新型电磁干涉屏蔽与吸波材料研发成功
- 格式:pdf
- 大小:86.28 KB
- 文档页数:1
03067张恒宇等:具有类似结构的石墨烯和MXcnc在电磁吸波领域的研究进展文章编号:1001-9731(2021)03-03067-08具有类似结构的石墨烯和MXene在电磁吸波领域的研究进展"张恒宇12,陈剑英肖红2,王妮1(1.东华大学纺织学院,上海201620;2.军事科学院系统工程研究院军需工程技术研究所,北京10()010)摘要:石墨烯和MXene作为两大新型二维材料,均具有高电导率、大比表面积,质轻等独特的结构与性能,近年来得到广泛的关注与研究,特别掀起对具有类石墨烯结构的MXene的研究热潮。
对两者的结构、吸波性能及研究现状进行对比,归纳总结其单一材料、与碳纳米管、磁性粒子、导电聚合物、碳纤维复合材料在电磁吸波领域的研究,并提炼出两者的吸波机制与吸波材料的设计原则,期待可以为基于二维材料的“薄、轻、柔、宽”新型电磁吸波材料的设计研究提供思路。
关键词:石墨烯;MXene;碳材料;二维材料;电磁吸波中图分类号:G353.11文献标识码:A DOI:10.3969/j.issn.1()01-9731.2021.03.0090引言电磁干扰给人们身体健康和环境安全带来的危害驱动人们对电磁屏蔽及吸波材料的研发。
电磁屏蔽材料是通过自由电子对电磁波的大量反射实现屏蔽,但不可避免的引起二次污染[1],而吸波材料是依靠材料与自由空间阻抗的良好匹配和较强的衰减特性将电磁波能量转换为热能或其他形式能以达到吸收电磁波的目的,较为安全可靠。
为解决羰基铁、羰基钻、铁氧体等磁损耗型吸波材料较为厚重且易腐蚀,聚毗咯、聚苯胺等导电聚合物不易分散、导电性不够高等问题,近年来的研究重点偏向于石墨烯、碳纳米管、导电炭黑等碳系材料[2],特别对于石墨烯以及类石墨烯结构的二维过渡金属碳/氮化合物(MXene)的研究尤为火热。
石墨烯(Graphene)从2004年问世以来便成为研究焦点[3]。
石墨烯的制备方法有多种,目前应用较为普遍的是氧化还原法,该方法产量高、操作简易,所得产物通常称为还原氧化石墨烯(rGO),表面存在含氧官能团,便于后续修饰与改性,并在电学、光催化、超级电容器、水处理、电磁屏蔽领域应用广泛[4]。
高性能碳基电磁屏蔽及吸波材料的研究一、本文概述随着科技的快速发展,电磁波的应用日益广泛,但电磁污染问题也日益严重。
电磁波不仅会对人体健康产生潜在威胁,还会干扰电子设备的正常运行,影响信息安全。
因此,研究和开发高性能的电磁屏蔽及吸波材料,对于减少电磁污染、保护人体健康、保障信息安全具有重要意义。
本文旨在探讨高性能碳基电磁屏蔽及吸波材料的研究。
碳基材料因其独特的物理和化学性质,如高导电性、高热稳定性、轻质等,在电磁屏蔽和吸波领域具有广阔的应用前景。
本文将从碳基材料的种类、性能优化、制备工艺等方面入手,深入探讨其在电磁屏蔽和吸波领域的应用现状及未来发展趋势。
本文将对碳基电磁屏蔽及吸波材料的种类进行详细介绍,包括碳纳米管、石墨烯、碳纤维等。
然后,通过对比实验和理论分析,探讨不同碳基材料的电磁屏蔽和吸波性能,为实际应用提供理论支持。
接着,本文将重点研究碳基材料的性能优化方法,如通过化学修饰、掺杂等手段提高材料的电磁性能。
本文还将关注碳基材料的制备工艺,探索低成本、高效率的制备方法,为实际应用提供技术支撑。
本文将展望碳基电磁屏蔽及吸波材料的未来发展趋势,探讨其在不同领域的应用前景,如航空航天、电子信息、生物医学等。
通过本文的研究,希望能为高性能碳基电磁屏蔽及吸波材料的研发和应用提供有益的参考和指导。
二、碳基电磁屏蔽及吸波材料的基础理论碳基电磁屏蔽及吸波材料的研究与应用,离不开对其基础理论的深入理解和探索。
这些基础理论主要包括电磁场理论、材料电磁性能以及电磁波与物质相互作用的原理。
电磁场理论是理解电磁波传播和与物质相互作用的基础。
在电磁场理论中,电磁波被视为电场和磁场相互激发并在空间中以一定速度传播的波动现象。
电磁波与物质的相互作用则主要取决于物质的电磁特性,如介电常数、磁导率等。
碳基材料由于其独特的电子结构和物理性质,展现出优异的电磁性能。
碳基材料中的电子具有较高的可动性,使其对电磁场具有良好的响应能力。
碳基材料如石墨烯、碳纳米管等具有特殊的电子结构和物理性质,如高导电性、高导热性等,使其在电磁屏蔽和吸波领域具有广阔的应用前景。
电磁屏蔽与吸波材料一、本文概述电磁屏蔽与吸波材料作为现代科技领域的重要研究方向,对于保障信息安全、减少电磁污染、提高电子设备性能等方面具有重大意义。
本文旨在全面探讨电磁屏蔽与吸波材料的基本概念、性能特点、应用领域以及发展趋势,为相关领域的研究人员和技术人员提供有价值的参考。
本文将简要介绍电磁屏蔽与吸波材料的基本概念,阐述其在现代科技领域的重要地位。
随后,文章将重点分析电磁屏蔽材料和吸波材料的性能特点,包括屏蔽效能、吸收性能、稳定性等方面的评价指标。
在此基础上,本文将探讨电磁屏蔽与吸波材料在信息安全、电磁防护、航空航天、军事等领域的应用实例,展示其在实际应用中的重要作用。
本文还将关注电磁屏蔽与吸波材料的发展趋势,包括新材料、新工艺、新技术等方面的研究进展。
通过对未来发展方向的展望,本文旨在为相关领域的研究人员和技术人员提供有益的启示和思考,推动电磁屏蔽与吸波材料技术的不断创新和发展。
本文将全面介绍电磁屏蔽与吸波材料的基本概念、性能特点、应用领域以及发展趋势,以期为相关领域的研究和技术进步提供有益的参考和借鉴。
二、电磁屏蔽材料电磁屏蔽材料是一种能够减少或阻止电磁波传播的材料。
它们在许多领域,如电子设备、军事技术、航空航天等,都有着广泛的应用。
电磁屏蔽材料的主要功能是通过反射、吸收或引导电磁波,从而减少电磁波对周围环境和人体的影响。
电磁屏蔽材料一般可以分为三类:金属屏蔽材料、导电高分子屏蔽材料和复合屏蔽材料。
金属屏蔽材料,如铜、铝、铁等,具有良好的导电性,能够有效地反射电磁波。
导电高分子屏蔽材料,如导电塑料和导电橡胶,它们通过将导电填料(如金属颗粒、碳黑等)添加到高分子基体中,使其具有良好的导电性和电磁屏蔽性能。
复合屏蔽材料则是结合金属屏蔽材料和导电高分子屏蔽材料的优点,通过特殊的制备工艺,将两者复合在一起,从而进一步提高电磁屏蔽性能。
在选择电磁屏蔽材料时,需要考虑其电磁屏蔽效能、电导率、耐腐蚀性、机械强度、加工性能等因素。
吸波超材料研究进展一、本文概述随着现代科技的不断进步,电磁波在通信、雷达、军事等领域的应用日益广泛,然而,电磁波的散射和干扰问题也随之凸显出来。
为了有效地解决这一问题,吸波超材料应运而生。
吸波超材料作为一种具有特殊电磁性能的人工复合材料,能够实现对电磁波的高效吸收,因此在隐身技术、电磁兼容、电磁防护等领域具有广阔的应用前景。
本文旨在综述吸波超材料的研究进展,包括其基本原理、设计方法、制备工艺以及应用现状等方面。
将介绍吸波超材料的基本概念和电磁特性,阐述其吸波原理及影响因素。
然后,将综述近年来吸波超材料在结构设计、材料选择以及性能优化等方面的研究成果。
接着,将讨论吸波超材料的制备方法,包括传统的物理法和化学法以及新兴的3D打印技术等。
将展望吸波超材料在未来的发展趋势和应用前景。
通过本文的综述,读者可以对吸波超材料的研究现状有全面的了解,并为进一步的研究和开发提供有益的参考。
二、吸波超材料的基本原理吸波超材料,作为一种人工设计的复合材料,其基本原理主要基于电磁波的干涉、散射、吸收和转换等物理过程。
吸波超材料通过特定的结构设计,能够有效地调控电磁波的传播行为,从而实现高效的电磁波吸收。
吸波超材料的设计往往采用亚波长结构,这种结构可以在微观尺度上调控电磁波的传播路径,使得电磁波在材料内部发生多次反射和干涉,从而增加电磁波与材料的相互作用时间,提高电磁波的吸收效率。
吸波超材料通常具有负的介电常数和负的磁导率,这使得电磁波在材料内部传播时,会经历与常规材料不同的物理过程。
当电磁波进入吸波超材料时,由于介电常数和磁导率的负值特性,电磁波的传播方向会受到调控,从而实现电磁波的高效吸收。
吸波超材料还可以通过引入损耗机制,如电阻损耗、介电损耗和磁损耗等,将电磁波的能量转化为其他形式的能量,如热能,从而实现电磁波的衰减和吸收。
这种损耗机制的设计对于提高吸波超材料的吸收性能至关重要。
吸波超材料的基本原理是通过调控电磁波的传播路径、改变电磁波的传播方向以及引入损耗机制,实现电磁波的高效吸收。
电磁屏蔽和吸波材料1、引言随着现代电子工业的快速进展,各种无线通信系统和高频电子器件数量的急剧增加,导致了电磁干扰现象的增多和电磁污染问题的日渐突出。
电磁波辐射已成为继噪声污染、大气污染、水污染、固体废物污染之后的又一大公害。
电磁波辐射产生的电磁干扰〔EMI〕不仅会影响各种电子设备的正常运行,而且对身体安康也有危害。
目前,主要的抗电磁千扰技术包括:屏蔽技术、接地技术和滤波技术。
其中,屏蔽技术的主要方法是承受各种屏蔽材料对电磁辐射进展有效阻隔与损耗。
吸波功能材料的争论是军事隐身技术领域中的前沿课题之一,其目的是最大限度地削减或消退雷达、红外等对目标的探测。
世界上多个国家相继开放了对战机、巡航、舰艇等军事用吸波材料的争论。
由于电磁屏蔽材料和吸波材料在社会生活和国防建设中的重要作用,因而其争论开发成为人们日益关注的重要课题。
2、电磁屏蔽和吸波材料的根本原理材料对电磁波屏蔽和吸取的程度用屏蔽效能〔SE〕来表示,单位为分贝(dB),一般来说,SE 越大,则衰减的程度越高。
2.1屏蔽体对电磁波的衰减机理屏蔽体对电磁波的衰减机理有3 种: (l)空气·屏蔽体界面的阻抗不连续性,对入射电磁波产生反射衰减; (2)未被外表反射而进入屏蔽体内的电磁波被屏蔽材料吸取的衰减; (3)进入屏蔽体内未被吸取衰减的电磁波到达屏蔽体一空气界面时因阻抗不连续性被反射,并在屏蔽体内部发生屡次反射衰减。
屏蔽效能可用下式表示:SE = SET + SER+ SEA M(1)式中:SE 表示反射损失,SE 表示吸取损失,SE 表示屡次反射损R A M失。
2.2吸波材料的根本物理原理吸波材料的根本物理原理是,材料对入射电磁波实现有效吸取,将电磁波能量转换为热能或其它形式的能量而损耗掉。
该材料应具备两个特性即波阻抗匹配特性和衰减特性。
波阻抗匹配特性即制造特别的边界条件是入射电磁波在材料介质外表的反射系数r 最小,从而尽可能的从外表进入介质内部。
原则。
首先,阻抗匹配原则是材料表面与自由空间的阻抗匹配,电磁波最大限度进入材料内部,减少波反射。
依据电磁波传播原理推导出反射系数数学表达式:0)/(Z ﹢Z 0) =√μr μ0/εr ε0 电磁波投射到吸波材料的过程入射波反射波空气层匹配层反射层折射波消耗层其次,最大衰减原则指材料内部具备优秀的衰减性能,电磁波进入材料内部,能够最大限度被吸收。
吸收衰减一般用损耗因子表示:εr = ε'–jε" (4)μr = u'–ju" (5)tanδ = tanδε﹢tanδu = ε"/ε'﹢u"/u' (6)式(4)—式(6)中:ε'为介电常数实部;ε"为介电常数虚部;u'为磁导率实部;u"为磁导率虚部;tanδ为损耗因子;tanδε、tanδu分别为电损耗因子和磁损耗因子。
依据式(4)—式(6),tanδε、tanδu越大,吸波材料的损耗因子越大,吸波效果越好。
即ε"、u"越大,材料的吸波效果越好。
综上所述,要提高吸波材料的吸波性能,需要在满足阻抗匹配的前提下,尽可能提高材料的电磁参数。
但生活中的单一吸波物质很难同时达到高匹配和强吸收的特性,因此多组分吸波剂是现今解决这个难题的重要手段。
同时,提高吸波剂含量也可以提高吸波性能,但会增大材料重量。
相比于改变电磁参数和寻求最佳匹配阻抗,调节吸波剂含量的方法相对简单易行。
因此,制备高性能吸波材料可以积极寻求吸波剂含量和材料重量的最佳耦合。
2 吸波材料的分类吸波材料种类繁多,主流分类方式分为 4 种。
一是根据吸波机理,分为干涉型吸波材料和吸收型吸波材料;二是依据吸波材料对电磁波的损耗机理,分为电损耗型吸波材料和磁损耗型吸波材料,电损耗型吸波材料又分电阻损耗型吸波材料和介电损耗型吸波材料;三是按材料的成型工艺和承载能力,分为涂覆型吸波材料和结构型吸波材料;四是按研究时期,分为传统吸波材料和新型吸波材料。
不同结构柔性电磁超材料吸波体的最新研究进展作者:焦馨宇张富勇刘元军赵晓明来源:《现代纺织技术》2024年第06期DOI: 10.19398/j.att.202310021摘要:传统的电磁超材料通常具有刚性结构,其应用受到一定限制,无法满足当前市场需求,因此质轻、吸收强、吸收频带宽的柔性电磁超材料吸波体的开发利用成为重要的发展方向。
文章从柔性电磁超材料吸波体结构出发,概括了基于3层结构的柔性电磁超材料吸波体的最新研究,讨论了基于3层以上结构的柔性电磁超材料吸波体的研究现状,介绍了三维立体结构的柔性电磁超材料吸波体的研究进展,并展望了柔性电磁超材料吸波体未来的发展方向。
柔性电磁超材料吸波体在电磁波防护方面具有巨大的潜力,未来将在各个领域得到广泛应用。
关键词:超材料;吸波材料;柔性材料;电磁防护中图分类号:TS102. 4文献标志码:A文章编号:1009-265X(2024)06-0116-13收稿日期:20231026网络出版日期:20240227基金項目:中国工程院咨询研究项目(2021DFZD1);天津市科技计划项目创新平台专项(17PTSYJC00150)作者简介:焦馨宇(1999—),女,内蒙古乌兰察布市人,硕士研究生,主要从事防护纺织品方面的研究。
通信作者:刘元军,E-mail:********************随着科学技术的进步,电磁波的应用在各个领域为人类的繁荣进步作出了不可替代的巨大贡献[1]。
但大量电磁波所产生的强烈的电磁辐射,会对人体和环境造成一定的危害;另外,军事设备所发射的电磁波信号可能引发信息泄露的风险[2]。
因此,人们对设备或人员进行电磁防护的需求日益迫切,各种吸波材料的研发方法成为当前研究的热点。
传统吸波材料存在吸收频带窄、柔性差等问题,因而其应用受到一定限制[3]。
超材料具有超常物理性能和人工复合结构。
超材料重要的应用之一是超材料吸波体。
研究人员通过较强的人工干预对超材料吸波体的周期性结构进行设计,可使其能够应用于不同电磁波频段[4]。