碳纤维陶瓷基复合材料-文档资料
- 格式:ppt
- 大小:426.50 KB
- 文档页数:11
碳纤维增强陶瓷基复合材料摘要:碳纤维增强碳化硅陶瓷基复合材料具有密度低、高强度、高韧性和耐高温等综合性能已得到世界各国高度重视,本文将对有关碳纤维增强碳化硅陶瓷的有关信息简单介绍。
关键词:陶瓷基复合材料,碳纤维增强。
1.引言碳化硅陶瓷因具有高强度、高硬度、抗腐蚀、耐高温和低密度而被广泛用于高温和某些苛刻的环境中,尤其在航空航天飞行器需要承受极高温度的特殊部位具有很大的潜力。
但是,陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面吸收表面能以外,几乎没有其它吸收能量的机制,这就严重限制了其作为结构材料的应用。
碳纤维具有比强度高、比模量大、高温力学性能和热性能良好等优点,在惰性气氛中2000℃时仍能保持强度基本不下降。
用碳纤维增强碳化硅复合材料,材料在断裂的过程中通过纤维拔出、纤维桥联、裂纹偏转等增韧机制来消耗能量,使材料表现为非脆性断裂。
Cf/SiC复合材料综合了碳纤维优异的高温性能和碳化硅基体高抗氧化性能,受到了世界各国的高度关注,并广泛应用在航空、航天、光学系统、交通工具等领域。
2. 碳纤维材料简介2.1碳纤维简介碳纤维是有机纤维或沥青基材料经谈话和石墨处理后形成的含碳量在85%以上的碳素纤维,是20世纪50年代为满足航空航天等尖端领域的需要而发展起来的一种特种纤维。
目前,碳纤维的生产原料分为三大体系:聚丙烯腈基碳纤维、沥青基碳纤维、黏胶基碳纤维。
其中聚丙烯腈基碳纤维由于原料资源丰富,含碳量高及碳化率高,成本低,正在被重视。
碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。
因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。
材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景,综观多种新兴的复合材料(如高分子复合材料、金属基复合材料、陶瓷基复合材料)的优异性能,不少人预料,人类在材料应用上正从钢铁时代进入到一个复合材料广泛应用的时代。
耐磨损、抗氧化和机械性能良好的优点,还具有抗热震、抗烧蚀、抗疲劳和抗蠕变等特性,在空天飞行器的热防护系统、航空发动机、火箭发动机、高性能制动以及先进核能等高温热结构部件上具有良好的应用前景。
本文介绍了该复合材料在碳纤维、陶瓷基体、复合材料制备方法及应用等方面的研究进展,以便更好地了解目前该研究领域在国内外的研究热点。
陶瓷基体;复合材料;制备方法1前言随着航空航天技术的不断发展,高超声速飞行器已经成为各军事强国倾力开发的重要突防手段。
高超声速飞行器是指飞行速度在5倍声速以上,即马赫数大于5的空天飞行器。
与传统的飞行器相比,高超声速飞行器可有效地减少防御响应时间,提高飞行器自身生存的能力,具有机动性能好、突防和反防御能力强、可以实现远程精确打击等特性[1]。
但是,随着飞行器飞行速度的不断提高,以及受飞行环境复杂多变等条件的影响,高超声速飞行器在进行高超声速飞行时会产生强烈的气动加热,使得飞行器表面某些部位的温度高达2000℃。
由于飞行器所面临的服役环境越来越恶劣,飞行器热防护系统对于飞行器的安全作用也就越来越重要。
所以,探索应用在高温环境下的热防护材料,对高超声速飞行器的发展具有重要意义。
目前,常用的耐高温材料有难熔金属及其合金、改性的抗烧蚀Cf/C 复合材料、超高温陶瓷及其复合材料等。
其中,碳纤维增韧陶瓷基复合材料因其高温强度高、韧性好以及耐腐蚀性能好等优点,成为目前最有发展前景的耐高温材料之一,在国防和航空航天等领域具有广阔的应用前景[2、4]。
2碳纤维的发展及应用苏纯兰1,周长灵2,徐鸿照2,杨芳红2,姜凯2,刘福田1(1.济南大学材料科学与工程学院,济南250022;2.山东工业陶瓷研究设计院有限公司,淄博255031)(1993~),女,山东济南,硕士研究生。
碳纤维是由有机纤维经过一系列热处理转化而成,是含碳量在90%以上的无机高性能纤维[5]。
碳纤维的力学性能优异,其抗拉强度是钢的4~5倍,比强度是钢的10倍,密度是钢的1/4。
碳陶复合材料
碳陶复合材料是一种新型的复合材料,由碳纤维和陶瓷基体组成。
碳纤维具有
高强度和高模量的特点,而陶瓷基体具有优异的耐磨性和耐高温性能,两者结合后形成的碳陶复合材料具有优异的综合性能,被广泛应用于航空航天、汽车制造、船舶建造、体育器材等领域。
首先,碳陶复合材料具有优异的力学性能。
碳纤维的高强度和高模量使得碳陶
复合材料具有很高的强度和刚度,能够承受较大的载荷而不易发生变形和破坏。
同时,陶瓷基体的高硬度和耐磨性使得碳陶复合材料具有良好的耐磨性能,适合用于制造高速运动部件和耐磨零部件。
其次,碳陶复合材料具有优异的耐高温性能。
碳纤维的耐高温性能使得碳陶复
合材料能够在高温环境下工作,不易软化和熔化。
这使得碳陶复合材料成为航空航天领域的理想材料,能够用于制造发动机零部件、导弹外壳等高温工作环境下的部件。
另外,碳陶复合材料还具有良好的耐腐蚀性能。
由于碳纤维和陶瓷基体都具有
较好的化学稳定性,碳陶复合材料能够在恶劣的化学环境下工作,不易发生腐蚀和氧化,因此在化工领域也有着广泛的应用前景。
总的来说,碳陶复合材料具有优异的综合性能,能够满足各种工程领域对材料
的要求。
随着科技的不断进步,碳陶复合材料的制备工艺和性能将得到进一步提升,相信其在未来会有更广泛的应用前景。
碳纤维增强陶瓷基复合材料
碳纤维增强陶瓷基复合材料是一种具有优异性能的复合材料,结合了碳纤维和
陶瓷的优点,具有高强度、高刚度、高耐热性和耐磨性等特点,因此在航空航天、汽车制造、工程建设等领域得到广泛应用。
组成
碳纤维增强陶瓷基复合材料主要由碳纤维和陶瓷基体组成。
碳纤维作为增强材料,具有优异的机械性能,可以增加复合材料的强度和刚度;陶瓷基体作为基体材料,具有良好的耐热性和耐腐蚀性,可以提高复合材料的耐高温和耐磨性能。
特点
1.高强度和高刚度:碳纤维增强陶瓷基复合材料具有很高的拉伸强度
和模量,能够承受较大的载荷;
2.耐热性:陶瓷基体具有优良的耐高温性能,适用于高温环境下的使
用;
3.耐腐蚀性:陶瓷基体对酸碱等腐蚀介质具有较好的稳定性;
4.耐磨性:碳纤维的高强度和陶瓷的硬度结合,使复合材料具有较好
的耐磨性。
应用领域
碳纤维增强陶瓷基复合材料在航空航天、汽车制造、工程建设等领域得到广泛
应用。
在航空航天领域,碳纤维增强陶瓷基复合材料被用于制造飞机结构件和燃气涡轮引擎零部件,以提高飞机的性能和降低重量;在汽车制造领域,碳纤维增强陶瓷基复合材料被用于制造车身结构件和制动系统,以提高汽车的安全性和燃油效率;在工程建设领域,碳纤维增强陶瓷基复合材料被用于制造建筑结构件和桥梁构件,以提高建筑物的抗震性和耐久性。
综上所述,碳纤维增强陶瓷基复合材料具有优异的性能和广泛的应用前景,将
在未来得到更广泛的应用和推广。