中职二年级数学期末考试试卷
- 格式:docx
- 大小:231.19 KB
- 文档页数:5
中职数学2年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 0B. 1C. -1D. 22. 下列函数中,奇函数是:A. f(x) = x³B. f(x) = x²C. f(x) = |x|D. f(x) = x² + 13. 若直线y = 2x + 3与x轴的交点为A,与y轴的交点为B,则三角形OAB的面积是:A. 3B. 4.5C. 6D. 94. 若一组数据2, 3, 5, 7, 11, x的平均数为6,则x的值为:A. 4B. 6C. 8D. 105. 在直角坐标系中,点(3, -4)关于原点的对称点是:A. (3, 4)B. (-3, 4)C. (-3, -4)D. (3, -4)二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。
()2. 任何实数的平方都是非负数。
()3. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac。
()4. 函数f(x) = 2x + 3的图像是一条直线。
()5. 对角线互相垂直的四边形一定是菱形。
()三、填空题(每题1分,共5分)1. 若sinθ = 1/2,且θ为第二象限角,则cosθ = _______。
2. 方程x² 5x + 6 = 0的解为x₁ = _______,x₂ = _______。
3. 若一组数据1, 3, 5, 7, 9的平均数为a,则数据2a 1, 2a + 1, 2a + 3, 2a + 5, 2a + 7的平均数为_______。
4. 在ΔABC中,若∠A = 30°,∠B = 60°,则∠C = _______°。
5. 若函数f(x) = 3x² 12x + 9,则f'(x) = _______。
一、选择题:(每小题3分,共计30分)1、已知数列{}n a 的通项公式这25n a n =-,那么n a =( ) A 、2n-5 B 、4n-5 C 、2n-10 D 、4n-102、753222----⋅⋅⋅等差数列、、、、的第n+1项为( )A 、1(7)2n -;B 、()142n -C 、42n -D 、72n-3、{}236,n n a s a ==在等差数列中,已知则( ) A 、18 B 、12 C 、9 D 、64、{}2582=6,n a a a ==在等比数列中,已知a ,则( ) A 、10 B 、12 C 、18 D 、 245、平面向量定义的要素是( )A 、大小和起点;B 、方向和起点;C 、大小和方向D 、大小、方向和起点 6、AB AC BC --=( )A 、BC ;B 、CB ;C 、0;D 、0 7、下列说法不正确的是( )A 、零向量和任何向量平行B 、平面上任意三点A 、B 、C ,一定有AB BC AC +=C 、AB=CDR AB CD m ∈若(m ),则 D 、若11a x e =,22b x e =时a b = 8、()()1212A ,B ,AB a a b b 设点及点,则的坐标是( )A 、1122(a -b ,a -b ) ;B 、1212(a -a ,b -b ) ;C 、1122(b a ,b -a )- ;D 、2121(a -a ,b -b )9、若4222a b a b a b =-==,,则,是( ) A 、00; B 、090; C、0180; D 、0270 10、下列各向量中互相垂直的是( )A 、a =(4,2),b =(-3,5)B 、a =(-3,4) ,b =(4,3)C 、a =(5,2),b =(-2,-5)D 、a =(2,-3),b =(3,-2) 二、填空题:(每小题2分,共计20分) 1、AC BC -=________________2、OP =设O 点为坐标原点,P(1,1),Q(4,5),则_______PQ =_______PQ =_______3、已知a =(1,3),b=(2,-4),c =(-2,5),则a +2b -3c =_________________________________4、设a =(-2,-3),b =(6,-5),则a b =_____________5、设a =(3,-1),b =(1,-2),则(2a +b )(a -b)=___________________6、数列1n ⎧⎫⎨⎬⎩⎭中,第7项为_______7、通项公式为32n a n =-的通项公式是公差为________的等差数列8、通项公式为42n a n n =+的数列的前项和的公式为______________________________9、在等比数列{}1413,2n a a q a ==-=中,已知,则____________10、在等比数列{}35711,4n a a a a ===中,已知,则_______________答题卡一、选择题(每小题3分,共计30分) 二、填空题:(每空2分,共计20分)1、_____2、______、______、______3、_______4、_________5、_________6、______7、______8、______________9、_________10、___________ 三、解答题:(每小题10分,共计50分) 1、 (1)、在等差数列{}4416,48,n a a s a ==中,求(2)、在等比数列{}36813,,9n a a a a =-=-中,求2、在等比数列{}35104,16,n a a a ==中,求s3、已知a=3,b=4,a与b的夹角为0120,求(1)、a b;(2)、(3a-2b)(a+2b)4、已知a=(1,3),b=(m,n),且a+2b=(5,-5),求实数m、n的值5、设向量a= (-1,3),b=(m,2),当m为何值时(1)、a与b垂直(2)、a与b平行。
职业高中下学期期末考试高二《数学》试题一。
选择题1. 5,4,3,2,1中任取一个数,得到奇数的概率为( ) A .21B . 51C . 52D . 532. 从4,3,2,1四个数字中任取3个数字,要组成没有重复数字,且不超过300的三位数共有个( ) A . 12B . 18C . 24D . 723. 已知1sin()63πα-=,且02πα<<,则cos α等于( )4. 已知3sin 5α=,且(,)2παπ∈,则2sin 2cos αα的值等于( ) A.32 B.32- C.34 D.34- 5. 对称中心在原点,焦点坐标为(-2,0),(2,0),长轴长为6的椭圆的标准方程为( )A. 15922=+y xB. 19522=+y xC. 1323622=+y xD. 1363222=+y x6. 已知椭圆方程是204522=+y x ,则它的离心率为 ( )A. 21 B.2 C.25 D.557. 有4名男生5名女生排成一排照相,其中女生必须排在两端的排法有( )种A 、99PB 、22P 77PC 、25C 77PD 、25P 77P8. 把4本不同的书分给两人,每人至少一本,不同分法有( )种A 、6B 、12C 、14D 、169. 椭圆的短轴长为8,焦距为6,弦AB 过1F ,则2ABF ∆的周长是( )A. 10B. 15C. 20D. 2510. 已知53sin =α,⎪⎭⎫⎝⎛∈ππα,2,则αα2cos 2sin 的值等于( ) A 、23 B 、-23 C 、43 D 、-43二。
填空题11. 椭圆13422=+y x 的长轴长为 ,短轴长为 ,焦距为 。
12. 双曲线的两个焦点坐标为)5,0(),5,0(21F F -,且2a =8,则双曲线的标准方程为 。
13.从1,2,3,4,5这五个数字中任取2个,至多有一个偶数的取法 有 种。
14. 20件产品,其中3件次品,从中任取3件,恰有一件次品的取法有 种。
中职二年级数学期末考试一试卷一、单项选择题(每题 3 分,共 30 分)1.若会合A x x2x20 ,B x 2x23x 2 0,则会合A B =()3A.1,1B.2C. 1,1,2 D.1,1, 2222.在ABC 中,“A”是“ cos A1”的()23A. 充足不用要条件B. 必需不充足条件C.既不充足也不用要条件D. 充要条件3.若圆的参数方程为x3cos1() y3sin(为参数),则圆心和半径分别为4A. ( 1,4),3B. (1,4) ,3C. (1,4) ,9D. (1,4) ,94.已知不等式x2mx n0 的解集为5,1 ,则m, n的值分别为()A. 4,-5B. -5,1C. -4,-5D. -2,-55.若函数f ( x)log 2 x, x0()2 x, x 0,则f f (1)A. -2B. -1C.0D. 16. 若函数f (x)的定义域为(1,1) ,则函数 f (x3) 的定义域为()A. (4,2)B. (1,1)C.(2,4)D. (0,1)x y37.设变量x, y知足拘束条件x y 1 ,则目标函数z2x 3 y 的最小值为()2x y3A. 6B. 7C. 8D. 98.抛物线y22px( p0) 的准线经过双曲线x 2y21的左焦点,则p()A. 1B.2C. 2D. 229. 已知椭圆x2y 21的左焦点为F1,过 F1且平行于y 轴的直线交椭圆于M , N 两25 16点,则OMN 的面积等于()A. 192B.96C.48D.24355510. 已知函数 f ( x) 是定义在 R 上的奇函数,当 x 0,时, f ( x) x 21,则不等式 f ( x)0 的解集为()A. (, 1)(1, ) B. (, 1) (0,1) C. ( 1,1) D. ( 1,0) (1,)二、填空题(每题3 分,共 18 分)2( 1 ) 211.832log 2 3_____________212.若不等式 ax 26的解集为 ( 2,1) ,____________则 a13.无论 a 取何正实数,函数 f (x)a x 11 恒过定点 _____________14.过点 M ( 2,4) 的抛物线的标准方程为 _______________15.参数方程x2 sin 2 ysin2( 为参数 )化为一般方程为 ____________16.已知某产品的收益y ( 万元 )与产量 x (吨 )的关系吻合二次函数 y ax 2bx 3,当产量为 1 吨或 3 吨时,收益为0,则当产量为 ___________吨时,收益最大。
中专二年级数学期末试卷一.填空题。
(1.2小题为向量计算)1AB+BC+CD=________________OB+BC+CA=_________________2.OA-OB=_____________AB-AD=______________________BC-BA=______________OD-OA=______________________3(1)已知点P(2,-1),Q(3,2),则PQ向量坐标为———————,QP的向量坐标为——————————。
(2)设向量A=3i-4j,则A的向量坐标为————————————。
4,设A的向量为(1,-2),B的向量为(-2,3),求下列的向量的坐标。
(1)A+B= (2)-3A=(3)3A-2B=5(1)设A的向量为(1,3),B的向量为(2,b),判断向量A,B是否共线-----------------------。
(2)设A的向量为(2,3),B的向量为(1,1.5),判断向量A,B是否共线-------------------------。
6坐标P1(X1,Y1),P2(X2,Y2),则P1 P2的绝对值为————————————7,已知A(-3,1),B(2,-5)两的距离为————————————————————。
8,已知S(0,2),T(-6,-1),先将ST分成四等份,则四等分点坐标依次为M____________,N_____________,Q____________.9已知三角形ABC的三个顶点分别为点A(1,0),B(-2,1),C(0,3),则BC 边上中线AD的长度为————————。
10.直线倾斜角的范围为——————————————————。
二,解答题1,将方程Y-2=0.5(X+1),化为直线的一般式,并分别求出该直线在X轴,Y轴上的截距。
2,已知直线L经过点M(2,-2),且与直线Y=1/2X+1平行,求直线L的方程。
中职二年级上学期期末模拟试卷一(数学)姓名__________ 班级_________ 分数___________一、选择题(本大题共10小题,每小题3分共30分)1、数列22221111,31415161----,,,的一个通项公式为( )A ()2111n a n =+- B 1(2)n a n n =+C 21(2)1n a n =+- D 211n a n =- 2、在等差数列{}n a 中,若254785,9,a a a a S +=+==则( ) A 12 B 28 C 24 D 303、等比数列{}n a 中,若135528,q a a a a ===且则( ) A 2 B 4 C 8 D 164、化简AB AC BD CD -+-=( )A 2ADB 2CBC 0D 05、下列说法中不正确的是( ) A 零向量和任何向量平行B 平面上任意三点,,,A BC 一定有AB BC AC += C 若()AB mCD m R =∈,则//AB CD D 若1122,a x e b x e ==,当12x x =时a b =6、若4,2,22a b a b =-==,则,a b =( ) A 00 B 090 C 0120 D 01807、设()5,5,,62a m b ⎛⎫==-- ⎪⎝⎭且13,a a b =⊥,则m =( )A 12B 12-C 12±D 88、直线过两点((,A B -,则该直线的倾斜角是( ) A 060 B 090 C 00 D 01809、直线230ax y +-=与直线10x y ++=互相垂直,则a 等于( )A 1B 2-C 23-D 13-10、以点()()1,3,5,1A B -为端点的线段的垂直平分线的方程为( ) A 380x y -+= B 260x y --= C 340x y ++= D 1220x y ++=二、填空题(本大题共6小题,每小题4分共24分)11、在数列{}n a 中,前n 项和22n n S =+则567a a a ++=____________;12、在数列{}n a 中满足()1302n n a a n -+=≥,且13a =,则它的通项公式为____________;13、已知()()()2,2,3,4,1,5a b c =-=-=,则()3a b c -+=____________;14、已知向量()()1,,,2a x b x =-=-,且a 与b 反向共线,则x 的值为____________;15、已知直线l 与直线310x y -+=平行,且直线l 的横截距为5-,则直线l 的纵截距为____________;16、两条平行直线34206870x y x y --=-+=与的距离是____________;三、解答题(本大题共4小题,共46分)17、⑴在等差数列{}n a 中,275,20a a ==,求15S ;(5分)⑵已知等比数列{}n a 中,531,42a q ==-,求7S ;(5分)18、解答下列问题:(1) nS 是等差数列{}n a 的前n 项和,已知548=+S S ,328=-S a ,求该数列的通项公式;(6分)(2)在等比数列{}n b 中,已知1323=b b b ,且5227=b b ,求该数列的前n 项和n T .(6分)19、()1已知向量()()()1,2,3,1,21,1a b c m n =-=--=++,且,//a c b c ⊥,求实数,m n 的值;(6分) ()2已知()()21,2,1,2a m n b =+-=,且()235,5a b +=,求,a b ;(6分)20、已知直线123:210,:2330,:3470l x y l x y l x y -+=+-=-+=,直线12l l 与的交点为点P, ⑴求点P 的坐标;(6分)⑵设直线3l l 与平行且经过点P ,求直线l 的一般式方程;(6分)中职二年级上学期期末模拟试卷一参考答案二、填空题11.11212.a n=3*(-3)n-113.(-14,23)14.√215.5/316.11/10三、解答题17.(1)S15=345 (2)S7=129/16=4n-12 18.(1)an(2)Tn=1/2(3n-1) 19.(1)m=-1/2;n=-1(2)90°20.(1)P(0,1)(2)3x-4y+4=0。
中职高二数学期末试卷职中高二级下学期数学期末模拟试卷一、选择题(将唯一正确答案代号填入表格对应题号内,每题3分,共计36分)1.点A (-3,-4)到x 轴的距离是:A.3B.4C.5D.7 2.点A (0,4),B (-2,0)的中点是:A.(-2,4)B.(-1,2)C.(-2,2)D.(0,2)3.已知直线l 的斜率是3,则直线l 的倾斜角是:A.060B.045C.030D.02404.已知直线l 的倾斜角β=090,则直线l 的斜率是:A.1B.-1C.不能确定D.不存在 5.直线1=x 与y 轴:A.平行B.相交C.重合D.不能确定 6.圆16)7()2(22=-+-y x 的圆心坐标是:A.(2,7)B.(-2,-7)C.(-2,7)D.(2,-7) 7.圆25)6()3(22=-+-y x 的半径长为:A.10B.25C.5D.58.一个棱锥的底面积是402cm ,高是12cm ,则它的体积是 3cm π。
A.130B.140C.150D.1609.一个球的半径增大一倍,那么它的体积增大了几倍。
A.1B.2C.7D.810.一个圆锥的母线是10cm ,侧面展开图是半圆,则圆锥的底面半径是:A.10 cmB.8cmC.6 cmD.5cm11.直线06=+-y x 与直线0=+y x 的交点坐标为A .(-3,3)B .(3,-3)C .(4,2)D .(3,3) 12.某中职学校二年级有12名女排运动员,要从中选出3人调查学习负担情况,调查应采用的抽样方法是:A.随机抽样法B.分层抽样法C.系统抽样法D.无法确定 二、填空题(将最合适的答案填写在对应的位置,每题3分,共15分)。
1.过点A (1,-1)且与x 轴平行的直线方程为 2.一个正方体的体积是83cm ,则它的表面积为 2cm 3.抛一枚硬币,出现一枚正面在上的概率是4.已知一直线的倾斜角是 45,则该直线的斜率是 5.过直线外一点作直线的垂线有 条三、判断(正确的记“√”,错误的记“╳”,每题2分,共10分)。
一、选择题(每题2分,共20分)1. 下列各数中,是负数的是()A. -3B. 3C. 0D. -5.52. 在下列各式中,正确的是()A. 5 × 3 = 15B. 5 ÷ 3 = 15C. 5 + 3 = 8D. 5 - 3 = 23. 下列各数中,能被3整除的是()A. 14B. 21C. 36D. 494. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 18cmB. 20cmC. 22cmD. 24cm5. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)6. 下列各函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 1D. y = 4x7. 下列各数中,是偶数的是()A. 13B. 14C. 15D. 168. 下列各图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 等腰梯形9. 一个圆的半径增加了50%,那么圆的面积增加了()A. 50%B. 75%C. 100%D. 125%10. 下列各方程中,无解的是()A. 2x + 3 = 7B. 3x - 5 = 4C. 4x - 2 = 0D. 5x + 6 = 0二、填空题(每题2分,共20分)11. 3的平方根是______。
12. 下列各数中,绝对值最小的是______。
13. 下列各图形中,是中心对称图形的是______。
14. 下列各数中,是质数的是______。
15. 下列各方程中,x的值是2的是______。
16. 下列各数中,是立方数的是______。
17. 下列各图形中,是全等图形的是______。
18. 下列各数中,是正数的是______。
19. 下列各方程中,x的值是-3的是______。
20. 下列各数中,是偶数的是______。
一、选择题:(每小题3分,共计30分)1、已知数列{}n a 的通项公式这25n a n =-,那么n a =( ) A 、2n-5 B 、4n-5 C 、2n-10 D 、4n-102、753222----⋅⋅⋅等差数列、、、、的第n+1项为( )A 、1(7)2n -;B 、()142n -C 、42n -D 、72n-3、{}236,n n a s a ==在等差数列中,已知则( ) A 、18 B 、12 C 、9 D 、64、{}2582=6,n a a a ==在等比数列中,已知a ,则( ) A 、10 B 、12 C 、18 D 、 245、平面向量定义的要素是( )A 、大小和起点;B 、方向和起点;C 、大小和方向D 、大小、方向和起点 6、AB AC BC --=u u u v u u u u v u u u v( )A 、BC u u u v ;B 、CB uuu v ;C 、0v; D 、0 7、下列说法不正确的是( )A 、零向量和任何向量平行B 、平面上任意三点A 、B 、C ,一定有AB BC AC +=u u u v u u u v u u u u vC 、AB=CDR AB CD m ∈u u u v u u u v u u u v u u u vP 若(m ),则 D 、若11a x e =r u r ,22b x e =r u u r 时a b =r r 8、()()1212A ,B ,AB a a b b u u u r设点及点,则的坐标是( ) A 、1122(a -b ,a -b ) ; B 、1212(a -a ,b -b ) ; C 、1122(b a ,b -a )- ; D 、2121(a -a ,b -b )9、若4a b a b a b =-==r r r r r rg,,,是( ) A 、00; B 、090; C 、0180; D 、0270 10、下列各向量中互相垂直的是( )A 、a =(4,2),b =(-3,5)B 、a =(-3,4) ,b =(4,3)C 、a =(5,2),b =(-2,-5)D 、a =(2,-3),b=(3,-2)二、填空题:(每小题2分,共计20分)1、AC BC -=u u u u r u u u r________________2、OP =u u u r 设O 点为坐标原点,P(1,1),Q(4,5),则_______PQ =u u u r _______PQ =u u u r_______3、已知a =(1,3),b=(2,-4),c =(-2,5),则a +2b -3c =_________________________________4、设a =(-2,-3),b =(6,-5),则a g b =_____________5、设a =(3,-1),b =(1,-2),则(2a +b )g (a -b)=___________________6、数列1n ⎧⎫⎨⎬⎩⎭中,第7项为_______7、通项公式为32n a n =-的通项公式是公差为________的等差数列8、通项公式为42n a n n =+的数列的前项和的公式为______________________________9、在等比数列{}1413,2n a a q a ==-=中,已知,则____________10、在等比数列{}35711,4n a a a a ===中,已知,则_______________答题卡一、选择题(每小题3分,共计30分) 二、填空题:(每空2分,共计20分)1、_____2、______、______、______3、_______4、_________5、_________6、______7、______8、______________9、_________10、___________ 三、解答题:(每小题10分,共计50分) 1、 (1)、在等差数列{}4416,48,n a a s a ==中,求(2)、在等比数列{}36813,,9n a a a a =-=-中,求2、在等比数列{}35104,16,n a a a ==中,求s3、已知a=3,b=4,a与b的夹角为0120,求(1)、a g b;(2)、(3a-2b)g(a+2b)4、已知a=(1,3),b=(m,n),且a+2b=(5,-5),求实数m、n的值5、设向量a= (-1,3),b=(m,2),当m为何值时(1)、a与b垂直(2)、a与b平行。
中职二年级数学期末考
试试卷
-CAL-FENGHAI.-(YICAI)-Company One1
2
中职二年级数学期末考试试卷
一、单项选择题(每题3分,共30分)
1.若集合{}0232=+-=x x x A ,{}
02322=--=x x x B ,则集合B A =( )
.A ⎭⎬⎫⎩⎨⎧-21,1 .B {}2 .C ⎭
⎬⎫⎩⎨⎧-2,21,1 .D {}2,1,1- 2.在ABC ∆中,“3π=A ”是“2
1cos =
A ”的 ( ) .A 充分不必要条件 .
B 必要不充分条件 .
C 既不充分也不必要条件 .
D 充要条件 3.若圆的参数方程为θθθ(4
sin 31cos 3⎩⎨⎧-=+=y x 为参数),则圆心和半径分别为
( )
.A )4,1(-,3 .B )4,1(-,3 .C )4,1(-,9 .D )4,1(-,9
4.已知不等式02≤+-n mx x 的解集为[]1,5-,则n m ,的值分别为 ( )
.A 4,-5 .B -5,1 .C -4,-5 .D -2,-5
5.若函数⎩⎨⎧≤>=0
,20,log )(2x x x x f x ,则[]=)1(f f ( ) .A -2 .B -1 .C 0 .D 1
6. 若函数)(x f 的定义域为)1,1(-,则函数)3(+x f 的定义域为 ( )
.A )2,4(-- .B )1,1(- .C )4,2( .D )1,0(
7.设变量y x ,满足约束条件⎪⎩
⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数y x z 32+=的最小值为
( )
.A 6 .B 7 .C 8 .D 9
3
8.抛物线)0(22>=p px y 的准线经过双曲线122=-y x 的左焦点,则=p
( )
.A 1 .B 2 .C 2 .D 22
9. 已知椭圆116
252
2=+y x 的左焦点为1F ,过1F 且平行于y 轴的直线交椭圆于N M ,两点,则OMN ∆的面积等于 ( )
.A 3192 .B 5
96 .C 548 .D 524 10. 已知函数)(x f 是定义在R 上的奇函数,当()+∞∈,0x 时,1)(2-=x x f ,则
不等式0)(>x f 的解集为 ( )
.A ),1()1,(+∞--∞ .B )1,0()1,( --∞ .C )1,1(- .D ),1()0,1(+∞-
二、填空题(每小题3分,共18分)
11.=--+-023log 3
23.1)21(282_____________ 12.若不等式62<+ax 的解集为)1,2(-,则=a ____________
13.不论a 取何正实数,函数1)(1-=-x a x f 恒过定点_____________
14.过点)4,2(--M 的抛物线的标准方程为_______________
15.参数方程⎪⎩⎪⎨⎧=+=θ
θ22sin sin 2y x (θ为参数)化为普通方程为____________ 16. 已知某产品的利润y (万元)与产量x (吨)的关系符合二次函数32-+=bx ax y ,当产量为1吨或3吨时,利润为0,则当产量为___________吨时,利润最大。
4
三、解答题(本大题共5大题,共52分)
17.(本题8分)求不等式4
1)21(2<-x x 的解集。
18.(本题10分)已知奇函数)(x f 在定义域)1,1(-内单调递减,且
0)1()1(2<-+-a f a f ,求实数a 的取值范围。
19. (本题10分)若曲线C 的参数方程为⎩⎨⎧+=-=3
sin 42cos 4θθy x (θ为参数,)20πθ<≤
(1)求曲线C 的普通方程;(2)求函数y x y x U -=),(的最值。
5 20.(本题12分)已知二次函数)0,,()(2≠∈+=a R b a bx ax x f 满足:对任意R x ∈,
满足)2()4(-=+-x f x f ,且方程x x f 4)(=有两个相等的根,
(1)求)(x f 的表达式;(2)解不等式0)(<x f .
21. (本题12分)已知直线1+-=x y 与椭圆122
22=+b
y a x )0(>>b a 相交于B A ,两点,且线段AB 的中点在直线02:=-y x l 上.
(1) 求此椭圆的离心率;
(2) 若椭圆的右焦点关于直线l 的对称点在圆422=+y x 上,求椭圆方程。