乙烯裂解装置工艺流程详细介绍(优质荟萃)
- 格式:ppt
- 大小:2.37 MB
- 文档页数:3
乙烯装置工艺流程乙烯装置工艺流程是指通过一系列的化学反应和物理操作将石油炼制工艺中的乙烷转化为乙烯的过程。
乙烯被广泛应用于塑料、橡胶、纺织、化学纤维、合成橡胶等行业。
乙烯装置工艺流程主要包括原料处理、烷烃裂解和产品分离三个主要步骤。
首先是原料处理阶段。
乙烯装置的主要原料是来自炼油厂的乙烷。
首先将乙烷经过吸湿、除氧、脱硫等处理过程,去除其中的杂质和有害物质。
然后将乙烷经过压缩和加热,使其达到合适的反应温度和压力。
接下来是烷烃裂解阶段。
将处理后的乙烷送入炼油炉内,通过加热和催化剂的作用,将乙烷分解为乙烯和一氢化合物。
这个过程称为烷烃裂解。
在这个过程中,需要控制好温度、压力和催化剂的用量,以达到最佳的产率和选择性。
最后是产品分离阶段。
经过烷烃裂解后,产生的混合气体中含有乙烯、乙烷、丙烷、丙烯等多种组分。
这些组分需要通过分离装置进行分离和纯化。
常用的分离装置有分馏塔、冷凝器、吸收塔等。
通过不同的温度和压力条件,将不同沸点和溶解度的组分分离出来,得到纯净的乙烯产品。
乙烯装置工艺流程中还包括一些辅助操作和单位,如冷却水循环系统、废气处理系统、催化剂循环系统等。
这些系统和单位的设计和运行对于整个乙烯装置的稳定运行和产品质量的控制十分重要。
乙烯装置工艺流程除了以上主要步骤外,还需要对反应过程进行监控和控制。
通过实时监测反应温度、压力、催化剂的活性等关键参数,并及时调整操作条件,以确保乙烯装置的安全和高效运行。
总之,乙烯装置工艺流程是一个复杂的过程,需要在严格的控制条件下进行操作。
通过原料处理、烷烃裂解和产品分离等步骤,将炼油厂的乙烷转化为纯净的乙烯产品。
这个过程对于乙烯产量和质量的控制有着重要的影响,也对环境保护和能源消耗具有重要意义。
乙烯装置工艺流程乙烯是一种重要的化工原料,广泛应用于塑料、橡胶、纤维和化学制品等产业。
乙烯的生产工艺主要有石油重整、煤炭气化和石油副产品裂解等方法。
下面将详细介绍乙烯从石油副产品裂解生产的工艺流程。
乙烯的主要原料是轻石脑油,它是从石油中提炼的一种轻油产品。
乙烯装置的主要设备有加热炉、裂解炉、分离塔和冷却器等。
首先,轻石脑油通过加热炉进入裂解炉,加热炉的主要作用是将石脑油加热至适宜的温度。
加热过程中,通过调整炉内的加热介质和温度,使得石脑油达到裂解温度。
在裂解炉中,石脑油经过高温和高压条件下的热裂解反应,产生大量的碳氢化合物裂解产物,其中包括乙烯。
裂解过程中,裂解产物经过一系列复杂的热化学反应,使得原本较大分子量的石油副产品分解为较小分子量的乙烯等轻质烃类。
裂解产物进入分离塔进行分离,分离塔通过温度梯度的控制,使不同碳数的烃类分子得以在不同的温度下分离出来。
通过塔内的分离装置和冷却装置,将烃类分子按照碳数从高到低依次从顶部冷凝收集,实现乙烯的提纯。
最后,经过冷却器冷却后的乙烯进一步通过吸附装置和脱附装置进行除杂和除水处理,去除杂质和水分,使得乙烯的纯度得到进一步提高。
最终,乙烯通过分离塔的底部收集出来,并按照规格要求进行包装或转运。
乙烯装置工艺流程中还需要考虑能耗和安全等方面的因素。
例如,在加热炉的设计中需要注意保护装置的耐火材料,降低能耗和热损失。
在裂解炉的设计中要考虑裂解反应的热效应和产物的降温处理等因素,防止过度裂解和产物分解。
在分离塔和冷却器的设计中需要合理配置分离器和冷凝器,提高热传递效率,降低能耗。
总体来说,乙烯装置的工艺流程是一个复杂而精细的过程,需要综合考虑化学反应、热传递、质量的控制和安全等多个方面的要求。
通过合理设计和优化操作,可以实现乙烯的高效生产和提纯,满足不同行业对乙烯的需求。
福炼乙烯装置利用炼厂直馏轻石脑油和直馏重石脑油(LVN/HVN)、加氢尾油(HVGO)、加氢裂化轻石脑油(HCN)、裂解汽油加氢装置C5循环组分、来自于芳烃抽提装置的C6提余油、炼厂饱和C3/C4液化气、循环乙烷、循环丙烷等原料,通过高温裂解,深冷分离产出主产品乙烯和丙烯以及付产品C3液化气(也可以切换到循环裂解丙烷)、丁二烯、MTBE/丁烯-1、甲烷、氢气、粗裂解汽油和裂解燃料油(由裂解柴油和裂解燃料油混合而成)。
装置的乙烯、丙烯产品送至下游生产聚乙烯、聚丙烯产品。
乙烯联合装置主要由裂解、压缩、分离、低温罐区、汽油加氢、混合碳四处理等装置。
乙烯联合装置工艺流程简述:1、裂解工序接收来自界外的炼厂C3/C4、粗混合C4、C5循环物流、分离部分返回的循环乙烷/循环丙烷、芳烃提余油、轻石脑油、重石脑油、以及加氢裂化石脑油(HCN),分别送入SL-1型及SL-2型炉内,加稀释蒸汽(DS)进行裂解,得到的裂解气(即:氢气、甲烷、乙烯、乙烷、丙烯、丙烷、丁二烯、裂解汽油、裂解燃料油等组分的混合物)经废热锅炉急冷,油冷、水冷至常温,回收部分热量,并把其中大部分油类产品分离后送入后续工序。
负责接收从界外来的高压锅炉给水并将其转化为压力11.7Mpa、温度500~525℃的超高压蒸汽(VHS)。
接收本装置分离工序返回的甲烷氢及从界外补充的碳三/碳四等物料经混合、汽化后做为裂解炉燃料气。
2、压缩工序将来自裂解工序的裂解气,经五段压缩后,将压力提高到4.173 MPag,为深冷分离提供条件。
裂解气在压缩过程中,逐段冷却和分离,除去重烃和水,并在三段出口设有碱洗,除去裂解气中的酸性气体,为分离系统提供合格的裂解气。
制冷系统由丙烯制冷系统和乙烯、甲烷二元制冷系统构成,为深冷分离提供-40℃,-27℃,-3℃、13℃四个级别的丙烯冷剂;-40℃~-135℃的二元冷剂。
丙烯、二元制冷系统为多段压缩,多级节流的封闭循环系统。
乙烯装置工艺流程
一、原料准备与输送
乙烯装置的原料主要为石脑油,通过原料油泵输送到装置内。
在原料进入裂解炉之前,需经过一系列的预处理,如脱水、脱硫、脱盐等,以去除杂质,保证原料质量。
二、蒸汽裂解
蒸汽裂解是乙烯装置的核心工艺,通过高温和催化剂的作用,使原料油发生裂解反应,生成乙烯、丙烯等烃类气体。
裂解炉是蒸汽裂解的关键设备,其温度和压力控制对裂解效果具有重要影响。
三、裂解气压缩
裂解气中含有大量烃类气体和惰性气体,需经过压缩和冷凝分离,使烃类气体液化并分离出来。
压缩机组是裂解气压缩的关键设备,其稳定运行对整个装置的平稳运行具有重要意义。
四、裂解气净化
裂解气中还含有一定量的硫化物、氮化物、氯化物等杂质,这些杂质会影响后续产品的质量和加工性能。
因此,需要对裂解气进行净化处理,去除其中的杂质。
常用的净化方法有酸碱洗涤、溶剂吸收等。
五、乙炔发生与净化
在乙烯装置中,部分裂解气会被用于生产乙炔。
乙炔的生产采用电石法,即将电石和水反应生成乙炔和氢氧化钙。
生成的乙炔需要进行净化处理,去除其中的杂质,如硫化氢、磷化氢等。
六、裂解汽油加氢
裂解汽油是乙烯装置的重要副产品之一,其主要成分是芳烃和烯烃。
为了提高裂解汽油的质量和利用价值,需要对裂解汽油进行加氢处理,将其中的不饱和烃转化为饱和烃。
加氢反应是在高温高压下进行的,需要使用催化剂来加速反应过程。
利用裂解炉生产乙烯热裂解特点:高温,吸热量大低烃分压,短停留时间,避免二次反应的发生反应产物是复杂的混合物热裂解的供热方式如下所示:直接供热法:工艺复杂,裂解气质量低,成本过高。
其裂解工艺一直没有很大发展!工业上烃类裂解生产乙烯的主要过程为:原料→热裂解→裂解气预处理(包括热量回收、净化、气体压缩等)→裂解气分离→产品乙烯、丙烯及联产物等。
一、原料烃组成对裂解结果的影响影响裂解结果的因素:原料特性;裂解工艺条件;裂解反应器型式;裂解方法等。
原料特性是最重要的影响因素!(一) 原料烃的族组成、含氢量、芳烃指数、特性因数裂解产物分布的影响1. 族组成(简称PONA值)定义:是指原料烃分子中所含各族烃的质量百分比P—烷族烃 N—环烷族烃O—烯族烃A—芳香族烃从表1-7作一比较,在管式裂解炉的裂解条件下,原料愈轻,乙烯收率愈高。
随着烃分子量增大,N+A含量增加,乙烯收率下降,液态裂解产物收率逐渐增加。
*包括乙烷循环裂解原料的PONA值常常被用来判断其是否适宜作裂解原料的重要依据。
表1-8介绍我国几个产地的轻柴油馏分族组成。
表1-8 我国常压轻柴油馏分族组成我国轻柴油作裂解原料是较理想的。
2. 原料氢组成定义:是指原料烃分子中氢原子的质量百分比,不包含溶解的H2烃类裂解过程也是氢在裂解产物中重新分配的过程。
原料含氢量对裂解产物分布的影响规律,大体上和PONA值的影响一致。
表1-9位各种烃和焦的含氢量比较。
表1-9 各种烃和焦的含氢量可以看出,碳原子数相同时,含氢量:烷烃>环烷烃>芳烃。
含氢量高的原料,裂解深度可深一些,产物中乙烯收率也高。
对重质烃类的裂解,按目前的技术水平,原料含氢量控制在大于13%(质量),气态产物的含氢量控制在18%(质量),液态产物含氢量控制在稍高于7~8%(质量)时,就容易结焦,阻塞炉管和急冷换热设备。
图1-3给出了不同含氢量原料裂解时产物收率。
从图中可以看出:含氢量 P>N>A 液体产物收率 P<N<A乙烯收率 P>N>A 容易结焦倾向 P<N<A3. 芳烃指数(BMCI)定义:BMCI=48640/TV+473.7×d15.615.6-456.8TV=(T10+ T30+ T50+ T70+ T90)/5TV—体积平均沸点,KT10、T30…—分别代表恩氏蒸馏馏出体积为10%,30%…时的温度,K基准:n-C6H14的BMCI=0芳烃的BMCI=100因此,BMCI值越小,乙烯收率越高,当BMCI﹤35时,才能做裂解原料。
0.25Mt/a乙烯裂解装置工艺摘要乙烯裂解炉是乙烯生产中的关键设备,其平稳、安全、高效运行对乙烯生产过程具有举足轻重的作用,因此对乙烯裂解炉装置实施工艺条件选择、操作优化具有重要的理论和实际意义。
本设计主要是设计年产25万吨的乙烯装置工艺。
烯烃裂解技术是将较高级烯烃转化为乙烯、丙烯等较低级烯烃的烯烃转换技术。
其工艺以烯烃的热力学平衡为基础,采用一种合适的催化剂(如改性的ZSM-5或其它类型的沸石),把C4和C5等高碳烯烃转换为低碳烯烃(主要为乙烯、丙烯和丁烯)。
低碳烯烃具体组成与原料烯烃的碳数无关,由反应条件和催化剂决定。
通常使用的原料为蒸汽裂解装置的C4和C5馏分、FCC装置的C4馏分和汽油中的C5馏分。
由于原料中的二烯烃易产生结焦,因此应预先将其选择性加氢转化成烯烃。
首先介绍了国内外乙烯工业现状及发展趋势,以及乙烯技术进展。
然后介绍了生产乙烯的各种方法,乙烯工艺流程的简述,尤其是裂解部分,压缩和分离部分进行了详细的叙述。
本设计采用的是管式裂解炉,因此对管式裂解炉进行了详细的叙述。
最后对设备的物料及能量进行了计算,并讨论了本设计的不足。
关键词:发展状况,生产技术,工艺流程,裂解炉1.概述1.1国内外乙烯发展的状况1.1.1世界乙烯产需概况及展望1.1.1.1世界乙烯工业现状2004年世界乙烯生产能力11290万吨,产量10387 万吨,主要集中在欧美发达国家。
乙烯工业随着全球经济形势呈现周期性变化。
1988~1995年乙烯工业处于快速发展时期。
世纪之交,受亚洲金融危机等一系列政治、经济事件的持续影响,乙烯工业增速放缓。
2003年下半年以来,全球经济逐步复苏、中国等发展中国家经济增势强劲,乙烯工业呈现产能趋紧,价格回升,效益上扬的势头。
乙烯工业日趋走向成熟。
欧美等发达国家已进入产业成熟期。
发展中国家正处于集约化经营的产业升级换代时期。
中东等地产油国逐步成为产业发展新兴力量。
乙烯工业规模化、集约化经营日趋明显。
讲真,这是乙烯生产工艺与装置介绍很全面的资料(附国内外裂解炉对比)“三烯”、“三苯”是石油化工的基础,各种重要的有机化工产品都要以其为生产的原料。
所以生产“三烯”、“三苯”的乙烯装置也成为了石油化学工业的龙头,它的生产规模、产量、和技术可以体现出国家石油化工的发展水平。
乙烯的生产方法1、管式炉裂解技术石油烃通过管式裂解炉进行高温裂解反应以制取乙烯,这种技术是生产乙烯最为成熟的技术。
2、催化裂解技术催化裂解即烃类裂解反应在有催化剂存在下进行,可以降低反应温度,提高选择性和产品收率。
催化裂解技术具有的优点,使其成为改进裂解过程最有前途的工艺技术之一。
3、合成气制乙烯(MTO)MTO合成路线,是以天然气或煤为主要原料,先生产合成气,合成气再转化为甲醇,然后由甲醇生产烯烃的路线,完全不依赖于石油。
在石油日益短缺的21世纪有望成为生产烯烃的重要路线。
目前,几乎世界上所有乙烯装置均采用管式炉蒸汽裂解技术,其它工艺路线由于经济性或者存在技术“瓶颈”等问题,至今仍处于技术开发或工业化实验的水平,没有或很少有常年运行的工业化生产装置。
裂解炉的结构乙烯装置中的裂解炉由对流段、辐射段(包括辐射炉管和燃烧器)和急冷锅炉系统三部分构成。
裂解反应在辐射段炉管中发生生成乙烯和丙烯等产品。
对流段回收高温烟气余热,以气化和过热原料至反应所需的横跨温度,同时预热锅炉给水和超高压蒸汽。
急冷锅炉系统的作用是终止裂解二次反应并回收裂解气的高温热量以产生超高压蒸汽。
基本流程如下:裂解炉的分类乙烯裂解炉的种类从技术上可分为双辐射室、单幅射室及毫秒炉。
从炉型上可分为CBL裂解炉(自主研发)、SRT型裂解炉、USC型裂解炉、KTI GK裂解炉、毫秒裂解炉、Pyrocrack型裂解炉。
CBL型裂解炉CBL炉是我国在20世纪90年代,北京化工研究院、中国石化工程建设公司、兰州化工机械研究院等多家单位,相继开发的高选择性裂解炉。
CBL裂解炉的对流段设置在辐射室上部的一侧,对流段顶部设置烟道和引风机。
乙烯的裂解工艺流程
乙烯是一种重要的化工原料,广泛应用于塑料、橡胶、合成纤维等行业。
乙烯的生产主要依靠乙烷的裂解工艺,通过高温将乙烷分解成乙烯和氢气。
本文将详细介绍乙烯的裂解工艺流程。
1. 原料准备
乙烷是乙烯的主要原料,通常从石油或天然气中提取。
在裂解过程中,乙烷需要经过预处理,去除杂质和硫化物,以保证裂解反应的纯净度和稳定性。
2. 加热和预热
乙烷进入裂解炉前需要先进行加热和预热处理。
加热可以提高乙烷的温度,使其更容易裂解;预热则可以减少对反应炉的腐蚀,延长设备的使用寿命。
3. 裂解反应
经过预处理和预热后的乙烷进入裂解炉,裂解炉通常采用催化
剂或热裂解的方式进行乙烷的分解。
在高温和催化剂的作用下,乙烷分解成乙烯和氢气。
裂解反应需要严格控制温度、压力和催化剂的使用量,以确保乙烯的产率和纯度。
4. 分离和提纯
裂解反应生成的乙烯和氢气混合物需要经过分离和提纯过程。
通常采用冷凝、吸附和蒸馏等方法将乙烯和氢气分离,然后通过洗涤、脱硫和脱氢等工艺将乙烯提纯,去除杂质和不纯物质。
5. 储存和运输
提纯后的乙烯需要进行储存和运输。
乙烯通常以液态或气态的形式储存,并通过管道、铁路或船运输到各个化工厂进行加工和应用。
以上就是乙烯的裂解工艺流程,通过原料准备、加热和预热、裂解反应、分离和提纯、储存和运输等环节,乙烯可以被高效地生产出来,并广泛应用于化工行业。
裂解工艺的稳定性和高效性对乙烯的生产具有重要意义,也是化工生产过程中的关键环节。
乙烯的裂解工艺流程乙烯(C2H4)是一种重要的有机化合物,广泛应用于塑料、橡胶、纺织品等行业。
乙烯的裂解工艺是将乙烯分子在高温条件下通过裂解反应,将大分子链断裂成较小的分子,以达到增加产量和改善产品结构的目的。
乙烯的裂解工艺通常采用石油天然气作为原料,具体的流程如下:1. 原料准备:石油天然气经过预处理,去除杂质和硫化物等。
然后,通过分离技术将石油天然气中的乙烷和乙烯分离出来。
2. 加热:将乙烯原料加热至600-800℃的高温,并通过加热炉将乙烯原料和催化剂混合。
3. 催化剂作用:在加热炉中,乙烯原料与催化剂接触,催化剂通常是金属氧化物或复合氧化物。
催化剂起到引发反应、提高反应速率和选择性的作用。
4. 反应裂解:乙烯原料在高温和催化剂作用下发生裂解反应。
乙烯分子断裂成乙烷、丙烷、丙烯等较小的分子。
裂解反应通常是一个自发反应,但通过调整温度和催化剂的选择,可以控制反应的速率和产物的比例。
5. 分离:裂解反应的产物经过冷却和减压操作,将气态产物分离出来。
其中,乙烯可以通过冷却后的几个阶段的冷凝收集,而乙烷、丙烷、丙烯等较大分子则进一步经过分离装置进行精细分离。
6. 后处理:裂解工艺的产物经过分离后,还需要进行进一步的处理。
例如,乙烯可以经过脱杂和净化处理,去除杂质和硫化物,以提高产品的纯度和质量。
乙烯的裂解工艺具有高效、灵活和环保等特点。
通过调整温度、催化剂和工艺参数,可以实现不同产物的选择性制备。
此外,裂解工艺还可以通过二次裂解和分数裂解等手段,进一步增加产量和提高产品的质量。
总之,乙烯的裂解工艺是一种重要的化学工艺,通过合理的工艺流程和操作控制,可以实现乙烯分子的断裂和产物的选择性制备,为乙烯相关产业的发展提供了重要的技术支持。