锻件中的常见缺陷及产生的原因
- 格式:doc
- 大小:36.50 KB
- 文档页数:2
锻件的常见缺陷及原因分析(2007/07/05 10:58)锻件的缺陷很多,产生的原因也多种多样,有锻造工艺不良造成的,有原材料的原因,有模具设计不合理所致等等。
尤其是少无切削加工的精密锻件,更是难以做到完全控制。
1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。
铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。
2.晶粒不均匀晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。
产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。
耐热钢及高温合金对晶粒不均匀特别敏感。
晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。
3.冷硬现象变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。
这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。
严重的冷硬现象可能引起锻裂。
4.裂纹裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。
裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。
如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在镦粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。
5.龟裂龟裂是在锻件表面呈现较浅的龟状裂纹。
在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。
引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。
②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。
③燃料含硫量过高,有硫渗人钢料表面。
大型锻件中常见的缺陷与对策大全摘要:I.引言- 大型锻件的应用背景- 锻造过程中常见缺陷概述II.大型锻件中的常见缺陷- 锻造裂纹- 夹杂物- 疏松- 偏析- 折叠III.大型锻件缺陷的对策- 针对锻造裂纹的对策- 针对夹杂物的对策- 针对疏松的对策- 针对偏析的对策- 针对折叠的对策IV.结论- 总结大型锻件中常见缺陷及对策- 强调质量控制的重要性正文:I.引言大型锻件广泛应用于航空、航天、能源等各个领域,其质量直接影响着设备的运行安全和可靠性。
在锻造过程中,由于各种原因,锻件中常会出现一些缺陷,如锻造裂纹、夹杂物、疏松、偏析和折叠等。
针对这些缺陷,本文将对大型锻件中的常见缺陷及对策进行探讨。
II.大型锻件中的常见缺陷1.锻造裂纹锻造裂纹是锻件中最常见的缺陷之一,主要由于锻造过程中金属的塑性变形不均匀,内部应力过大而产生。
裂纹可能出现在锻件的表面或内部,对锻件的使用性能产生严重影响。
2.夹杂物夹杂物是指在锻造过程中,金属中混入的氧化物、硅酸盐等非金属杂质。
夹杂物会影响锻件的力学性能和耐腐蚀性能,甚至导致锻件在使用过程中断裂。
3.疏松疏松是指锻件中出现的孔洞或疏松区域,通常由于金属在锻造过程中未完全充填模腔而产生。
疏松会降低锻件的强度和韧性,严重影响锻件的使用性能。
4.偏析偏析是指金属中某些元素或化合物在锻件中分布不均匀的现象。
偏析会导致锻件的性能不均匀,可能出现局部脆弱、疲劳裂纹等问题。
5.折叠折叠是指锻件在锻造过程中产生的折叠状缺陷,通常由于金属在流动过程中受阻或变形不充分而产生。
折叠会降低锻件的强度和韧性,影响锻件的使用性能。
III.大型锻件缺陷的对策1.针对锻造裂纹的对策- 优化锻造工艺,降低金属的内部应力- 严格控制锻造温度,避免过热或过冷- 合理设计模具,确保金属塑性变形均匀2.针对夹杂物的对策- 提高金属原料的质量,减少夹杂物的含量- 采用净化熔炼技术,降低金属中的杂质含量- 合理选择锻造工艺,避免金属氧化和硅酸盐形成3.针对疏松的对策- 提高锻造速度和变形程度,使金属充分充填模腔- 优化模具设计,确保金属流动畅通- 严格控制锻造过程中的润滑剂和冷却剂使用4.针对偏析的对策- 优化金属成分,控制元素含量和分布- 采用均匀化热处理工艺,改善金属的分布状态- 严格控制锻造过程中的温度梯度和冷却速度5.针对折叠的对策- 优化锻造工艺,确保金属流动顺畅- 合理设计模具,避免金属受阻和变形不充分- 严格控制锻造过程中的力度和速度IV.结论大型锻件中的常见缺陷及对策是锻造过程中需要关注的重要问题。
锻造缺陷一、原材料缺陷造成的锻造缺陷1. 层状断口2. 碳化物偏析:含碳量高的合金钢开坯和轧制时共晶碳化物未被打碎造成不均匀偏析。
危害:带状碳化物使工件在淬火时产生较大的变形,并沿着碳化物带状处产生裂纹。
当碳化物级别较高时,对高速钢刀具的使用寿命极为不利,级别>5级是,可造成刀具崩刃或断裂。
3. 缩管残余:钢锭冒口部分切除不净,开坯轧时将夹杂物缩松或偏析残留在钢材内部,淬火时形成裂纹。
二、落料不当造成的锻件缺陷1. 锻件端面与轴线倾斜:剪切时未压紧2. 撕裂:刀片间隙太大3. 毛刺:切料时,部分金属被带入剪刀间隙之间,产生尖锐和毛刺。
后果:造成加热时局部过烧,锻造时产生折叠和开裂。
4. 端部裂纹:剪切大断面坯料时,圆形端面变成椭圆形,材料中产生很大的内应力,引起应力裂纹。
另外,气割落料前,原材料没有预热,产生加工应力导致裂纹5. 凸芯开裂:车床下料时,棒料端面中心留有凸芯,锻造时凸芯冷却快,由于应力集中造成开裂。
三、锻造工艺不当造成的缺陷1. 过热:加热停留时间过长或加热温度过高引起材料晶粒粗大2. 过烧:过烧时,晶粒特别粗大,断口呈石状。
对碳钢,金相组织出现晶界氧化和熔化;工模具钢晶界因为熔化而出现鱼骨状莱氏体;铝合金出现晶界熔化三角区或复熔球。
3. 锻造裂纹1)加热裂纹:尺寸大的坯料快速加热造成内外温差大,热应力大造成开裂。
特征:由中心向四周辐射状扩展,多产生于高合金材料2)心部开裂:常在坯料的头部,开裂深度与加热和锻造有关,有事贯穿整个坯料。
原因:加热时保温不足,坯料未热透,外部温度高,塑性好,变形大,内部温度低变形小,内外产生不均匀变形3)材质缺陷开裂:锻造时在缩孔夹渣碳化物偏析等材料缺陷处形成锻造裂纹4. 脱碳和增碳1)脱碳:钢材表面在高温下,碳被氧化发生脱碳,使表层组织含碳量下降,硬度下降,强度下降,脱碳层的深度与钢的成分、炉内气氛、温度有关。
通常高碳钢易氧化脱碳,氧化性气氛中易脱碳。
锻件常见缺陷裂纹的原因锻件常见缺陷裂纹的原因有很多,主要包括以下几个方面:1. 锻造前材料的缺陷:锻造前原材料中可能存在着各种缺陷,如夹杂物、气孔、夹渣等。
这些缺陷会在锻造过程中被拉长、扭曲或剪切,最终导致锻件出现裂纹。
2. 异常冷却方式:锻件在冷却过程中,如果冷却速度过快或不均匀,会导致锻件内部产生应力集中,从而引发裂纹。
尤其是在大尺寸、复杂形状的锻件中,由于其冷却速度不均匀,容易出现内部裂纹。
3. 冷、热变形不均匀:锻造过程中,如果材料的冷、热变形不均匀,会导致锻件内部应力分布不均匀,从而引发裂纹的产生。
尤其是在复杂形状、壁厚不一的锻件中,易出现材料贫化、过冷区和高应力区,容易引发裂纹。
4. 锻造温度过低或过高:锻造温度是影响锻件质量的关键因素之一。
如果温度过低,会导致材料的硬化能力不足,易发生塑性变形困难,从而引发裂纹;而温度过高,则会导致材料的焊接性能下降,也容易引发裂纹。
5. 压力不均匀:锻造过程中,如果锻压力不均匀,会使锻件中的应力分布不均匀,从而容易产生应力集中和裂纹。
尤其是在薄壁锻件中,容易出现锻压力不均匀的问题,导致裂纹的发生。
6. 锻件设计不合理:锻件的设计是影响锻件质量的重要因素之一。
如果锻件的形状、结构设计不合理,容易导致应力集中,从而引发裂纹的产生。
尤其是在复杂形状、尺寸大的锻件中,设计不合理会增加裂纹发生的概率。
7. 热处理不当:热处理是锻件制造过程中的关键环节,如果热处理不当,会导致锻件中的应力不释放或释放不充分,从而引发裂纹。
此外,热处理时的温度、时间等参数也需要合适,否则也可能导致裂纹的产生。
这些都是导致锻件常见缺陷裂纹的主要原因。
为了降低或避免裂纹的产生,需要从原材料选用、工艺控制、设备维护等方面做好控制和管理。
同时,制定合理的锻造工艺和热处理工艺,合理设计锻件形状和结构,对裂纹的产生起到有力的控制和避免作用。
还需要加强工作人员的培训和技能提升,提高他们的专业水平和质量意识,从而减少裂纹缺陷的发生,提高锻件的质量。
锻件缺陷的主要原因及处理一、原材料的主要缺陷及其引起的锻件缺陷锻造用的原材料为铸锭、轧材、挤材及锻坯。
而轧材、挤材及锻坯分别是铸锭经轧制、挤压及锻造加工成的半成品。
一般情况下,铸锭的内部缺陷或表面缺陷的出现有时是不可避免的。
例如,内部的成分与组织偏析等。
原材料存在的各种缺陷,不仅会影响锻件的成形,而且将影响锻件的最终质量。
根据不完全的统计,在航空工业系统中,导致航空锻件报废的诸多原因中,由于原材料固有缺陷引起的约占一半左右。
因此,千万不可忽视原材料的质量控制工作。
由于原材料的缺陷造成的锻件缺陷通常有:1.表面裂纹表面裂纹多发生在轧制棒材和锻制棒材上,一般呈直线形状,和轧制或锻造的主变形方向一致。
造成这种缺陷的原因很多,例如钢锭内的皮下气泡在轧制时一面沿变形方向伸长,一面暴露到表面上和向内部深处发展。
又如在轧制时,坯料的表面如被划伤,冷却时将造成应力集中,从而可能沿划痕开裂等等。
这种裂纹若在锻造前不去掉,锻造时便可能扩展引起锻件裂纹。
2.折叠折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,形成和材料表面成一定倾角的折缝。
对钢材,折缝内有氧化铁夹杂,四周有脱碳。
折叠若在锻造前不去掉,可能引起锻件折叠或开裂。
3.结疤结疤是在轧材表面局部区域的一层可剥落的薄膜。
结疤的形成是由于浇铸时钢液飞溅而凝结在钢锭表面,轧制时被压成薄膜,贴附在轧材的表面,即为结疤。
锻后锻件经酸洗清理,薄膜将会剥落而成为锻件表面缺陷。
4.层状断口层状断口的特征是其断口或断面与折断了的石板、树皮很相似。
层状断口多发生在合金钢(铬镍钢、铬镍钨钢等),碳钢中也有发现。
这种缺陷的产生是由于钢中存在的非金属夹杂物、枝晶偏析以及气孔疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片层状。
如果杂质过多,锻造就有分层破裂的危险。
层状断口越严重,钢的塑性、韧性越差,尤其是横向力学性能很低,所以钢材如具有明显的层片状缺陷是不合格的。
锻件的瑕疵原因及检验方法1锻件的瑕疵类别把锻件瑕疵分类,可分为:原料切料时的、加热时的、锻造时的、热处理时的、清除氧化锈皮时的、切削加工时的等许多种类。
每种类又可分为一些小的类别。
但锻件常见的瑕疵和产生瑕疵的原因叙述如下:1)不用模型锻造生产大批锻件,虽然是由同一锻模制造,但有时却还有不准确和尺寸不相同的锻件出现,这是因锻模被磨损的结果。
2)锻模在分模面上错移3)锻件没有锻透4)锻件上有压痕和皱折,这是因金属在模槽中的形状不合适引起每一部分材料堆聚,或者是前面工序锤击过重所形成了卷边后道工序将氧化皮夹在里面,因此产生了夹层。
5)锻件表面上形成斑疤是因为锻件上或锻模槽内氧化锈皮没有清除的结果。
2锻件几何外观质量检验几何尺寸的检查法要点如下:1)检查高度和直径:抽查时用普通卡尺,全查时用极限量规。
2)检查,抽查时用带千分表的卡,全查时用极限卡钳。
3)孔径:用极限量规。
4)检查大孔径,用样板测量。
5)检查长度:如只测量一个尺寸,可用杆状样板以槽宽的公差检查,如同时测量几个尺寸,可用成形样板检查。
6)检查弯曲度:将锻件放置在元宝铁或磙子上旋转,检查脉动,如大量检查曲轴或其他截面有变化的件,可同时检查几处脉动。
7)检查表面翘曲度:将大面积锻件放置在三个支点上,用深度仪检查。
8)检查表面平行度:将锻件放置在基准面上,用深度仪检查。
9)检查表面垂直度:将锻件放置在元宝铁上,用深度仪检查,大量检查时,用电接触仪,尺寸误差超过公差,红灯就亮,合格的锻件,绿灯就亮。
10)检查角度:用量角器或专门的量角仪。
3锻件表面质量检验1)目视检查这是检验锻件表面质量最普遍、最常用的方法,凭肉眼观察锻件表面是否有折叠、裂纹、压伤、疤痕、表面过烧等缺陷。
锻件表面隐藏较深的缺陷,常在酸洗、喷沙或滚筒清除表面氧化皮后进行目视检查。
3)磁力探伤也称磁粉探伤或磁粉检验,可用来发现锻件肉眼不能检查出的表面层中微小缺陷,如微小裂纹、折纹、夹杂等。
部分金属材料中常见的缺陷一. 锻件中的常见缺陷及产生的原因:锻件中的缺陷主要来源于两个方面:一种是由铸锭中缺陷引起的缺陷;另一种是锻造过程及热处理中产生的缺陷。
1.1锻件中常见的缺陷类型有:1.1.1缩孔;1.1.2缩松;1.1.3夹杂物;1.1.4裂纹;1.1.5折叠;1.1.6白点。
1.2 锻件中常见缺陷产生的原因及常出现的部位:1.2.1缩孔:它是铸锭冷却收缩时在头部形成的缺陷,锻造时因切头量不足而残留下来,多见于轴类锻件的头部, 具有较大的体积,并位于横截面中心, 在轴向具有较大的延伸长度。
1.2.2缩松:它是在铸造凝固收缩时形成的孔隙和孔穴, 在锻造过程中因变形量不足而未被消除, 缩松缺陷多出现在大型锻件中。
1.2.3夹杂物: 根据其来源或性质夹杂物又可分为: 内在非金属夹杂物、外来非金属夹杂物、金属夹杂物。
内在非金属夹杂物是铸锭中包含的脱氧剂、金属元素等与气体的反产物,尺寸较小,常被熔液漂浮,挤至最后凝固的铸锭中心及头部。
外来非金属夹杂物是冶炼、浇注过程中混入的耐火材料或杂质,故常混杂于铸锭下部,偶然落入的非金属夹杂则无确定位置。
金属夹杂物是冶炼时加入合金较多且尺寸较大,或者浇注时飞溅小粒或异种金属落入后又未被全部熔化而形成的缺陷。
1.2.4裂纹:锻件中裂纹形成的原因很多,按形成的原因,裂纹的种类可大致分为以下几种:1.2.4.1因冶炼缺陷(如缩孔残余)在锻造时扩大形成的裂纹。
1.2.4.2锻件工艺不当(如加热、加热速度过快、变行不均匀、变行过大、冷却速度过快等)而形成的裂纹。
1.2.4.3热处理过程中形成的裂纹:如淬火时加热温度较高,使锻件组织粗大淬火时可能产生裂纹;冷却不当引起的开裂,回火不及时或不当,由锻件内部残余力引起的裂纹。
1.2.5折叠:热金属的凸出部位被压折并嵌入锻件表面形成的缺陷,多发生在锻件的内圆角和尖角处。
折叠表面是氧化层,能使该部位的金属无法连接。
1.2.6白点:锻件中由于氢的存在所产生的小裂纹称为白点。
引发锻件缺陷的主要原因一、备料不当产生的缺陷及其对锻件的影响备料不当产生的缺陷有以下几种:1.切斜切斜是在锯床或冲床上下料时,由于未将棒料压紧,致使坯料端面相对于纵轴线的倾斜量超过了规定的许可值。
严重的切斜,可能在锻造过程中形成折叠。
2.坯料端部弯曲并带毛刺在剪断机或冲床上下料时,由于剪刀片或切断模刃口之间的间隙过大或由于刃口不锐利,使坯料在被切断之前已有弯曲,结果部分金属被挤人刀片或模具的间隙中,形成端部下垂毛刺。
有毛刺的坯料,加热时易引起局部过热、过烧,锻造时易产生折叠和开裂。
3.坯料端面凹陷在剪床上下料时,由于剪刀片之间的间隙太小,金属断面上、下裂纹不重合,产生二次剪切,结果部分端部金属被拉掉,端面成凹陷状。
这样的坯料锻造时易产生折叠和开裂。
4.端部裂纹在冷态剪切大断面合金钢和高碳钢棒料时,常常在剪切后3~4h发现端部出现裂纹。
主要是由于刀片的单位压力太大,使圆形断面的坯料压扁成椭圆形,这时材料中产生了很大的内应力。
而压扁的端面力求恢复原来的形状,在内应力的作用下则常在切料后的几小时内出现裂纹。
材料硬度过高、硬度不均和材料偏析较严重时也易产生剪切裂纹。
有端部裂纹的坯料,锻造时裂纹将进一步扩展。
5.气割裂纹气割裂纹一般位于坯料端部,是由于气割前原材料没有预热,气割时产生组织应力和热应力引起的。
有气割裂纹的坯料,锻造时裂纹将进一步扩展。
因此锻前应予以预先清除。
6.凸芯开裂车床下料时,在棒料端面的中心部位往往留有凸芯。
锻造过程中,由于凸芯的断面很小,冷却很快,因而其塑性较低,但坯料基体部分断面大,冷却慢,塑性高。
因此,在断面突变交接处成为应力集中的部位,加之两部分塑性差异较大,故在锤击力的作用下,凸芯的周围容易造成开裂。
二、加热工艺不当常产生的缺陷加热不当所产生的缺陷可分为:①由于介质影响使坯料外层组织化学状态变化而引起的缺陷,如氧化、脱碳、增碳和渗硫、渗铜等。
②由内部组织结构的异常变化引起的缺陷,如过热、过烧和未热透等。
锻件的常见缺陷及原因分析(2007/07/05 10:58)锻件的缺陷很多,产生的原因也多种多样,有锻造工艺不良造成的,有原材料的原因,有模具设计不合理所致等等。
尤其是少无切削加工的精密锻件,更是难以做到完全控制。
1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。
铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。
2.晶粒不均匀晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。
产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。
耐热钢及高温合金对晶粒不均匀特别敏感。
晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。
3.冷硬现象变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。
这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。
严重的冷硬现象可能引起锻裂。
4.裂纹裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。
裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。
如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在镦粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。
5.龟裂龟裂是在锻件表面呈现较浅的龟状裂纹。
在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。
引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。
②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。
③燃料含硫量过高,有硫渗人钢料表面。
大型锻件中常见的缺陷与对策大型锻件中常见的缺陷与对策大型锻件中的缺陷,从性质上分为化学成分、组织性能不合格,第二相析出,类孔隙性缺陷和裂纹五大类。
从缺陷的产生方面可分为,在冶炼、出钢、注锭、脱模冷却或热送过程中产生的原材料缺陷及在加热、锻压、锻后冷却和热处理过程中产生的锻件缺陷两大类。
大型锻造中,由于锻件截面尺寸大,加热、冷却时,温度的变化和分布不均匀性大,锻压变形时,金属塑性流动差别大,加上钢锭大冶金缺陷多,因而容易形成一些不同于中小型锻造的缺陷。
如严重偏析和疏松,密集性夹杂物,发达的柱状晶及粗大不均匀结晶,敏感开裂与白点倾向,晶粒遗传性与回火脆性,组织性能的严重不均匀性,形状尺寸超差等等。
大型锻件中常见的主要缺陷有:1.偏析钢中化学成分与杂质分布的不均匀现象,称为偏析。
一般将高于平均成分者,称为正偏析,低于平均成分者,称为负偏析。
尚有宏观偏析,如区域偏析与微观偏析,如枝晶偏析,晶间偏析之分。
大锻件中的偏析与钢锭偏析密切相关,而钢锭偏析程度又与钢种、锭型、冶炼质量及浇注条件等有关。
合金元素、杂质含量、钢中气体均加剧偏析的发展。
钢锭愈大,浇注温度愈高,浇注速度愈快,偏析程度愈严重。
(1)区域偏析它属于宏观偏析,是由钢液在凝固过程中选择结晶,溶解度变化和比重差异引起的。
如钢中气体在上浮过程中带动富集杂质的钢液上升的条状轨迹,形成须状∧形偏析。
顶部先结晶的晶体和高熔点的杂质下沉,仿佛结晶雨下落形成的轴心∨形偏析。
沉淀于锭底形成负偏析沉积锥。
最后凝固上部区域,碳、硫、磷等偏析元素富集,成为缺陷较多的正偏析区。
图1为我国解剖的55t34CrMolA钢锭纵剖面硫印低倍图片及区域偏析示意图。
图1 钢锭区域偏析硫印示意图①“∧”型偏析带②“∨”型偏析带③负偏析区防止区域偏析的对策是:1)降低钢中硫、磷等偏析元素和气体的含量,如采用炉外精炼,真空碳脱氧(VCD)处理及锭底吹氩工艺。
2)采用多炉合浇、冒口补浇、振动浇注及发热绝热冒口,增强冒口补缩能力等措施。
锻造常见的缺陷与产生原因锻造是一种将金属材料加热至一定温度,然后在受力的作用下使其产生塑性变形的加工过程。
锻造是一种高效且经济的金属加工方法,但在实际加工过程中,锻造件有可能会出现一些缺陷。
这些缺陷主要包括:夹杂、气孔、脱合、表面裂纹等。
一、夹杂夹杂是指金属中出现的异物,这些异物可以是氧化物、硫化物和化合物等。
夹杂会影响锻件的使用性能,尤其是在高温和高压力下容易引起损坏。
因此,在生产过程中应尽量减少夹杂产生的机会。
夹杂的产生原因主要有以下几个方面:1、原材料中的夹杂。
原材料中的夹杂主要来自矿物中的杂质和在熔融状态下未熔化的粒子。
2、熔池中的夹杂。
熔池中的夹杂主要来自熔融过程中的氧化和化学反应等。
3、操作不当。
加工过程中的不当操作也可能造成夹杂的产生。
例如,在操作过程中未能清除材料的表面杂质和附着物等。
二、气孔气孔是指金属内部或表面上的空气或气体集聚。
气孔可以降低金属的强度和韧性,因此在实际生产中要尽量减少气孔的产生。
气孔的产生原因主要有以下几个方面:1、原材料中的气孔。
原材料中的气孔主要来自于矿物中的吸附气体和在熔融状态下的蒸汽等。
2、熔池中的气孔。
熔池中的气孔主要来自于熔融状态下的吸入空气和氧化反应等。
3、操作不当。
加工过程中的操作不当可能导致气孔的产生。
例如,在操作过程中未能及时清除材料表面的杂质,或在锻造过程中未能及时捕捉和清除金属表面的气体等。
三、脱合脱合是指金属加工过程中出现的脱粘或分层现象。
脱合会降低金属材料的强度和韧性,因此在生产过程中要尽量避免脱合现象。
脱合的产生原因主要有以下几个方面:1、金属材料的不均匀变形。
在加工和锻造过程中,金属材料可能会出现不均匀的变形,从而导致脱合现象。
2、材料的微观组织不均。
金属材料的微观组织不均可能会导致脱合现象的发生。
例如,过度冷却或退火不够充分等。
3、操作不当。
加工过程中操作不当也可能导致脱合现象的发生。
例如,加热过程中温度控制不当,以及在锻造过程中对锻造参数的控制不够严格等。
锻造件缺陷是指锻造过程中锻件上产生的外在的和内在的质量不合要求的各种毛病。
锻件缺陷如按其表现形式来区分,可分为:外部的、内部的和性能的三种。
外部缺陷如几何尺寸和形状不符合要求。
表面裂纹、折叠、缺肉、错差、模锻不足、表面麻坑、表面气泡和橘皮状表面等。
这类缺陷显露在锻件的外表面上,比较容易发现或观察到。
内部缺陷又可分为低倍缺陷和显微缺陷两类。
前者如内裂、缩孔、疏松、白点、锻造流纹紊乱、偏析、粗晶、石状断口、异金属夹杂等;后者如脱碳、增碳、带状组织。
铸造组织残留和碳化物偏析级别不符合要求等。
内部缺陷存在于锻件的内部,原因复杂,不易辨认,常常给生产造成较大的困难。
反映在性能方面的缺陷,如室温强度、塑性、韧性或疲劳性能等不合格;或者高温瞬时强度,持久强度、持久塑性、蠕变强度不符合要求等。
性能方面的缺陷,只有在进行了性能试验之后,才能确切知道。
值得注意的是内外部和性能方面的缺陷这三者之间,常常有不可分割的联系。
例如过热和过烧表现于外部常为裂纹的形式:表现于内部则为晶粒粗大或脱碳,表现在性能方面则为塑性和韧性的降低。
因此,为了准确确定锻件缺陷的原因,除了必须辨明它们的形态和特征之外,还应注意找出它们之间的内在联系。
锻造过程产生的缺陷和热处理过程产生的缺陷。
按照锻造过程中各工序的顺序,还可将锻造过程中产生的缺陷,细分为以下几类:由下料产生的缺陷;由加热产生的缺陷:由锻造产生的缺陷:由冷却产生的缺陷和由清理产生的缺陷等。
不同工序可以产生不同形式的缺陷,但是,同一种形式的缺陷也可以来自不同的工序。
由于产生锻件缺陷的原因往往与原材料生产过程和锻后热处理有关,因此在分析锻件缺陷产生的原因时,不要孤立地来进行。
大型锻件中常见的缺陷与对策大全(实用版)目录1.大型锻件概述2.大型锻件中常见的缺陷2.1 偏析2.2 疏松2.3 密集性夹杂物2.4 发纹2.5 白点3.缺陷产生的原因3.1 温度变化和分布不均匀3.2 金属塑性流动差别大3.3 钢锭冶金缺陷多4.缺陷的检测方法4.1 无损检测技术4.2 表面检测5.缺陷的对策5.1 优化锻造工艺5.2 改进材料质量5.3 提高设备性能5.4 强化生产管理正文一、大型锻件概述大型锻件是指尺寸大、重量重的锻件,通常用于制造大型机械设备、船舶、电力设备等。
由于其尺寸和重量的特性,大型锻件在制造过程中容易产生各种缺陷,严重影响设备的性能和安全。
因此,研究大型锻件中常见的缺陷及其对策是十分必要的。
二、大型锻件中常见的缺陷1.偏析偏析是指合金中成分分布不均匀的现象,可能导致锻件的力学性能不稳定。
2.疏松疏松是指锻件中存在许多孔隙,容易降低锻件的强度和韧性。
3.密集性夹杂物密集性夹杂物是指锻件中存在的大量微小夹杂物,会影响锻件的性能。
4.发纹发纹是指锻件表面出现的细小纹路,可能引起疲劳裂纹,影响锻件的使用寿命。
5.白点白点是指锻件中出现的白色斑点,通常是由于锻件冷却过快引起的,可能影响锻件的性能。
三、缺陷产生的原因1.温度变化和分布不均匀大型锻件在加热和冷却过程中,由于截面尺寸大、热传导不均匀,导致温度变化和分布不均匀,从而引发缺陷。
2.金属塑性流动差别大在锻造过程中,金属的塑性流动差别大,可能导致部分区域变形不足,产生缺陷。
3.钢锭冶金缺陷多钢锭中的冶金缺陷,如夹杂物、气孔等,在锻造过程中可能被放大,导致锻件缺陷。
四、缺陷的检测方法1.无损检测技术无损检测技术可以检测锻件内部的缺陷,如射线探伤、超声波探伤等。
2.表面检测表面检测可以观察锻件表面的缺陷,如磁粉探伤、渗透探伤等。
五、缺陷的对策1.优化锻造工艺通过调整加热温度、保温时间、锻造顺序等,优化锻造工艺,减少缺陷产生。
模锻在锻造过程中缺陷及预防措施引言模锻是一种常见的金属锻造工艺,具有高效、高精度的特点。
然而,在模锻过程中,由于各种因素的影响,常常会出现一些缺陷。
本文将详细介绍模锻过程中常见的缺陷及其预防措施,旨在帮助读者更好地理解模锻工艺,提高产品质量。
1. 毛刺毛刺是模锻过程中常见的缺陷之一,主要表现为锻件表面出现不规则的突起。
毛刺的产生主要与模具设计、焊缝准备不当、材料不合理等因素有关。
1.1 模具设计在模锻过程中,模具的设计起着至关重要的作用。
合理的模具设计可以减少毛刺的发生。
首先,要确保模具的表面光洁度,在模具表面涂覆一层光滑的润滑剂,减少锻件与模具的摩擦。
其次,要注意模具的边缘处理,采用倒角或圆弧等设计,减少锻件与模具接触时的边缘压力。
1.2 焊缝准备毛刺的另一个常见原因是焊缝准备不当。
焊缝处存在不均匀的应力分布,这会导致焊缝周围的材料在锻造过程中容易形成毛刺。
为了解决这个问题,我们可以通过提前进行焊缝的减薄和均匀化处理,确保焊缝处的应力分布更加均匀。
1.3 材料选择材料的选择对模锻过程中毛刺的发生起着重要作用。
某些材料在模锻时容易形成毛刺,这主要是因为其表面粗糙度较高或锻造温度过高。
合理选择材料,并严格控制锻造温度,可以有效预防毛刺的产生。
2. 气孔气孔是模锻过程中另一个常见的缺陷,主要由于锻件内部存在气体残留或吸附气体进入而引起。
气孔不仅影响锻件的外观质量,还会降低其力学性能。
2.1 真空处理为了减少气孔的产生,可以在模锻过程中采用真空处理技术。
真空处理可以有效地去除锻件内部的气体,减少气孔的形成。
在真空处理前,应注意确保锻件表面的净度,减少对气孔形成的影响。
2.2 材料处理合理的材料处理也是减少气孔的重要措施。
材料在模锻前,可以通过热处理、脱气等方式减少内部气体的含量。
同时,在材料的选择上,应尽量选择低气孔率的材料,以减少气孔的形成。
2.3 控制锻造参数控制锻造参数是减少气孔形成的关键。
首先,要合理控制锻造温度,确保材料能充分熔化并排出内部的气体。
锻件中的常见缺陷及产生的原因锻件中的常见缺陷及产生的原因:锻件中的缺陷主要来源于两个方面:一种是由铸锭中缺陷引起的缺陷;另一种是锻造过程及热处理中产生的缺陷。
锻件中常见的缺陷类型有:1.1.1缩孔;1.1.2缩松;1.1.3夹杂物;1.1.4裂纹;1.1.5折叠;1.1.6白点。
锻件中常见缺陷产生的原因及常出现的部位:1.2.1缩孔:它是铸锭冷却收缩时在头部形成的缺陷,锻造时因切头量不足而残留下来,多见于轴类锻件的头部, 具有较大的体积,并位于横截面中心, 在轴向具有较大的延伸长度。
1.2.2缩松:它是在铸造凝固收缩时形成的孔隙和孔穴, 在锻造过程中因变形量不足而未被消除, 缩松缺陷多出现在大型锻件中。
1.2.3夹杂物: 根据其来源或性质夹杂物又可分为: 内在非金属夹杂物、外来非金属夹杂物、金属夹杂物。
内在非金属夹杂物是铸锭中包含的脱氧剂、金属元素等与气体的反产物,尺寸较小,常被熔液漂浮,挤至最后凝固的铸锭中心及头部。
外来非金属夹杂物是冶炼、浇注过程中混入的耐火材料或杂质,故常混杂于铸锭下部,偶然落入的非金属夹杂则无确定位置。
金属夹杂物是冶炼时加入合金较多且尺寸较大,或者浇注时飞溅小粒或异种金属落入后又未被全部熔化而形成的缺陷。
1.2.4裂纹:锻件中裂纹形成的原因很多,按形成的原因,裂纹的种类可大致分为以下几种:1.2.4.1因冶炼缺陷(如缩孔残余)在锻造时扩大形成的裂纹。
1.2.4.2锻件工艺不当(如加热、加热速度过快、变行不均匀、变行过大、冷却速度过快等)而形成的裂纹。
11.2.4.3热处理过程中形成的裂纹:如淬火时加热温度较高,使锻件组织粗大淬火时可能产生裂纹;冷却不当引起的开裂,回火不及时或不当,由锻件内部残余力引起的裂纹。
1.2.5折叠:热金属的凸出部位被压折并嵌入锻件表面形成的缺陷,多发生在锻件的内圆角和尖角处。
折叠表面是氧化层,能使该部位的金属无法连接。
1.2.6白点:锻件中由于氢的存在所产生的小裂纹称为白点。
锻件中的常见缺陷及产生的原因:
锻件中的缺陷主要来源于两个方面:一种是由铸锭中缺陷引起的缺陷;另一种是锻造过程及热处理中产生的缺陷。
锻件中常见的缺陷类型有:
1.1.1缩孔;
1.1.2缩松;
1.1.3夹杂物;
1.1.4裂纹;
1.1.5折叠;
1.1.6白点。
锻件中常见缺陷产生的原因及常出现的部位:
1.2.1缩孔:它是铸锭冷却收缩时在头部形成的缺陷,锻造时因切头量不足而残留下来,多见于轴类锻件的头部, 具有较大的体积,并位于横截面中心, 在轴向具有较大的延伸长度。
1.2.2缩松:它是在铸造凝固收缩时形成的孔隙和孔穴, 在锻造过程中因变形量不足而未被消除, 缩松缺陷多出现在大型锻件中。
1.2.3夹杂物: 根据其来源或性质夹杂物又可分为: 内在非金属夹杂物、外来非金属夹杂物、金属夹杂物。
内在非金属夹杂物是铸锭中包含的脱氧剂、金属元素等与气体的反产物,尺寸较小,常被熔液漂浮,挤至最后凝固的铸锭中心及头部。
外来非金属夹杂物是冶炼、浇注过程中混入的耐火材料或杂质,故常混杂于铸锭下部,偶然落入的非金属夹杂则无确定位置。
金属夹杂物是冶炼时加入合金较多且尺寸较大,或者浇注时飞溅小粒或异种金属落入后又未被全部熔化而形成的缺陷。
1.2.4裂纹:锻件中裂纹形成的原因很多,按形成的原因,裂纹的种类可大致分为以下几种:
1.2.4.1因冶炼缺陷(如缩孔残余)在锻造时扩大形成的裂纹。
1.2.4.2锻件工艺不当(如加热、加热速度过快、变行不均匀、变行过大、冷却速度过快等)而形成的裂纹。
1
1.2.4.3热处理过程中形成的裂纹:如淬火时加热温度较高,使锻件组织粗大淬火时可能产生裂纹;冷却不当引起的开裂,回火不及时或不当,由锻件内部残余力引起的裂纹。
1.2.5折叠:热金属的凸出部位被压折并嵌入锻件表面形成的缺陷,多发生在锻件的内圆角和尖角处。
折叠表面是氧化层,能使该部位的金属无法连接。
1.2.6白点:锻件中由于氢的存在所产生的小裂纹称为白点。
白点对钢材的力学性能影响很大,当白点平面垂直方向受应力作用时,会导致钢件突然断裂。
因此,钢材不允许白点存在。
白点多在高碳钢、马氏体钢和贝氏体钢中出现。
奥氏体钢和低碳铁素体钢一般不出现白点。
锻件中缺陷的重要特征之一:
锻件中缺陷所具有的特点与其形成过程有关,铸锭组织在锻造过程中沿金属延伸方向被拉长,由此形成的纤维状组织通常被成为金属流线。
金属流线方向一般代表锻造过程中金属延伸的主要方向。
除裂纹外锻件中的多数缺陷,尤其是由铸锭中缺陷引起的锻件缺陷常常是沿金属流线方向分布的,这是锻件中缺陷的重要特征之一。
2。