新课标九年级数学最新九年级数学期末试卷有答案
- 格式:doc
- 大小:226.49 KB
- 文档页数:2
新部编版九年级数学上册期末测试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把 ) AB. CD.2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y == 3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9B .12C .18D .24 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0 6.函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .188.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .33C .6D .6310.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:124503⨯+=_____.2.因式分解:34a a-=____________.3.正五边形的内角和等于__________度.4.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC'=_________.5.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_________.6.如图,PA、PB是O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=_________°.三、解答题(本大题共6小题,共72分)1.解方程:21 133x xx x=+ ++2.已知二次函数y=﹣316x2+bx+c的图象经过A(0,3),B(﹣4,﹣92)两点.(1)求b,c的值.(2)二次函数y=﹣316x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.3.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次0次1次2次3次4次及以上数人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、B6、A7、C8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、(2)(2)a a a +-3、5404、55、-36、219三、解答题(本大题共6小题,共72分)1、32x =- 2、(1)983b c ⎧=⎪⎨⎪=⎩;(2)公共点的坐标是(﹣2,0)或(8,0)3、(1)略;(24、(1)略;(2)AC5、()117、20;()22次、2次;()372;()4120人.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
示例:20232024学年全国初中九年级下数学人教版期末考试试卷一、选择题(每题2分,共20分)1.下列选项中,正确的是()A. 2x + 3y = 6 是二元一次方程B. 3x^2 + 2x + 1 = 0 是一元二次方程C. 5x^3 + 2x^2 + 3x = 0 是一元二次方程D. 4x^4 + 3x^3 + 2x^2 = 0 是一元二次方程2.下列选项中,正确的是()A. a^2 + b^2 = c^2 是勾股定理B. a^2 + b^2 = c^2 是直角三角形的性质C. a^2 + b^2 = c^2 是等腰三角形的性质D. a^2 + b^2 = c^2 是等边三角形的性质3.下列选项中,正确的是()A. 当 x = 1 时,方程 2x 3 = 1 的解是 x = 1B. 当 x = 1 时,方程 2x 3 = 1 的解是 x = 2C. 当 x = 2 时,方程 2x 3 = 1 的解是 x = 1D. 当 x = 2 时,方程 2x 3 = 1 的解是 x = 24.下列选项中,正确的是()A. 一个圆的直径是它的半径的两倍B. 一个圆的半径是它的直径的两倍C. 一个圆的周长是它的直径的两倍D. 一个圆的周长是它的半径的两倍5.下列选项中,正确的是()A. 一个等边三角形的三个内角都是60度B. 一个等边三角形的三个内角都是90度C. 一个等边三角形的三个内角都是120度D. 一个等边三角形的三个内角都是150度6.下列选项中,正确的是()A. 一个等腰三角形的两个底角相等B. 一个等腰三角形的两个顶角相等C. 一个等腰三角形的两个腰角相等D. 一个等腰三角形的两个底边相等7.下列选项中,正确的是()A. 一个等腰梯形的两个底角相等B. 一个等腰梯形的两个顶角相等C. 一个等腰梯形的两个腰角相等D. 一个等腰梯形的两个底边相等8.下列选项中,正确的是()A. 一个等腰三角形的两个腰相等B. 一个等腰三角形的两个底角相等C. 一个等腰三角形的两个顶角相等D. 一个等腰三角形的两个底边相等9.下列选项中,正确的是()A. 一个等边三角形的三个内角都是60度B. 一个等边三角形的三个内角都是90度C. 一个等边三角形的三个内角都是120度D. 一个等边三角形的三个内角都是150度10.下列选项中,正确的是()A. 一个圆的直径是它的半径的两倍B. 一个圆的半径是它的直径的两倍C. 一个圆的周长是它的直径的两倍D. 一个圆的周长是它的半径的两倍二、填空题(每题2分,共20分)1.一元二次方程的一般形式是________________。
2022—2023年部编版九年级数学(下册)期末试卷及答案(各版本)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2的大小,正确的是( )A .2<<B .2<<C 2<<D 2<< 2.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100993.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定4.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B . 2C .+2D .7.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A. B.B.C.D.8.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD9.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB ∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.如图,在下列条件中,不能证明△ABD≌△ACD的是().A .BD =DC ,AB =ACB .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC二、填空题(本大题共6小题,每小题3分,共18分)1.计算(31)(31)+-的结果等于___________.2.因式分解:2()4()a a b a b ---=_______.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为__________.6.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.三、解答题(本大题共6小题,共72分)1.解分式方程:231133x x x x -+=--2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、A4、D5、B6、B7、C8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、()()()22 a b a a-+-3、84、56、8.三、解答题(本大题共6小题,共72分)1、32 x=-2、-11x+,-14.3、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m,1,2.4、(1)略;(2)AD=.5、(1)50、30%.(2)补图见解析;(3)35.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。
7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。
8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。
9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。
10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。
三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。
12. 已知函数y = 2x 3,求当x = 1时,函数的值。
13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。
四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。
五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
最新部编版九年级数学上册期末考试【含答案】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. -2019的相反数是()A. 2019B. -2019C.D.2.已知抛物线经过和两点, 则n的值为()A. ﹣2B. ﹣4C. 2D. 43.若式子有意义, 则实数m的取值范围是()A. B. 且C. D. 且4.用配方法解方程时, 配方结果正确的是()A. B.C. D.5.《九章算术》是我国古代数学名著, 卷七“盈不足”中有题译文如下: 今有人合伙买羊, 每人出5钱, 会差45钱;每人出7钱, 会差3钱.问合伙人数、羊价各是多少?设合伙人数为人, 所列方程正确的是()A. B.C. D.6.若三点, , 在同一直线上, 则的值等于()A. -1B. 0C. 3D. 47. 下面四个手机应用图标中是轴对称图形的是()A. B. C. D.8.如图, 一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1, 3), 则关于x的不等式x+b>kx+4的解集是()A. x>﹣2B. x>0C. x>1D. x<19.如图, 已知在△ABC, AB=AC.若以点B为圆心, BC长为半径画弧, 交腰AC 于点E, 则下列结论一定正确的是()A. AE=ECB. AE=BEC. ∠EBC=∠BACD. ∠EBC=∠ABE10.如图, 在矩形ABCD中, AB=10, , 点E从点D向C以每秒1个单位长度的速度运动, 以AE为一边在AE的左上方作正方形AEFG, 同时垂直于的直线也从点向点以每秒2个单位长度的速度运动, 当点F落在直线MN上, 设运动的时间为t, 则t的值为()A. B. 4 C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 9的算术平方根是__________.2. 分解因式: =________.3. 已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根, 则k 的值为__________.4. 如图, △ABC中, ∠BAC=90°, ∠B=30°, BC边上有一点P(不与点B, C 重合), I为△APC的内心, 若∠AIC的取值范围为m°<∠AIC<n°, 则m+n=__________.5.如图, 在平面直角坐标系xOy中, 已知直线y=kx(k>0)分别交反比例函数和在第一象限的图象于点A, B, 过点B作 BD⊥x轴于点D, 交的图象于点C, 连结AC.若△ABC是等腰三角形, 则k的值是_________.6. 如图, 小军、小珠之间的距离为2.7 m, 他们在同一盏路灯下的影长分别为1.8 m, 1.5 m, 已知小军、小珠的身高分别为1.8 m, 1.5 m, 则路灯的高为__________m.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 已知关于x的方程.(1)当该方程的一个根为1时, 求a的值及该方程的另一根;(2)求证:不论a取何实数, 该方程都有两个不相等的实数根.3. 如图, 在△ABC中, AB=AC, 以AB为直径的⊙O分别与BC.AC交于点D.E, 过点D作DF⊥AC于点F.(1)若⊙O的半径为3, ∠CDF=15°, 求阴影部分的面积;(2)求证: DF是⊙O的切线;(3)求证:∠EDF=∠DAC.4. 如图, AD是△ABC的外接圆⊙O的直径, 点P在BC延长线上, 且满足∠PAC=∠B.(1)求证: PA是⊙O的切线;(2)弦CE⊥AD交AB于点F, 若AF•AB=12 , 求AC的长.5. 随着信息技术的迅猛发展, 人们去商场购物的支付方式更加多样、便捷. 某校数学兴趣小组设计了一份调查问卷, 要求每人选且只选一种你最喜欢的支付方式. 现将调查结果进行统计并绘制成如下两幅不完整的统计图, 请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中, 表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整. 观察此图, 支付方式的“众数”是“”;(3)在一次购物中, 小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付, 请用画树状图或列表格的方法, 求出两人恰好选择同一种支付方式的概率.6. 某口罩生产厂生产的口罩1月份平均日产量为20000, 1月底因突然爆发新冠肺炎疫情, 市场对口罩需求量大增, 为满足市场需求, 工厂决定从2月份起扩大产能, 3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率, 预计4月份平均日产量为多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.A2.B3.D4.A5.B6.C7、D8、C9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.3.2、x(x+2)(x﹣2).3.﹣34.255.5、k= 或.6.3三、解答题(本大题共6小题, 共72分)1.x=32.(1), ;(2)证明见解析.3.(1)阴影部分的面积为3π﹣;(2)略;(3)略.4.(1)略;(2)AC=2 .5.(1)200、81°;(2)补图见解析;(3)6.(1)10%;(2)26620个。
2024年全新初三数学上册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 0C. 1D. 22. 下列选项中,哪个不是等腰三角形的性质?A. 底边相等B. 两腰相等C. 底角相等D. 对边相等3. 若一个正方形的边长为5cm,则其对角线的长度为()A. 5cmB. 10cmC. 5√2 cmD. 10√2 cm4. 下列哪个选项是二次函数的一般形式?A. y = ax² + bx + cB. y = ax + bC. y = a/b + cD. y = a² + b² + c²5. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为()A. 3B. 2C. 1D. 4二、填空题6. 若a²4a+4=0,则a的值为________。
7. 下列选项中,哪个不是等腰三角形的性质?________。
8. 若一个正方形的边长为5cm,则其对角线的长度为________。
9. 下列哪个选项是二次函数的一般形式?________。
10. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为________。
答案:一、选择题1. A2. D3. C4. A5. A二、填空题6. 27. D8. 5√2 cm9. A10. 32024年全新初三数学上册期末试卷及答案(人教版)三、解答题11. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。
解答:我们知道等差数列的通项公式为an = a1 + (n 1)d,其中an是第n项,a1是首项,d是公差。
根据题目,首项a1 = 2,公差d = 5 2 = 3。
所以,该数列的通项公式为an = 2 + (n 1)×3。
12. 一个正方形的边长为5cm,求其对角线的长度。
解答:正方形的对角线长度可以通过勾股定理来求解。
设正方形的边长为a,对角线长度为d,则有:d² = a² + a²将a = 5cm代入上式,得:d² = 5² + 5²d² = 50d = √50d = 5√2 cm所以,该正方形的对角线长度为5√2 cm。
2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。
2. 一个正方形的边长是8厘米,它的面积是______平方厘米。
3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。
4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。
5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。
6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。
7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。
8. 一个正方形的边长是7厘米,它的周长是______厘米。
9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。
10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。
2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。
A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。
A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。
A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。
A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。
A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。
()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。
()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。
()4. 两个平行线上的任意一点,到这两条平行线的距离相等。
()5. 一个数的立方根和它的平方根是同一个数。
()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。
()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。
()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。
()4. 下列函数中,是一次函数的是y = 3x + 2。
()5. 一个数的立方根和它的平方根是同一个数。
()四、简答题(每题2分,共10分)1. 简述一次函数的定义。
2. 简述相似三角形的性质。
3. 简述等差数列的定义。
4. 简述平行线的性质。
5. 简述立方根和平方根的区别。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。
部编版九年级数学上册期末考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.比较2, , 的大小, 正确的是()A. B.C. D.2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见, 随机对全校100名学生家长进行调查, 这一问题中样本是()A. 100B. 被抽取的100名学生家长C. 被抽取的100名学生家长的意见D. 全校学生家长的意见3.已知α、β是方程x2﹣2x﹣4=0的两个实数根, 则α3+8β+6的值为()A. ﹣1B. 2C. 22D. 304.若x取整数, 则使分式的值为整数的x值有()A. 3个B. 4个C. 6个D. 8个5. 某排球队名场上队员的身高(单位: )是: , , , , , .现用一名身高为的队员换下场上身高为的队员, 与换人前相比, 场上队员的身高()A. 平均数变小, 方差变小B. 平均数变小, 方差变大C. 平均数变大, 方差变小D. 平均数变大, 方差变大6.对于①, ②, 从左到右的变形, 表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解, ②是乘法运算D. ①是乘法运算, ②是因式分解7.如图, 直线y=kx+b(k≠0)经过点A(﹣2, 4), 则不等式kx+b>4的解集为()A. x>﹣2B. x<﹣2C. x>4D. x<48.如图, 已知∠ABC=∠DCB, 下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD9.如图, 将△ABC绕点C顺时针旋转90°得到△EDC.若点A, D, E在同一条直线上, ∠ACB=20°, 则∠ADC的度数是A. 55°B. 60°C. 65°D. 70°10.已知, 一次函数与反比例函数在同一直角坐标系中的图象可能()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: ____________.2. 因式分解: (x+2)x﹣x﹣2=_______.3. 已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根, 则k 的值为__________.41. 如图, 圆锥侧面展开得到扇形, 此扇形半径 CA=6, 圆心角∠ACB=120°, 则此圆锥高 OC 的长度是__________.5.如图, 矩形中, , , 以为直径的半圆与相切于点, 连接, 则阴影部分的面积为__________.(结果保留6. 如图, 在矩形ABCD中, 对角线AC.BD相交于点O, 点E、F分别是AO、AD 的中点, 若AB=6cm, BC=8cm, 则AEF的周长=__________cm.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 已知关于x的一元二次方程.(1)求证: 方程有两个不相等的实数根;(2)如果方程的两实根为, , 且, 求m的值.3. 如图, 以D为顶点的抛物线y=﹣x2+bx+c交x轴于A.B两点, 交y轴于点C, 直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P, 使PO+PA的值最小, 求点P的坐标;(3)在x轴上是否存在一点Q, 使得以A、C、Q为顶点的三角形与△BCD相似?若存在, 请求出点Q的坐标;若不存在, 请说明理由.4. 周末, 小华和小亮想用所学的数学知识测量家门前小河的宽. 测量时, 他们选择了河对岸边的一棵大树, 将其底部作为点A, 在他们所在的岸边选择了点B, 使得AB与河岸垂直, 并在B点竖起标杆BC, 再在AB的延长线上选择点D竖起标杆DE, 使得点E与点C.A共线.已知:CB⊥AD, ED⊥AD, 测得BC=1m, DE=1.5m, BD=8.5m.测量示意图如图所示.请根据相关测量信息, 求河宽AB.5. 我国中小学生迎来了新版“教育部统编义务教育语文教科书”, 本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对《三国演义》、《红楼梦》、《西游记》、《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查, 随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍, 请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.61. 某企业设计了一款工艺品, 每件的成本是50元, 为了合理定价, 投放市场进行试销. 据市场调查, 销售单价是100元时, 每天的销售量是50件, 而销售单价每降低1元, 每天就可多售出5件, 但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时, 每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元, 那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、D4、B5、A6、C7、A8、D9、C10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1、2+2.(x+2)(x﹣1)3、﹣34、5、π.6、9三、解答题(本大题共6小题, 共72分)x=1、42.(1)证明见解析(2)1或23、(1)y=﹣x2+2x+3;(2)P ( , );(3)当Q的坐标为(0, 0)或(9, 0)时, 以A.C.Q为顶点的三角形与△BCD相似.4.河宽为17米5、(1)50;(2)见解析;(3).6、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时, y最大值=4500;(3)70≤x≤90.。
绝密★★★启用前 试卷类型:A
最新九年级数学期末试卷
一、选择题
1.如果关于x 的一元二次方程0962
=+-x kx 有两个不相等的实数根,那么k 的取值范围是( ) A .1<k B .0≠k C .1<k 且0≠k D .1>k 2.下列图形,是中心对称图形的是( ).
3.一副扑克牌,去掉大小王,从中任抽一张,恰好抽到的牌是6的概率( ).
A .154
B .113
C .152
D .1
4.下列事件属于必然事件的是( ) A.打开电视,正在播放新闻 B.我们班的同学将会有人成为航天员 C.实数a <0,则2a <0
D.新疆的冬天不下雪
5. 抛物线y =x 2 –2x –3 的对称轴和顶点坐标分别是( )
A .直线x =1,(1,-4)
B .直线x =1,(1,4)
C .直线x =-1,(-1,4)
D .直线x =-1,(-1,-4)
6.配方法解方程2
420x x -+=,下列配方正确的是( ). A .2
(2)2x -= B .2
(2)2x += C .2
(2)2x -=- D .2
(2)6x -= 7.将二次函数
2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式
是( ) A.
2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y
8.已知抛物线1)3-(22
--=x y ,下列说法错误的是( ) A .顶点坐标为(3,-1)
B .对称轴是直线x=3
C .二次函数有最大值-1.
D .当x>3时,y 随x 的增大而增大 9.如图,二次函数)0(2
≠++=a c bx ax y 的图象开口向上,
图象经过点(-1,2)和(1,0),与y 轴交于负半轴.
四个结论:①0<ab ;②b 2-4ac <0;③0=++c b a ;④,02>+b a 其中正确的是( )
A .①②③④
B .①③④
C .①④
D .④ 二、填空题:(每小题3分,共24分)
11.若点A (5,-3)与点B 关于原点对称,则B 的坐标为
12. 设1x 、2x 是方程2
3520x x -+=的两个根,则1x +2x = ,12x x ⋅= 13. 在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、大小、质地等完全相同。
小明通过多次摸球实验后发现其中摸到红色、黑色求的频率稳定在5%和15%,则
口袋中白色球的个数很可能是 个.
14. 二次函数y =222k kx x ++的图象与x 轴的一个交点坐标为(2-,0),则k 的值是 . 15.某种商品每件的进价为30元,在“五一”黄金周期间若以每件x 元出售,卖出了(200-x )件,当
价格定为 时,才能使利润最大.
16.一门迫击炮射出的一个炮弹飞行的高度y (m )与飞行的时间x (s )的关系满足 经过 时间,炮弹到达它的最高点,最高点的高度是 三、解答题: 19.解方程:
(1)0622
=-x x (2)()02x 2-x 2
=+-
(3)x 23x 3x 22
-=+ (4).0)4()52(2
2=+--x x
A B C
D
x
x y 105
12+-=
20. 如图所示,已知抛物线245y x x =-++与x 轴交于A 、B两点,顶点为C . (1)求A 、B 、C 的坐标 (2)求△ABC 的面积.
21.已知二次函数22
3
21y 2--=x x 的图象如图所示,根据图象解答下列问题
(1)方程022
3
212=--x x 的根是什么?
(2)不等式022
3
212>--x x 的解集是什么?
(3)当x 满足什么条件时,y 随x 的增大而增大?
22. 按要求作图
(1)已知△ABC 和点O.作出△ABC 关于点O 对称的△A 1B 1C 1
(2)将△ABC 绕点C 顺时针旋转90°后得 到△A 1B 1C 1,在给出的平面直角坐标系 中画出△A 1B 1C 1。
并写出A 、B 两点坐标
23. 某种计算机病毒传播速度非常快,如果一台计算机被感染,经过两轮传播后就有100台计算机被感染,求每轮传播中平均一台计算机感染几台计算机. 解题方案
设每轮传播中平均一台计算机感染x 台计算机.
(1)用含有x 的代数式表示:
第一轮后共有 台计算机感染病毒;第二轮传播中,这些计算机中的每台又感染了x 台计算机,第二轮后共有 台计算机被感染;
(2)根据题意,列出相应方程 ;
(3)解这个方程,得 ; (4)检验: ; (5)答:每轮传播中平均一台计算机感染 台计算机.(用数字作答)
24. 如图,已知二次函数2
8y ax bx =++(0a ≠)的图象与x 轴交于点20A -(,)
,B ,与y 轴交于点C ,OC=2OB .
(Ⅰ)求抛物线的解析式及其顶点D 的坐标;
O
C
B
A。