学生有条理地思考、表达的习惯。
让学生认识到检验的重要性,并学会正确作答。
拓广探索,比较分析
设问2:以上问题还能列出不同的方程组吗?结果是否一致?
个别学生可能会列出如下方程组
但结果一致。
比较分析,加深对方程组的认识。
课堂练习,反馈调控
«一千零一夜»中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食。
树上的一只鸽子对地上觅食的鸽子说:〝假设从你们中飞上来一只,那么树下的鸽子就是整个鸽群的1/3;假设从树上飞下去一只,那么树上、树下的鸽子就一样多了。
〞你知道树上、树下各有多少只鸽子吗?
教师巡视、指导,师生共同讲评。
出示古典名题,一方面及时巩固用方程组解决实际问题的过程,另一方面让学生感受数学文化。
课堂小结,知识梳理
提问:通过这节课的学习,你知道用方程组解决实际问题有哪些步骤?
学生思考后回答、整理:
①设未知数。
②找相等关系。
③列方程组。
④检验并作答。
以问题的形式出现,引导学生思考、交流,梳理所学知识,建立起符合自身认识特点的知识结构。
训练口头表达能力,养成及时归纳总结的良好学习习惯。
布置作业,自我评价
①必做题:课本第116页习题8.3第1〔1〕、3、5题。
②选做题:课本第117页习题8.3第8题。
③备选题:
〔1〕解方程组:
〔2〕据«新华日报»消息,巴西医生马廷恩经过10年苦心研究后得出结论:卷入腐败行为的人容易得癌症、心肌梗塞、过敏症、脑溢血、心脏病等。
如果将犯有贪污受贿的580官员与600名廉洁官员进行比较,可发现,后者的健康人数多272名,两者患病〔致死〕者共有444人,试问犯有贪污受贿罪的官员与廉洁官员的健康人数各占百分之几?
〔3〕«希腊文集»中有一些用童话形式写成的数学题。
比如〝驴和骡子驮货物〞这道题,就曾经被大数学家欧拉改编过。
题目是这样的:〝驴和骡子驮着货物并排走在路上。
驴不住地埋怨自己驮的货物太重,压得受不了。
骡子对驴说:‘你发什么牢骚啊!我驮的货物比你重。
假假设你的货物给我一口袋,我驮的货就比你驮的重一倍,而我假设给你一口袋,咱俩驮的才一样多。
’问驴和骡子各驮几口袋货物?〞
你能用方程组来解这个问题吗?
为满足不同学生的发展需求,在保证基本要求的同时,为更多有数学学习需求的学生提供机会和资料,分层次布置作业。
备选题供教师参考。
设计思想
从实际问题出发,通过分析实际问题中的数量关系,列出二元一次方程组这种数学模型,通过对方程组解的检验,让学生认识到检验不仅要检查求得的解是否适合方程组中的每一个方程,而且还要考查所得的解答是否符合实际问题的要求,初步体验用方程组解决实际问题的全过程。
在重视方程的应用价值的同时关注其文化内涵。
给出«一千零一夜»«希腊文集»中的数学名题,使学生在数学知识
和能力得到提高的同时能够感受到数学文化的熏陶。