大学物理学 热学 各章节 练习题 复习题
- 格式:doc
- 大小:250.00 KB
- 文档页数:18
第十三章热力学基础一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;4、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
5、什么是熵增加原理?答:一切不可逆绝热过程中的熵总是增加的,可逆绝热过程中的熵是不变的。
把这两种情况合并在一起就得到一个利用熵来判别过程是可逆还是不可逆的判据——熵增加原理。
6、什么是卡诺循环? 简述卡诺定理?答案:卡诺循环有4个准静态过程组成,其中两个是等温线,两个是绝热线。
卡诺提出在稳度为T1的热源和稳度为T2的热源之间工作的机器,遵守两条一下结论:(1)在相同的高温热源和低温热源之间工作的任意工作物质的可逆机,都具有相同的效率。
(2)工作在相同的高温热源和低温热源之间的一切不可逆机的效率都不可能大于可逆机的效率。
7、可逆过程必须同时满足哪些条件?答:系统的状态变化是无限缓慢进行的准静态过程,而且在过程进行中没有能量耗散效应。
二、选择题1、对于理想气体的内能,下列说法中正确的是( B ):( A ) 理想气体的内能可以直接测量的。
(B) 理想气体处于一定的状态,就有一定的内能。
合肥学院《大学物理Ⅰ》自主学习材料《大学物理学》热力学基础一、选择题13-1.如图所示,bca 为理想气体的绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是( )pa2(A)b1a 过程放热、作负功,b2a 过程放热、作负功;c(B)b1a 过程吸热、作负功,b2a 过程放热、作负功;1b(C)b1a 过程吸热、作正功,b2a 过程吸热、作负功;VO (D)b1a 过程放热、作正功,b2a 过程吸热、作正功。
【提示:体积压缩,气体作负功;三个过程中 a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b1a 过程作的负功比b2a 过程作的负功多,由Q W E 知b2a 过程放热,b1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态 A 变到平衡态B,且他们的压强相等,即P P 。
A B问在状态 A 和状态 B 之间,气体无论经过的是什么过程,气体必然( )p (A)对外作正功;(B)内能增加;(C)从外界吸热;(D)向外界放热。
AB【提示:由于T T ,必有A B E E ;而功、热量是A BV 过程量,与过程有关】O13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气( 均视为刚性理想气体) ,开始时它们的压强和温度都相同,现将 3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为( )(A) 6 J ;(B)3 J ;(C)5 J ;(D)10 J 。
【提示:等体过程不做功,有Q E ,而M iE R TM 2mol,所以需传 5 J 】13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是()pp绝热等温绝热等体等温绝热Op 等()AV Op()B等压V 绝热绝热体等温绝热OOVV ()C()D【提示:(A) 绝热线应该比等温线陡,(B)和(C)两条绝热线不能相交】热力学基础-1合肥学院《大学物理Ⅰ》自主学习材料13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J,则对外做功()(A)2000 J ;(B)1000 J ;(C)4000 J ;(D)500 J 。
第9章 热力学根底一、选择题1. 对于准静态过程和可逆过程, 有以下说法.其中正确的选项是[] (A) 准静态过程一定是可逆过程(B) 可逆过程一定是准静态过程(C) 二者都是理想化的过程(D) 二者实质上是热力学中的同一个概念2. 对于物体的热力学过程, 以下说法中正确的选项是[] (A) 能的改变只决定于初、末两个状态, 与所经历的过程无关(B) 摩尔热容量的大小与所经历的过程无关(C) 在物体, 假设单位体积所含热量越多, 则其温度越高(D) 以上说法都不对3. 有关热量, 以下说法中正确的选项是[] (A) 热是一种物质(B) 热能是物质系统的状态参量(C) 热量是表征物质系统固有属性的物理量(D) 热传递是改变物质系统能的一种形式4. 关于功的以下各说法中, 错误的选项是[] (A) 功是能量变化的一种量度(B) 功是描写系统与外界相互作用的物理量(C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样(D) 系统具有的能量等于系统对外作的功5. 理想气体状态方程在不同的过程中有不同的微分表达式, 示[] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式[] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式0d d =+V p p V 表示[] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程8. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 则式[] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 任意过程9. 热力学第一定律说明:[] (A) 系统对外作的功不可能大于系统从外界吸收的热量(B) 系统能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功不等于系统传给外界的热量(D) 热机的效率不可能等于110. 对于微小变化的过程, 热力学第一定律为d Q = d E +d A .在以下过程中, 这三者同时为正的过程是[] (A) 等温膨胀 (B) 等容膨胀(C) 等压膨胀(D) 绝热膨胀11. 对理想气体的等压压缩过程,以下表述正确的选项是[] (A) d A >0, d E >0, d Q >0 (B) d A <0, d E <0, d Q <0(C) d A <0, d E >0, d Q <0 (D) d A = 0, d E = 0, d Q = 012.[] (A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程 13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2,(V p .一次是等温压缩到2V , 外界作功A ;另一次为绝热压缩到2V , 外界作功W .比拟这两个功值的大小是 [] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比拟 14. 1mol 理想气体从初态(T 1、p 1、V 1 )等温压缩到体积V 2, 外界对气体所作的功为[] (A) 121ln V V RT (B) 211ln V V RT (C) )(121V V p - (D) 1122V p V p -15. 如果∆W 表示气体等温压缩至给定体积所作的功, ∆Q 表示在此过程中气体吸收的热量, ∆A 表示气体绝热膨胀回到它原有体积所作的功, 则整个过程中气体能的变化为[] (A) ∆W +∆Q -∆A (B) ∆Q -∆W -∆A(C) ∆A -∆W -∆Q (D) ∆Q +∆A -∆W16. 理想气体能增量的表示式T C E V ∆=∆ν适用于[] (A) 等体过程 (B) 等压过程 (C) 绝热过程(D) 任何过程17. 刚性双原子分子气体的定压比热与定体比热之比在高温时为[] (A) 1.0 (B) 1.2 (C) 1.3 (D) 1.418. 公式R C C V p +=在什么条件下成立"[] (A) 气体的质量为1 kg (B) 气体的压强不太高(C) 气体的温度不太低 (D) 理想气体19. 同一种气体的定压摩尔热容大于定体摩尔热容, 其原因是[] (A) 膨胀系数不同 (B) 温度不同(C) 气体膨胀需要作功 (D) 分子引力不同20. 摩尔数一样的两种理想气体, 一种是单原子分子气体, 另一种是双原子分子气体, 从同一状态开场经等体升压到原来压强的两倍.在此过程中, 两气体[] (A) 从外界吸热和能的增量均一样(B) 从外界吸热和能的增量均不一样(C) 从外界吸热一样, 能的增量不一样(D) 从外界吸热不同, 能的增量一样21. 两气缸装有同样的理想气体, 初态一样.经等体过程后, 其中一缸气体的压强变为原来的两倍, 另一缸气体的温度也变为原来的两倍.在此过程中, 两气体从外界吸热[] (A) 一样 (B) 不一样, 前一种情况吸热多(C) 不一样, 后一种情况吸热较多 (D) 吸热多少无法判断22. 摩尔数一样的理想气体H 2和He, 从同一初态开场经等压膨胀到体积增大一倍时[] (A) H 2对外作的功大于He 对外作的功(B) H 2对外作的功小于He 对外作的功(C) H 2的吸热大于He 的吸热(D) H 2的吸热小于He 的吸热23. 摩尔数一样的两种理想气体, 一种是单原子分子, 另一种是双原子分子, 从同一状态开场经等压膨胀到原体积的两倍.在此过程中, 两气体[] (A) 对外作功和从外界吸热均一样(B) 对外作功和从外界吸热均不一样(C) 对外作功一样, 从外界吸热不同(D) 对外作功不同, 从外界吸热一样24. 摩尔数一样但分子自由度不同的两种理想气体从同一初态开场作等温膨胀, 假设膨胀后体积一样, 则两气体在此过程中[] (A) 对外作功一样, 吸热不同(B) 对外作功不同, 吸热一样(C) 对外作功和吸热均一样(D) 对外作功和吸热均不一样25. 两气缸装有同样的理想气体, 初始状态一样.等温膨胀后, 其中一气缸的体积膨胀为原来的两倍, 另一气缸气体的压强减小到原来的一半.在其变化过程中, 两气体对外作功[] (A) 一样(B) 不一样, 前一种情况作功较大(C) 不一样, 后一种情况作功较大 (D) 作功大小无法判断26. 理想气体由初状态( p 1、V 1、T 1〕绝热膨胀到末状态( p 2、V 2、T 2),对外作的功为[] (A) )(12T T C MV -μ (B) )(12T T C Mp -μ(C) )(12T T C MV --μ (D) )(12T T C M p --μ27. 在273K 和一个1atm 下的单原子分子理想气体占有体积22.4升.将此气体绝热压缩至体积为16.8升, 需要作多少功"[] (A) 330 J (B) 680 J (C) 719 J (D) 223 J28. 一定量的理想气体分别经历了等压、等体和绝热过程后其能均由E 1变化到E 2.在上述三过程中, 气体的[] (A) 温度变化一样, 吸热一样 (B) 温度变化一样, 吸热不同(C) 温度变化不同, 吸热一样 (D) 温度变化不同, 吸热也不同29. 如果使系统从初态变到位于同一绝热线上的另一终态则[] (A) 系统的总能不变(B) 联结这两态有许多绝热路径(C) 联结这两态只可能有一个绝热路径(D) 由于没有热量的传递, 所以没有作功30. 一定量的理想气体, 从同一状态出发, 经绝热压缩和等温压缩到达一样体积时, 绝热压缩比等温压缩的终态压强[] (A) 较高 (B) 较低(C) 相等 (D) 无法比拟31. 一定质量的理想气体从*一状态经过压缩后, 体积减小为原来的一半, 这个过程可以是绝热、等温或等压过程.如果要使外界所作的机械功为最大, 这个过程应是[] (A) 绝热过程 (B) 等温过程(C) 等压过程 (D) 绝热过程或等温过程均可32. 视为理想气体的0.04 kg 的氦气(原子量为4), 温度由290K 升为300K .假设在升温过程中对外膨胀作功831 J, 则此过程是[] (A) 等体过程 (B) 等压过程(C) 绝热过程(D) 等体过程和等压过程均可能33. 一定质量的理想气体经历了以下哪一个变化过程后, 它的能是增大的"[] (A) 等温压缩 (B) 等体降压(C) 等压压缩 (D) 等压膨胀34. 一定量的理想气体从初态),(T V 开场, 先绝热膨胀到体积为2V , 然后经等容过程使温度恢复到T , 最后经等温压缩到体积V .在这个循环中, 气体必然[] (A) 能增加 (B) 能减少(C) 向外界放热 (D) 对外界作功35. 提高实际热机的效率, 下面几种设想中不可行的是[] (A) 采用摩尔热容量较大的气体作工作物质(B) 提高高温热源的温度(C) 使循环尽量接近卡诺循环(D) 力求减少热损失、摩擦等不可逆因素36. 在下面节约与开拓能源的几个设想中, 理论上可行的是[] (A) 在现有循环热机中进展技术改良, 使热机的循环效率达100%(B) 利用海面与海面下的海水温差进展热机循环作功(C) 从一个热源吸热, 不断作等温膨胀, 对外作功(D) 从一个热源吸热, 不断作绝热膨胀, 对外作功37. 以下说法中唯一正确的选项是[] (A) 任何热机的效率均可表示为吸Q A =η (B) 任何可逆热机的效率均可表示为高低T T -=1η (C) 一条等温线与一条绝热线可以相交两次(D) 两条绝热线与一条等温线可以构成一个循环38. 卡诺循环的特点是[] (A) 卡诺循环由两个等压过程和两个绝热过程组成(B) 完成一次卡诺循环必须有高温和低温两个热源(C) 卡诺循环的效率只与高温和低温热源的温度有关(D) 完成一次卡诺循环系统对外界作的净功一定大于039. 在功与热的转变过程中, 下面说法中正确的选项是[] (A) 可逆卡诺机的效率最高, 但恒小于1(B) 可逆卡诺机的效率最高, 可到达1(C) 功可以全部变为热量, 而热量不能全部变为功(D) 绝热过程对外作功, 系统的能必增加40. 两个恒温热源的温度分别为T 和t , 如果T >t , 则在这两个热源之间进展的卡诺循环热机的效率为 [] (A) t T T - (B) t t T - (C) T t T - (D) Tt T + 41. 对于热传递, 以下表达中正确的选项是[] (A) 热量不能从低温物体向高温物体传递(B) 热量从高温物体向低温物体传递是不可逆的(C) 热传递的不可逆性不同于热功转换的不可逆性(D) 理想气体等温膨胀时本身能不变, 所以该过程也不会传热42. 根据热力学第二定律可知, 以下说法中唯一正确的选项是[] (A) 功可以全部转换为热, 但热不能全部转换为功(B) 热量可以从高温物体传到低温物体, 但不能从低温物体传到高温物体(C) 不可逆过程就是不能沿相反方向进展的过程(D) 一切自发过程都是不可逆过程43. 根据热力学第二定律判断, 以下哪种说法是正确的[] (A) 热量能从高温物体传到低温物体, 但不能从低温物体传到高温物体(B) 功可以全部变为热, 但热不能全部变为功(C) 气体能够自由膨胀, 但不能自由压缩(D) 有规则运动的能量能够变为无规则运动的能量, 但无规则运动的能量不能变为有规则运动的能量44. 热力学第二定律说明:[] (A) 不可能从单一热源吸收热量使之全部变为有用功(B) 在一个可逆过程中, 工作物质净吸热等于对外作的功(C) 摩擦生热的过程是不可逆的(D) 热量不可能从温度低的物体传到温度高的物体45. "理想气体和单一热源接触作等温膨胀时, 吸收的热量全部用来对外作功.〞对此说法, 有以下几种评论, 哪一种是正确的"[] (A) 不违反热力学第一定律, 但违反热力学第二定律(B) 不违反热力学第二定律, 但违反热力学第一定律(C) 不违反热力学第一定律, 也不违反热力学第二定律(D) 违反热力学第一定律, 也违反热力学第二定律46. 有人设计了一台卡诺热机(可逆的).每循环一次可从400K 的高温热源吸收1800J 的热量, 向300K 的低温热源放热800J, 同时对外作功1000J .这样的设计是[] (A) 可以的, 符合热力学第一定律(B) 可以的, 符合热力学第二定律(C) 不行的, 卡诺循环所作的功不能大于向低温热源放出的热量(D) 不行的, 这个热机的效率超过了理论值47. 1mol 的单原子分子理想气体从状态A 变为状态B, 如果变化过程不知道, 但A 、B 两态的压强、温度、体积都知道, 则可求出[] (A) 气体所作的功 (B) 气体能的变化(C) 气体传给外界的热量 (D) 气体的质量48. 如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a '',则循环abcda 与da c b a ''所作的功和热机效率变化情况是:[] (A) 净功增大,效率提高(B) 净功增大,效率降低(C) 净功和效率都不变(D) 净功增大,效率不变49. 用两种方法: 使高温热源的温度T 1升高△T ;使低温热源的温度T 2降低同样的△T 值;分别可使卡诺循环的效率升高1η∆和 2η∆,两者相比:[] (A)1η∆>2η∆(B) 2η∆>1η∆(C)1η∆=2η∆ (D) 无法确定哪个大50. 下面所列四图分别表示*人设想的理想气体的四个循环过程,请选出其中一个在理论上可能实现的循环过程的图的符号.[]51. 在T9-1-51图中,I c II 为理想气体绝热过程,I a II和I b II 是任意过程.此两任意过程中气体作功与吸收热量的情况是:[] (A) I a II 过程放热,作负功;I b II 过程放热,作负功 (B) I a II 过程吸热,作负功;I b II 过程放热,作负功(C) I a II 过程吸热,作正功;I b II 过程吸热,作负功 (D) I a II 过程放热,作正功;I b II 过程吸热,作正功52. 给定理想气体,从标准状态(p 0,V 0,T 0)开场作绝热膨胀,体积增大到3倍.膨胀后温度T 、压强p 与标准状态时T 0、p 0之关系为(γ 为比热比) [] (A) 01)31(T T -=γ, 0)31(p p γ=(B) 0)31(T T γ=,01)31(p p -=γ (C) 0)31(T T γ-=,01)31(p p -=γ (D) 01)31(T T -=γ,0)31(p p γ-= 53.甲说:"由热力学第一定律可证明任何热机的效率不可能等于1.〞乙说:"热力学第二定律可表述为效率等于 100%的热机不可能制造成功.〞丙说:"由热力学第一定律可证明任何卡诺循环的效率都等于)1(12T T -.〞丁说:"由热力学第一定律可证明理想气体卡诺热机(可逆的)循环的效率等于)1(12T T -.〞对以上说法,有如下几种评论,哪种是正确的"[] (A) 甲、乙、丙、丁全对 (B) 甲、乙、丙、丁全错(C) 甲、乙、丁对,丙错 (D) 乙、丁对,甲、丙错54.*理想气体分别进展了如T9-1-54图所示的两个卡诺循环:I(abcda )和II(a'b'c'd'a'),且两个循环曲线所围面积相等.设循环I 的效率为η,每次循环在高温热源处吸的热量为Q ,循环II 的效率为η',每次循环在高温热源处吸的热量为Q ',则 [] (A) Q Q '<'<,ηη(B) Q Q '>'<,ηη (C) Q Q '<'>,ηη (D) Q Q '>'>,ηη 55.两个完全一样的气缸盛有同种气体,设其初始状态一样.今使它们分别作绝热压缩至一样的体积,其中气缸1的压缩过程是非准静态过程,而气缸2的压缩过程则是准静态过程.比拟这两种情况的温度变化:[] (A) 气缸1和气缸2气体的温度变化一样T9-1-51图T9-1-54图(B) 气缸1的气体较气缸2的气体的温度变化大(C) 气缸1的气体较气缸2的气体的温度变化小(D) 气缸1和气缸2的气体的温度无变化二、填空题1. 不等量的氢气和氦气从一样的初态作等压膨胀, 体积变为原来的两倍.在这过程中, 氢气和氦气对外作的功之比为.2. 1mol 的单原子分子理想气体, 在1atm 的恒定压力下从273K 加热到373K, 气体的能改变了.3. 各为1摩尔的氢气和氦气, 从同一状态(p ,V )开场作等温膨胀.假设氢气膨胀后体积变为2V , 氦气膨胀后压强变为2p , 则氢气和氦气从外界吸收的热量之比为. 4. 两个一样的容器, 一个装氢气, 一个装氦气(均视为刚性分子理想气体),开场时它们的压强和温度都相等.现将6J 热量传给氦气, 使之温度升高.假设使氢气也升高同样的温度, 则应向氢气传递的热量为.5. 1摩尔的单原子分子理想气体, 在1个大气压的恒定压力作用下从273K 加热到373K, 此过程中气体作的功为.6. 273K 和一个1atm 下的单原子分子理想气体占有体积22.4升.此气体等温压缩至体积为16.8升的过程中需作的功为.7. 一定量气体作卡诺循环, 在一个循环中, 从热源吸热1000 J, 对外作功300 J .假设冷凝器的温度为7︒C, 则热源的温度为.8. 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影局部)分别为1S 和2S ,则二者的大小关系是.9. 一卡诺机(可逆的),低温热源的温度为C 27 ,热机效率为40%,其高温热源温度为K .今欲将该热机效率提高到50%,假设低温热源保持不变,则高温热源的温度应增加K .10. 一个作可逆卡诺循环的热机,其效率为η,它的逆过程的致冷系数212T T T w -=,则η与w 的关系为.T9-2-8图11. 1mol 理想气体(设V P C C =γ为)的循环过程如T -V 图所示,其中CA 为绝热过程,A 点状态参量(11,V T ),和B 点的状态参量(21,V T )为.则C 点的状态参量为:=C V ,=C T ,=C p .12. 一定量的理想气体,从A 状态),2(11V p 经历如T9-2-12图所示的直线过程变到B 状态),(11V p ,则AB 过程中系统作功___________, 能改变△E =_________________.13. 质量为M 、温度为0T 的氦气装在绝热的容积为V 的封闭容器中,容器一速率v 作匀速直线运动.当容器突然停顿后,定向运动的动能全部转化为分子热运动的动能,平衡后氦气的温度增大量为.14. 有ν摩尔理想气体,作如T9-2-14图所示的循环过程abca ,其中acb 为半圆弧,b -a 为等压过程,a c p p 2=,在此循环过程中气体净吸热量为Q νC p )(a b T T -〔填入:> , <或=〕. 15. 一定量的理想气体经历acb 过程时吸热550 J .则经历acbea 过程时,吸热为.16. 一定量理想气体,从同一状态开场使其体积由V 1膨胀到2V 1,分别经历以下三种过程: 等压过程; 等温过程;●绝热过程.其中:__________过程气体对外作功最多;____________过程气体能增加最多;__________过程气体吸收的热量最多.17. 一定量的理想气体,从状态a 出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试在T9-2-17图中示意地画出这三种过程的p -V 图曲线.在上述三种过程中:(1) 气体的能增加的是__________过程;T 12T T9-2-11图2p 11 T9-2-12图p p T9-2-14图533m 10-T9-2-15图1 2(2) 气体的能减少的是__________过程.18. 如T9-2-18图所示,图中两局部的面积分别为S 1和S 2.如果气体的膨胀过程为a →1→b ,则气体对外做功W =________;如果气体进展a →1→b →2→a 的循环过程,则它对外做功W =_______________.19. 如T9-2-19图所示,一定量的理想气体经历cb a →→过程,在此过程中气体从外界吸收热量Q ,系统能变化E ∆.则Q和E ∆ >0或<0或= 0的情况是:Q _________, ∆E __________.20. 将热量Q 传给一定量的理想气体,(1) 假设气体的体积不变,则其热量转化为;(2) 假设气体的温度不变,则其热量转化为;(3) 假设气体的压强不变,则其热量转化为.21. 一能量为1012 eV 的宇宙射线粒子,射入一氖管中,氖管充有 0.1 mol 的氖气,假设宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了_________________K .(1 eV =1.60×10-19J ,普适气体常量R =8.31 J/(mol ⋅K)〕22. 有一卡诺热机,用29kg 空气作为工作物质,工作在27℃的高温热源与-73℃的低温热源之间,此热机的效率η=______________.假设在等温膨胀的过程中气缸体积增大到2.718倍,则此热机每一循环所作的功为_________________.(空气的摩尔质量为29×10-3 kg ⋅mol -1,普适气体常量R =8.3111K mol J --⋅⋅) 23. 一气体分子的质量可以根据该气体的定体比热来计算.氩气的定体比热c V=0.314 k J ·kg -1·K -1,则氩原子的质量m =__________.三、计算题1. 1 mol 刚性双原子分子的理想气体,开场时处于Pa 1001.151⨯=p 、331m 10-=V 的状态,然后经图示直线过程I 变到Pa 1004.452⨯=p 、332m 102-⨯=V 的状态.后又经过方程为C pV=21〔常量〕的过程II 变到压强Pa 1001.1513⨯==p p 的状态.求: (1) 在过程I 中气体吸的热量;(2) 整个过程气体吸的热量.1p VT9-3-1图T9-2-19图2. 1 mol 的理想气体,完成了由两个等容过程和两个等压过程构成的循环过程〔如T9-3-2图〕,状态1的温度为1T ,状态3的温度为3T ,且状态2和4在同一等温线上.试求气体在这一循环过程中作的功.3. 一卡诺热机(可逆的),当高温热源的温度为C 127 、低温热源温度为C 27 时,其每次循环对外作净功8000J .今维持低温热源的温度不变,提高高温热源的温度,使其每次循环对外作净功10000J .假设两个卡诺循环都工作在一样的两条绝热线之间,试求:(1) 第二个循环热机的效率;(2) 第二个循环的高温热源的温度.4. *种单原子分子的理想气体作卡诺循环,循环效率%20=η,试问气体在绝热膨胀时,气体体积增大到原来的几倍"5. 1mol 双原子分子理想气体作如T9-3-5图所示的可逆循环过程,其中1-2为直线,2-3为绝热线,3-1为等温线.13128,2V V T T ==,试求:(1) 各过程的功,能增量和传递的热量;(用1T 和常数表示)(2) 此循环的效率η.(注:循环效率1Q A =η,A 为每一循环过程气体对外所作的功,1Q 为每一循环过程气体吸收的热量)6. 如T9-3-6图所示,一金属圆筒中盛有1 mol 刚性双原子分子的理想气体,用可动活塞封住,圆筒浸在冰水混合物中.迅速推动活塞,使气体从标准状态(活塞位置I)压缩到体积为原来一半的状态(活塞位置II),然后维持活塞不动,待气体温度下降至0℃,再让活塞缓慢上升到位置I ,完成一次循环. (1) 试在p -V 图上画出相应的理想循环曲线; (2) 假设作100 次循环放出的总热量全部用来熔解冰,则有多少冰被熔化"(冰的熔解热=λ 3.35×105 J ·kg -1,普适气体常量 R =8.31J ·mol-1·K -1)7. 比热容比=γ 1.40的理想气体,进展如T9-3-7图所示的abca 循环,状态a 的温度为300 K . (1) 求状态b 、c 的温度; (2) 计算各过程中气体所吸收的热量、气体所作的功和气体能的增量;T9-3-2图123 T9-3-5图T9-3-6图T9-3-7)3(3) 求循环效率.8. 一台冰箱工作时,其冷冻室中的温度为-10℃,室温为15℃.假设按理想卡诺致冷循环计算,则此致冷机每消耗J 102的功,可以从冷冻室中吸出多少热量"9. 一可逆卡诺热机低温热源的温度为7.0℃,效率为40%;假设要将其效率提高50%,则高温热源温度需提高几度"10. 绝热容器中有一定量的气体,初始压强和体积分别为0p 和0V .用一根通有电流的电阻丝对它加热(设电阻不随温度改变).在加热的电流和时间都一样的条件下,第一次保持体积0V 不变,压强变为1p ;第二次保持压强0p 不变,而体积变为1V .不计电阻丝的热容量,求该气体的比热容比.11.空气中的声速的表达式为u =,其中ρ是气体密度,κ是体弹性模量,满足关系式V p Vκ∆∆=-.就以下两种情况计算其声速: (1)假定声波传播时空气的压缩和膨胀过程是一个等温过程(即等温声速模型,亦称为牛顿模型);(2)假定声波传播时空气的压缩和膨胀过程是一个绝热过程(即绝热声速模型);比拟这两个结果你得出什么结论"〔设空气中只有氮气〕12. *热机循环从高温热源获得热量Q H ,并把热量Q L 排给低温热源.设高、低温热源的温度分别为T H =2000K 和T L =300K ,试确定在以下条件下热机是可逆、不可逆或不可能存在的.(1) Q H =1000J ,A =900J ;(2) Q H =2000J ,Q L =300J ;(3) A =1500J ,Q L =500J .13. 研究动力循环和制冷循环是热力学的重要应用之一.燃机以气缸燃烧的气体为工质.对于四冲程火花塞点燃式汽油发动机来说,它的理想循环是定体加热循环,称为奥托循环〔Otto cycle 〕.而对于四冲程压燃式柴油机来说,它的理想循环是定压加热循环,称为狄塞耳循环〔Diesel cycle 〕.如T9-3-13图所示,往复式燃机的奥托循环经历了以下四个冲程:〔1〕吸气冲程〔0→1〕:当活塞由上止点T 向下止点B运时,进气阀翻开,在大气压力下吸入汽油蒸气和空气的混合气体.〔2〕压缩冲程:进气阀关闭,活塞向左运行,混合气体被绝热压缩〔1→2〕;活塞移动T 点时,混合气体被电火花点燃迅速燃烧,可以认为是定体加热过程〔2→3〕,吸收热量1Q .〔3〕动力冲程:燃烧气体绝热膨胀,推动活塞对外作功〔3→4〕;然后,气体在定体条件下降压〔4→1〕,放出热量2Q .〔4〕排气冲程:活塞向左运行,剩余气体从排气阀排出.假定燃机中T9-3-13图V的工质是理想气体并保持定量,试求上述奥托循环1→2→3→4→1的效率η.14. 绝热壁包围的气缸被一绝热的活塞分成A ,B 两室,活塞在气缸可无摩擦自由滑动,每室部有1摩尔的理想气体,定容热容量R c V 25=.开场时,气体都处在平衡态),,(000T V p .现在对A 室加热,直到A 中压强变为20p 为止.(1) 加热完毕后,B 室中气体的温度和体积"(2) 求加热之后,A 、B 室中气体的体积和温度;(3) 在这过程中A 室中的气体作了多少功"(4) 加热器传给A 室的热量多少" 15. 如T9-3-15图所示,器壁与活塞均绝热的容器中间被一隔板等分为两局部,其中右边贮有1摩尔处于标准状态的氦气(可视为理想气体),左边为真空.现先把隔板拉开,待气体平衡后,再缓慢向右推动活塞,把气体压缩到原来的体积.求氦气的温度改变量. 16.如T9-3-15图所示,一固定绝热隔板将*种理想气体分成A 、B两局部,B 的外侧是可动活塞.开场时A 、B 两局部的温度T 、体积V 、压强p 均一样,并与大气压强相平衡.现对A 、B 两局部气体缓慢地加热,当对A 和B 给予相等的热量Q 以后,A 室中气体的温度升高度数与B 室中气体的温度升高度数之比为7:5. (1) 求该气体的定体摩尔热容C V 和定压摩尔热容C p ;(2) B 室中气体吸收的热量有百分之几用于对外作功? 17.有两个全同的物体,其能为(u CT C =为常数),初始时两物体的温度分别为21T T 、.现以两物体分别为高、低温热源驱动一卡诺热机运行,最后两物体到达一共同温度f T .求(1)f T ;(2)求卡诺热机所作的功.18. 温度为25℃、压强为1atm 的1mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(普适气体常量R =8.31 1--⋅⋅K mol J 1,ln 3=1.0986)(1) 计算这个过程中气体对外所作的功;(2) 假假设气体经绝热过程体积膨胀为原来的3倍,则气体对外作的功又是多少"19. 图T9-3-19为一循环过程的T -V 曲线.该循环的工质为mol μ的理想气体,其中V C 和γ均且为常量.a 点的温度为1T ,体积为V 1,b 点的体积为V 2,ca 为绝热过程.求:(1)c 点的温度;(2)循环的效率. 20. 设一动力暖气装置由一台卡诺热机和一台卡诺致冷机组合而成.热机靠燃烧时释放的热量工作并向暖气系统中的水放热;同时,热机带动致冷机.致冷机自天然蓄水池中吸热,也向暖气系统放热.假定热机锅炉的温度为C 2101=t ,天然蓄水池中水的温度为C 152 =t ,暖气系统的温度为C 603 =t ,热机从燃料燃烧时获得热量2.1×107J ,计算暖气系统所得热量.T9-3-15图 He 空真 T9-3-17图A BT9-3-19图。
大学物理热学练习题及答案第一题:一个物体的质量是1 kg,温度从20°C升高到30°C,如果物体的比热容是4200 J/(kg·°C),求物体吸收的热量。
解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
代入数据得:Q = 1 kg × 4200 J/(kg·°C) × (30°C - 20°C)= 1 kg × 4200 J/(kg·°C) × 10°C= 42,000 J所以物体吸收的热量为42,000 J。
第二题:一块金属材料的质量是0.5 kg,它的比热容是400 J/(kg·°C),经过加热后,材料的温度升高了60°C。
求该金属材料所吸收的热量。
解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
代入数据得:Q = 0.5 kg × 400 J/(kg·°C) × 60°C= 12,000 J所以金属材料吸收的热量为12,000 J。
第三题:一个热容为300 J/(kg·°C)的物体,吸收了500 J的热量后,温度升高了多少摄氏度?解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
将已知数据代入公式:500 J = m × 300 J/(kg·°C) × Δθ解方程得:Δθ = 500 J / (m × 300 J/(kg·°C))= 500 J / (m/(kg·°C)) × (kg·°C/300 J)= (500/300) °C≈ 1.67°C所以温度升高了约1.67°C。
第二章热力学第一定律一、选择题1、下列叙述中不具状态函数特征的是:()(A)系统状态确定后,状态函数的值也确定(B)系统变化时,状态函数的改变值只由系统的初终态决定(C)经循环过程,状态函数的值不变(D)状态函数均有加和性2、下列叙述中,不具可逆过程特征的是:()(A)过程的每一步都接近平衡态,故进行得无限缓慢(B)沿原途径反向进行时,每一小步系统与环境均能复原(C)过程的初态与终态必定相同(D)过程中,若做功则做最大功,若耗功则耗最小功3、如图,将CuSO4水溶液置于绝热箱中,插入两个铜电极,以蓄电池为电源进行电解,可以看作封闭体系的是:()(A)绝热箱中所有物质(B)两个铜电极(C)蓄电池和铜电极(D) CuSO4水溶液5、在下列关于焓的描述中,正确的是()(A)因为ΔH=QP,所以焓是恒压热(B)气体的焓只是温度的函数(C)气体在节流膨胀中,它的焓不改变(D)因为ΔH=ΔU+Δ(PV),所以任何过程都有ΔH>0的结论6、在标准压力下,1mol石墨与氧气反应生成1mol二氧化碳的反应热为Δr H ,下列哪种说法是错误的? ()(A) ΔH 是CO2(g)的标准生成热(B) ΔH =ΔU(C) ΔH 是石墨的燃烧热(D) ΔU <ΔH7、在标准状态下,反应C2H5OH(l)+3O2(g) →2CO2(g)+3H2O(g)的反应焓为Δr H mθ, ΔC p>0, 下列说法中正确的是()(A)Δr H mθ是C2H5OH(l)的标准摩尔燃烧焓(B)Δr H mθ〈0(C)Δr H mθ=ΔrUmθ(D)Δr H mθ不随温度变化而变化8、下面关于标准摩尔生成焓的描述中,不正确的是()(A)生成反应中的单质必须是稳定的相态单质(B)稳态单质的标准摩尔生成焓被定为零(C)生成反应的温度必须是298.15K(D)生成反应中各物质所达到的压力必须是100KPa9、在一个绝热钢瓶中,发生一个放热的分子数增加的化学反应,那么:()(A) Q > 0,W > 0,?U > 0 (B)Q = 0,W = 0,?U < 0(C) Q = 0,W = 0,?U = 0 (D) Q < 0,W > 0,?U < 010、非理想气体进行绝热自由膨胀时,下述答案中哪一个是错误的? ( )(A) Q=0 (B) W=0 (C) ΔU=0 (D) ΔH=011、下列表示式中正确的是( )(A)恒压过程ΔH=ΔU+pΔV (B)恒压过程ΔH=0(C)恒压过程ΔH=ΔU+VΔp (D)恒容过程ΔH=012、理想气体等温反抗恒外压膨胀,则( )(A)Q>W (B)Q<W (C)Q=W (D)Q=△U13、当理想气体其温度由298K升高到348K,经(1)绝热过程和(2)等压过程,则两过程的()(A)△H1>△H2W1<W2(B)△H1<△H21>W2(C)△H 1=△H21<W2(D)△H1=△H21>W214、当理想气体从298K,2×105Pa 经历(1)绝热可逆膨胀和(2)等温可逆膨胀到1×105Pa时,则( )(A)△H1<△H21>W2(B)△H1>△H21<W2(C)△H 1<△H21<W2(D)△H1>△H21>W215、对于封闭体系,在指定始终态间的绝热可逆途径可以有:( )(A) 一条(B) 二条(C) 三条(D) 三条以上16、实际气体绝热恒外压膨胀时,其温度将:( )(A) 升高(B) 降低(C) 不变(D) 不确定17、功的计算公式为W=nC v,m(T2-T1),下列过程中不能用此式的是()(A)理想气体的可逆绝热过程(B)理想气体的绝热恒外压过程(C)实际气体的绝热过程(D)凝聚系统的绝热过程18、凡是在孤立体系中进行的变化,其ΔU和ΔH的值一定是:( )(A) ΔU> 0 , ΔH > 0 (B) ΔU= 0 , ΔH = 0(C) ΔU< 0 , ΔH < 0 (D) ΔU= 0 , ΔH大于、小于或等于零不确定19、一定量的理想气体从同一始态出发,分别经(1) 等温压缩,(2) 绝热压缩到具有相同压力的终态,以H1,H2分别表示两个终态的焓值,则有:( )(A) H1> H2 (B) H1= H2 (C) H1< H2 (D) H1>=H220、将H2(g)与O2以2:1的比例在绝热刚性密闭容器中完全反应,则该过程中应有()(A)ΔT=0 (B)Δp=0 (C)ΔU=0 (D)ΔH=021、刚性绝热箱内发生一化学反应,则反应体系为( )(A)孤立体系(B)敞开体系(C)封闭体系(D)绝热体系22、理想气体可逆绝热膨胀,则下列说法中正确的是( )(A)焓总是不变(B)内能总是增加(C)焓总是增加(D)内能总是减少23、关于等压摩尔热容和等容摩尔热容,下面的说法中不正确的是( )(A)C p,m与C v,m不相等,因等压过程比等容过程系统多作体积功(B)C p,m–C v,m=R既适用于理想气体体系,也适用于实际气体体系(C)C v,m=3/2R适用于单原子理想气体混合物(D)在可逆相变中C p,m和C v,m都为无限大24、下列哪个过程的dT≠0,dH=0?( )(A)理想气体等压过程(B)实际气体等压过程(C)理想气体等容过程(D)实际气体节流膨胀过程25、隔离系统内发生一变化过程,则系统的:(A)热力学能守恒,焓守恒(B)热力学能不一定守恒,焓守恒(C)热力学能守恒,焓不一定守恒(D)热力学能、焓均不一定守恒二、判断题1、体系在某过程中向环境放热,则体系的内能减少。
练习一(热学)姓名 学号 班级1.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度。
(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义。
(3) 温度的高低反映物质内部分子热运动剧烈程度的不同。
(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中,正确的是:(A) (1)、(2)、(4)。
(B) (1)、(2)、(3)。
(C) (2)、(3)、(4)。
(D) (1)、(3)、(4)。
[ ]2.一瓶氦气和一瓶氮气密度相同(He N ρρ=2),分子平均平动动能相同(kHe kN εε=2),而且它们都处于平衡状态,则它们:(A) 温度相同,压强相同。
(B) 温度、压强都不同。
(C) 温度相同,但氦气的压强大于氮气的压强。
(D) 温度相同,但氮气的压强大于氦气的压强。
[ ]3.若室内升起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了:(A) 0.5%。
(B) 4%。
(C) 9%。
(D) 21%。
[ ]4.一定质量的理想气体储存于某一容器中,温度为T ,气体分子质量为m ,根据理想气体分子模型和统计假设,分子速度在X 方向的分量的下列平均值为: =x v ;=2x v 。
5.容器中储有1mol 的氮气,压强为1.33Pa ,温度为7℃,试求(1) 1m 3氮气的分子数; (2) 容器中氮气的密度;(3) 1m 3中氮气分子的总平动动能。
6.容器内有M =2.66kg 氧气,已知其气体分子的平动动能总和是E k =4.14×105J ,求: (1) 气体分子的平均平动动能; (2) 气体温度。
(阿伏伽德罗常量N A =6.02×1023/mol ,波尔兹曼常量k =1.38×10-23J•K -1)练习二(热学)姓名 学号 班级1.三个容器A 、B 、C 中装有同种理想气体,其分子密度n 相同,而方均根速率之比为4:2:1::222 C B A v v v ,则气体的压强之比P A :P B :P C 为: (A) 1:2:4。
热学(一)理想气体、压强公式一、选择题1、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为: (A) pV / m . (B) pV / (kT ).(C) pV / (RT ). (D) pV / (mT ).[ ]2、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值(A)mkT x32=v . (B)mkT x3312=v .(C)m kT x/32=v (D) m kT x/2=v[ ]3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值(A) mkT π8=x v (B)m kT π831=x v(C) mkTπ38=x v . (D) =x v 0 .[ ]4、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::CB A v v v =1∶2∶4,则其压强之比A p∶B p∶C p为:(A) 1∶2∶4. (B) 1∶4∶8.(C) 1∶4∶16. (D) 4∶2∶1.[ ]二、填空题1、质量一定的某种理想气体,(1) 对等压过程来说,气体的密度随温度的增加而_________,并绘出曲线.(2) 对等温过程来说,气体的密度随压强的增加而______________,并绘出曲线.2、在推导理想气体压强公式中,体现统计意义的两条假设是(1) _________________________________;(2) _________________________________.3、A 、B 、C 三个容器中皆装有理想气体,它们的分子数密度之比为n A ∶n B ∶n C =4∶2∶1,而分子的平均平动动能之比为A w ∶B w ∶Cw =1∶2∶4,则它们的压强之比A p ∶B p ∶Cp =__________.三、计算题两个相同的容器装有氢气,以一细玻璃管相连通,管中用一滴水银作活塞,如图所示.当左边容器的温度为 0℃、而右边容器的温度为20℃时,水银滴刚好在管的中央.试问,当左边容器温度由 0℃增到 5℃、而右边容器温度由20℃增到30℃时,水银滴是否会移动?如何移动? 答案 一、选择题 O T TρBDDC二、填空题 1、成反比地减小 (图) 成正比地增加 (图)2、(1) 沿空间各方向运动的分子数目相等 (2) 222zy x v v v ==3、1∶1∶1三、计算 解:据力学平衡条件,当水银滴刚好处在管的中央维持平衡时,左、右两边氢气的压强相等、体积也相等,两边气体的状态方程为: p 1V 1=(M 1 / M mol )RT 1 ,p 2V 2=(M 2 / M mol )RT 2 .由p 1= p 2得:V 1 / V 2= (M 1 / M 2)(T 1 / T 2) .开始时V 1= V 2,则有M 1 / M 2= T 2/ T 1=293/ 273. 当温度改变为1T '=278 K ,2T '=303 K 时,两边体积比为()221121//T M T M V V ''=''=0.9847 <1. 即21V V '<'可见水银滴将向左边移动少许.热学(二)温度公式、能量均分原理、气体内能专业 班级 学号 姓名 一、选择题1、关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子运动剧烈程度的不同.(4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是(A) (1)、(2) 、(4). (B) (1)、(2) 、(3). (C) (2)、(3) 、(4).(D) (1)、(3) 、(4). [ ]2、一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同. (B) 温度、压强都不相同. OT T(C) 温度相同,但氦气的压强大于氮气的压强.(D) 温度相同,但氦气的压强小于氮气的压强. [ ]3、温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系: (A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等. [ ]4、1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为(A) RT 23. (B)kT 23. (C)RT 25. (D)kT 25. [ ] (式中R 为普适气体常量,k 为玻尔兹曼常量)5、一定质量的理想气体的内能E 随体积V 的变化关系为一直线(其延长线过E ~V 图的原点),则此直线表示的过程为:(A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程.[ ] 二、填空题 1、1 mol 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中,温度为27℃,这瓶氧气的内能为________________J ;分子的平均平动动能为____________J;分子的平均总动能为_____________________J.(摩尔气体常量 R = 8.31 J ·mol -1·K -1 玻尔兹曼常量 k = 1.38×10-23J·K -1) 2、若i 是气体刚性分子的运动自由度数,则21ikT 所表示的是_______________ ______________________________________________________. 三、计算题容器内有M = 2.66 kg 氧气,已知其气体分子的平动动能总和是E K =4.14×105 J ,求: (1) 气体分子的平均平动动能; (2) 气体温度.(阿伏伽德罗常量N A =6.02×1023 /mol ,玻尔兹曼常量k =1.38×10-23 J ·K -1 )答案一、选择题 BCCCB 二、填空题1、6.23×10 3 6.21×10 - 21 1.035×10 - 212、在温度为T 的平衡态下,每个气体分子的热运动平均能量(或平均动能) 三、计算题解:(1) M / M mol =N / N A ∴ N =MN A / M mol21Amol 1027.8-⨯===MN E M N E w Kk J (2) kwT 32== 400 K热学(三)热力学第一定律及应用一、选择题1、一物质系统从外界吸收一定的热量,则 (A) 系统的内能一定增加. (B) 系统的内能一定减少. (C) 系统的内能一定保持不变. (D) 系统的内能可能增加,也可能减少或保持不变.[ ]2、一定量的理想气体,经历某过程后,温度升高了.则根据热力学定律可以断定: (1) 该理想气体系统在此过程中吸了热. (2) 在此过程中外界对该理想气体系统作了正功. (3) 该理想气体系统的内能增加了. (4) 在此过程中理想气体系统既从外界吸了热,又对外作了正功. 以上正确的断言是: (A) (1)、(3). (B) (2)、(3). (C) (3). (D) (3)、(4).(E) (4).3、如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程[ ](A) 是A →B. (B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。
⼤学物理热学试题试题库及答案⼤学物理热学试题题库及答案⼀、选择题:(每题3分)1、在⼀密闭容器中,储有A、B、C三种理想⽓体,处于平衡状态.A种⽓体得分⼦数密度为n1,它产⽣得压强为p1,B种⽓体得分⼦数密度为2n1,C种⽓体得分⼦数密度为3 n1,则混合⽓体得压强p为(A) 3p1。
(B) 4 p1.(C)5p1. (D) 6 p1.[]2、若理想⽓体得体积为V,压强为p,温度为T,⼀个分⼦得质量为m,k为玻尔兹曼常量,R 为普适⽓体常量,则该理想⽓体得分⼦数为:(A)pV / m。
(B) pV / (kT).(C) pV/(RT). (D)pV/(mT)。
[ ]3、有⼀截⾯均匀得封闭圆筒,中间被⼀光滑得活塞分隔成两边,如果其中得⼀边装有0。
1 kg某⼀温度得氢⽓,为了使活塞停留在圆筒得正中央,则另⼀边应装⼊同⼀温度得氧⽓得质量为:(A)(1/16) kg。
(B)0.8kg.(C)1.6kg. (D) 3。
2 kg。
[ ]4、在标准状态下,任何理想⽓体在1m3中含有得分⼦数都等于(A)6、02×1023。
(B)6、02×1021.(C)2、69×1025. (D)2、69×1023。
(玻尔兹曼常量k=1、38×10-23J·K-1)[ ]5、⼀定量某理想⽓体按pV2=恒量得规律膨胀,则膨胀后理想⽓体得温度(A)将升⾼. (B)将降低.(C)不变. (D)升⾼还就是降低,不能确定.[ ]6、⼀个容器内贮有1摩尔氢⽓与1摩尔氦⽓,若两种⽓体各⾃对器壁产⽣得压强分别为p1与p2,则两者得⼤⼩关系就是:(A)p1〉p2.(B)p1〈p2.(C) p1=p2.(D)不确定得。
[]7、已知氢⽓与氧⽓得温度相同,请判断下列说法哪个正确?(A) 氧分⼦得质量⽐氢分⼦⼤,所以氧⽓得压强⼀定⼤于氢⽓得压强.(B)氧分⼦得质量⽐氢分⼦⼤,所以氧⽓得密度⼀定⼤于氢⽓得密度.(C)氧分⼦得质量⽐氢分⼦⼤,所以氢分⼦得速率⼀定⽐氧分⼦得速率⼤、(D)氧分⼦得质量⽐氢分⼦⼤,所以氢分⼦得⽅均根速率⼀定⽐氧分⼦得⽅均根速率⼤。
1. 有 2×10-3 m3刚性双原子分子理想气体,其内能为6.75×102 J.(1) 试求气体的压强;(2) 设分子总数为 5.4×1022个,求分子的平均平动动能及气体的温度.(玻尔兹曼常量k=1.38×10-23 J·K-1)2. 一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为= 6.21×10-21 J.试求:(1) 氧气分子的平均平动动能和方均根速率.(2) 氧气的温度.(阿伏伽德罗常量N A=6.022×1023 mol-1,玻尔兹曼常量k=1.38×10-23 J·K-1)3. 一定量的某单原子分子理想气体装在封闭的汽缸里.此汽缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气).已知气体的初压强p1=1atm,体积V1=1L,现将该气体在等压下加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止,(1) 在p-V图上将整个过程表示出来.(2) 试求在整个过程中气体内能的改变.(3) 试求在整个过程中气体所吸收的热量.(1 atm=1.013×105 Pa)(4) 试求在整个过程中气体所作的功.4. 1 mol理想气体在T1 = 400 K的高温热源与T2 = 300 K的低温热源间作卡诺循环(可逆的),在400 K的等温线上起始体积为V1 = 0.001 m3,终止体积为V2 = 0.005 m3,试求此气体在每一循环中(1) 从高温热源吸收的热量Q1(2) 气体所作的净功W(3) 气体传给低温热源的热量Q25. 气缸内贮有36 g 水蒸汽(视为刚性分子理想气 体),经abcda 循环过程如图所示.其中a -b 、c -d 为等体过程,b -c 为等温过程,d -a 为等压过程.试求:(1) d -a 过程中水蒸气作的功W da(2) a -b 过程中水蒸气内能的增量∆E ab(3) 循环过程水蒸汽作的净功W(4) 循环效率η(注:水蒸汽自由度i = 6, 水蒸汽的摩尔质量M mol =18×10-3 kg ,1 atm= 1.013×105 Pa)6. 1 mol 双原子分子理想气体作如图的可逆循环过 程,其中1-2为直线,2-3为绝热线,3-1为等温线.已知T 2 =2T 1,V 3=8V 1 试求:(1) 各过程的功,内能增量和传递的热量;(用 T 1和已知常量表示)(2) 此循环的效率η.7. 1mol 的单原子分子理想气体,从初态A 出发,经历如图循环过程,求:(1) 各过程中系统对外作的功、内能的变化和吸收的热量;(2) 整个循环过程系统对外作的总功及净吸热;(3) 该循环的效率;8. 如图所示代表一以He 气(氦气,可视为理想气体)为工作物质的循环过程, 图中V 1=2V 2, p 1=3p 2. 试问:(1)该循环过程是代表热机还是致冷机?(2)如果是热机求出该热机的循环效率 ;如果是致冷机则求出该致冷机的致冷系数e.9. 有一制冷空调器, 夏天制冷的输入功率为1000W; (1)若实际制冷量为2500W, 求此空调器的制冷系数. (2)若空调器按卡诺循环工作(即卡诺致冷机), 室外的温度为370C, 室内温度为220C, 则空调器的制冷系数是多少?。
温度
例题1:已知一个气球的体积为,充得温度的氢气。
当温度升高到37
时,原有压强和体积维持不变,只是跑掉部分氢气,其质量减少了0.052Kg。
试求气球内氢气在、压强为P下的密度是什么?
解:
由,气体在两种条件下满足
(1)
(2)
将代入(1)、(2)两式,得
时,
例题2:一个抽气机转速为400转/分,每分钟能够抽出气体。
设容器的容积
问经过多长时间后才能使容器的压强由降到
?
解:将容器内的和抽出的气体看作一个系统,按等温过程处理。
满足
其中
由于米/分,联立以上两式得
例题3:道尔顿提出一种温标:规定理想气体体积的相对增量正比于温度的增量,采用在标准大气压时,水的冰点温度为零度,沸点温度为100度,试用摄氏度t来表示道尔顿温标的温度。
解:设比例系数为,有
(1)
从(,)(,)积分得
(2)
另由等压条件,有
(3)将代入(2)、(3)得
于是
热力学第一定律
例题1:已知热力学系统在某一准静态过程中满足定值(其中为常数)。
设压强由P1 到P2,体积由V1到V2。
求过程中系统所作的功。
解:
例题2:已知系统进行某循环过程的过程曲线如图中ACBA所示,求此过程系统所作的功。
解:利用体积功的几何意义求
=
例题3:讨论下列三个过程的正负.
(1)等容降温过程:
(2)等温压缩过程:
(3)从某绝热线上一点开始,在绝热线左侧,至上而下与同一绝热线相交于另一点的任一过程:
由
例题4:质量,压强,温度氮气。
先等体增压至。
然后等温膨胀压强降至。
最后等压压缩体积压缩一半。
求整个过程中和,(氮)
解:(1)求,与过程无关
(2)A与过程有关
(3)Q可由热力学第一定律求得
若本题顺序改为求Q和A。
(a)求Q
(b)求A,可用热力学第一定律
例题5:设有一个以理想气体为工质的热机,其循环如图所示,试证明其效率为
证明:分析过程,过程放热
上式第二项,分子分母同乘以,得
热力学第二定律
例题1:已知P=1.0atm,T=273.15K条件下冰融化为水,熔解热。
求1kg冰化为水时的熵变化。
解:(1)可逆过程设计
冰水系统和一恒温热源(T)接触,缓慢吸热融化。
(2)可逆过程热温比积分
(3)由熵的定义
例题2:有一均匀杆的一端的温度为,另一端的温度为,这时将之处于与外界绝然的条件下,系统内部通过热传递过程到达均匀温度,已知杆质量为M,热容为C,求整个杆熵增量。
解:分析:细杆不同处初温不同,而每一部分又有变化过程,根据熵变是对部分和进程积加,先分为部分,进部分的进程求熵变,然后对部分求和。
(1)任选dl,如图坐标中位置为,温度
求温度为,对应
其中
(2)对所有部分进行求和
例题3:试求理想气体向真空膨胀的熵增量
例题4:证明熵增加原理与两种表述一致。
证明:(1)假设开尔文表述不成立
孤立系统
即,违背熵增加原理。
(2)假设克劳修斯表述不成立
孤立系统
有,违背熵增加原理。
气体动理论
例题1:一系统的概率分布为,其中,。
a. 试将这概率归一化,给出分布函数f(x).
b. 求当系统x值处于区间值为任意时的概率
c. 求当系统x处于,y处于的概率
解:(1)设归一化因子为c,,由
(2)
(3)
例题2:证明玻尔兹曼熵与克劳修斯熵是一致的.
证明:
(1)由
假设有N个分子做自由膨胀。
1个分子出现在整个容器的概率为1,N个独立存在的分子出现在整个容器中的概率为;1个分子出现在A部概率为,N个分子为,因此
(2)由,设计可逆过程,利用气体准静态等温膨胀过程得
由此“疏途同归”
气体内的输运过程
例题1:某6层楼房每层8个房间,编号为11-18,21-28…,61-68。
某人询问楼里的人员主任办公室在哪儿?以下是不同人员提供的三个信息:“办公室在53号房间”“办公室在5层楼”“办公室在第3间”。
试问其信息量各为多少?
解:所有可能存在的状态数目=48
指定“53”,意味状态数目为1
指定第一层,意味状态数目N=8
每层都有“第3间”,N=6
非理想气体固体液体
例题1:试证1mol范德瓦尔斯气体在绝缘过程中满足方程
证明: 利用绝热过程dQ=0有Da=-dU由范氏内能公式
整理后得
再利用范氏气体方程
得微分方程
两边积分得
㏑㏑T=C
即
T
利用
得
常数
例题2 :氮气做等温压缩,体积从标准状态下的体积减少到原来的1/100,设氮气尊从范氏方程,试计算此过程中外界对气体做的功,气体内能的改更和放出的热量.
解: (1) 有
由范氏方程
得
=RT㏑
将数据
R=8
代入上式得
(2)由等温过程有
范氏气体
因此
(3)
例题 3:水和油边界表面张力系数,为使质量的油在水内散布成半径为的小油滴,需要作多少功?()
解:等温条件下,外界做功全部转化为表面能,设为总增加的表面积,小油滴数目为N,R为大油滴的数目
其中
由
得,小油滴数目质量,有
这样
忽略后一项得
例题4:将压强为的空气等温地压缩进肥皂泡内,最后吹成径为
的肥皂泡,设肥皂泡的胀大过程是等温的,求吹成这肥皂泡所需要作的总感功。
()
解:设分别为泡内、外压强,有
忽略薄膜厚度,记为内、外半径都为r,面积增加
所需做功
等温压缩空气做功
由于,所以
得
这样
例题5:两块平行且竖直放置的玻璃板,部分地侵入水中,使两板间保持距离。
试求每块玻璃板内外两侧所受压力的合力。
已知板宽,水的,接触角。
解:对高度为h的液面,其压强P满足
在h处,,因此
由
相变
例题1:将水蒸气等压地冷却直到开始出现液体。
例题2:从饱和蒸汽占总质量60%的状态等比容地加热,直到气体占总体积的100%.
解:
例题3:从气、液各占总质量的50%的状态出发,保持温度不变地加热直到系统的体积大于饱和蒸汽的体积。
解:
气体平衡共存过程特点:
(1)不同的压缩初温,饱和蒸汽压不同,高,大;
(2)气相与液相的比体积不变,总比体积(总比容)变化
其中,代表气相的质量比。
气液两相图的图与图转换:
(1)中的对应于图中一条“↑”线;
(2)中的对应于图中一个点。
例题4:试估算100℃饱和水蒸气的比体积(蒸汽可看作理想气体)
解:100%下的饱和蒸汽为
由理想气体状态方程得
例题5:容积为的容器中,有温度为200℃、质量为的水(液、汽两相)。
设该温度下饱和水蒸气比体积为,液态水的比体积,试求容器中水蒸气的质量和体积。
解:设水蒸气的质量百分比为,体积为,质量为
由
并有
得
进而。