量子力学 薛定谔方程的建立和定态问题
- 格式:pdf
- 大小:657.87 KB
- 文档页数:38
关于薛定谔方程一. 定义及重要性薛定谔方程(Schrdinger equation )是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。
是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。
薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。
二. 表达式三. 定态方程()()222V r E r m ηψψ+⎡⎤-∇=⎢⎥⎣⎦所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。
其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。
2222222z y x ∂∂∂∂∂∂++=∇可化为d 0)(222=-+ψψv E h m dx薛定谔方程的解法一. 初值解法;欧拉法,龙格库塔法二. 边值解法;差分法,打靶法,有限元法龙格库塔法(对欧拉法的完善)给定初值问题).()()((3)),(),()( ,,(2))(),( 3112122111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dyi i i i i i i i =-⎪⎪⎩⎪⎪⎨⎧++==++==⎪⎩⎪⎨⎧=≤≤=++的局部截断误差使以下数值解法的值及确定常数ββαβα.))(,(,,(3) )()(2)()( ,))(,())(,())(,()( ))(,()( )()(2)()()( )( 3213211处的函数值分别表示相应函数在点其中得代入上式将处展成幂级数在首先将i i y t y t i i y t i i i i i i t y t f f f h O ff f h hf t y t y t y t f t y t f t y t f t y t y t f t y h O t y h t y h t y t y t t y '++++=+'=''='+''+'+=+++.)(21 1 ,,021,01 ),()()())(21()1()( ,)( 3221212213113222111的计算公式局部截断误差为可得到但只有两个方程,因此方程组有三个未知数,满足条件即常数当且仅当要使局部截断误差得下假设在局部截断误差的前提h O c c c c c c c c h O y t y h O ff f c h f c c h y t y t y y i i y t i i i i ==+=-=-+=-++-+-+-=-=++++ββββ有限元方法有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
量子力学试题定态与叠加态的计算与解释量子力学试题:定态与叠加态的计算与解释量子力学是描述微观世界中物质与能量相互作用的理论框架。
在量子力学中,我们遇到的一个重要概念是量子态。
量子态描述了一个粒子或者系统的状态,可以通过数学形式来表示。
在本篇文章中,我们将讨论定态和叠加态的计算与解释。
一、定态的计算和解释定态是指一个量子系统在某一给定时间的特定状态。
在量子力学中,确定一个定态需要求解薛定谔方程,然后根据波函数计算相关物理量。
考虑一个简单的例子,一个自由粒子在一维空间中运动。
我们假设它的波函数为Ψ(x,t),其中x表示位置,t表示时间。
薛定谔方程可以写作:iħ∂Ψ(x,t)/∂t = -ħ²/2m ∂²Ψ(x,t)/∂x²这个方程描述了波函数随时间变化的规律。
通过解这个方程,我们可以得到自由粒子的定态。
当薛定谔方程被解析求解后,我们可以计算定态下的一些物理量。
例如,粒子的位置、动量、能量等。
这些物理量由波函数的模方来表示,即|Ψ(x,t)|²。
通过积分计算波函数的模方,我们可以得到粒子在一维空间中的概率分布。
二、叠加态的计算和解释叠加态是指一个量子系统处于多个定态的叠加状态。
在量子力学中,叠加态可以用线性组合的方式来表示。
考虑一个简单的例子,一个自旋为1/2的粒子在一个以 z-轴为参考轴的测量中。
自旋可以取两个可能的态:向上|↑⟩或者向下|↓⟩。
那么,我们可以构造一个叠加态:|ψ⟩= α|↑⟩+ β|↓⟩其中,α和β为复数,且满足归一化条件:|α|² + |β|² = 1。
这样的叠加态表示了粒子既可能处于向上自旋态,也可能处于向下自旋态。
对于叠加态,我们可以计算某个物理量的期望值。
以自旋为例,我们可以计算自旋在 z-轴上的期望值⟨S_z⟩ = ⟨ψ|S_z|ψ⟩,其中 S_z 是自旋在 z-轴上的算符。
另外,量子力学中,测量完一个叠加态后,系统会塌缩到一个定态。
第一章+薛定谔方程,一维定态问题
第一章+薛定谔方程,一维定态问题
本章主要介绍量子力学的基础概念和薛定谔方程的推导及其在
一维定态问题中的应用。
量子力学是描述微观世界中物质及其运动规律的理论。
在量子力学中,粒子的运动状态由波函数描述,波函数可以用来计算粒子在不同位置的概率密度。
薛定谔方程是量子力学中最基本的方程之一,它描述了波函数随时间的演化规律。
一维定态问题是指一个粒子在一维空间中的运动状态是定态的,即粒子的波函数只包含一个能量本征态。
在一维定态问题中,薛定谔方程可以简化为一维薛定谔方程,可以通过求解该方程得到粒子的能量本征态和能量本征值。
本章将详细介绍薛定谔方程的推导过程和一维定态问题的求解
方法,包括定态薛定谔方程的解法和粒子在势阱和势垒中的运动规律。
同时还将介绍相关的数学工具和物理概念,如波函数、能量本征态、能量本征值和概率密度等。
通过学习本章内容,读者将能够了解量子力学的基本概念和薛定谔方程的应用,掌握一维定态问题的求解方法,为后续学习量子力学的进阶内容奠定基础。
- 1 -。
薛定谔方程及其在量子力学中的应用引言:量子力学是描述微观粒子行为的理论框架,薛定谔方程是量子力学的基础方程之一。
本文将介绍薛定谔方程的基本原理和其在量子力学中的应用。
一、薛定谔方程的基本原理薛定谔方程是由奥地利物理学家薛定谔于1925年提出的,它描述了微观粒子的波函数随时间的演化。
薛定谔方程的数学表达式为:iħ∂ψ/∂t = Ĥψ其中,i是虚数单位,ħ是普朗克常数的约化常数,∂ψ/∂t表示波函数对时间的偏导数,Ĥ是哈密顿算符。
二、薛定谔方程的解释薛定谔方程的解释是基于波粒二象性的理论。
根据波粒二象性,微观粒子既可以表现出粒子性,也可以表现出波动性。
波函数ψ描述了微观粒子的波动性质,而薛定谔方程描述了波函数随时间的演化。
三、薛定谔方程的应用1. 粒子在势场中的行为薛定谔方程可以用来描述粒子在势场中的行为。
通过求解薛定谔方程,可以得到粒子在特定势场下的波函数,从而了解粒子的能级结构和波动性质。
例如,薛定谔方程可以用来解释电子在原子中的分布和能级跃迁。
2. 粒子的散射问题薛定谔方程还可以用来描述粒子的散射问题。
通过求解薛定谔方程,可以得到粒子在散射过程中的波函数,从而了解粒子的散射概率和散射角度。
散射实验是研究物质结构和相互作用的重要手段之一,薛定谔方程在该领域有着广泛的应用。
3. 量子力学中的量子态薛定谔方程还可以用来描述量子力学中的量子态。
量子态是描述量子系统的状态,可以用波函数表示。
通过求解薛定谔方程,可以得到量子系统的波函数,从而了解量子系统的性质和行为。
量子态的概念在量子力学中具有重要的地位,薛定谔方程为研究量子态提供了数学工具。
结论:薛定谔方程是量子力学的基础方程之一,它描述了微观粒子的波函数随时间的演化。
薛定谔方程在量子力学中有着广泛的应用,可以用来描述粒子在势场中的行为、粒子的散射问题以及量子力学中的量子态等。
薛定谔方程的研究对于理解微观世界的行为规律具有重要意义。
量子力学的定态与非定态特性比较分析量子力学是描述微观粒子行为的一门物理学科,其研究对象是微观粒子的运动、相互作用和性质。
在量子力学中,定态和非定态是两个基本概念,它们分别描述了微观粒子在不同状态下的性质和行为。
本文将对量子力学的定态和非定态进行比较分析。
定态(Stationary State)是指在量子力学中,微观粒子所处的一种稳定状态,其量子态不随时间的推移而发生变化。
换句话说,定态是粒子的波函数在某一特定时间点所处的状态。
量子力学中的定态通过薛定谔方程得到,其解决方法通常是通过数学运算得到的能量本征态。
定态具有一系列特性,如:1. 稳定性:定态是微观粒子系统在某一能量本征态上的稳定状态,不随时间演化而改变。
2. 可测量性:定态的性质可以通过物理测量进行观测和测量,如位置、动量、角动量等。
3. 力学量确定性:在定态下,微观粒子的某一物理量(如能量)具有确定的取值,且测量结果将得到这一确定的值。
与定态相对应的是非定态(Non-Stationary State),非定态是指微观粒子在量子力学中的一个泛义状态,其量子态会随时间的推移而发生演化。
非定态可以由一系列定态的叠加得到,也可以通过叠加定态产生的线性叠加态表示。
非定态的特性包括:1. 演化性:非定态随时间的推移而发生演化,并且演化过程可以通过薛定谔方程进行描述。
2. 可观测性:虽然非定态的具体状态无法被直接观测和测量,但其统计性质和概率分布可以通过测量多次而得到。
3. 叠加性:非定态可以由多个定态进行叠加,不同叠加态的幅度和相位将决定非定态的性质和演化。
定态和非定态之间存在一定的关系和联系。
事实上,非定态可以通过定态的线性叠加表示,也可以由定态通过时间演化得到。
定态是非定态的特例,在定态下,薛定谔方程的解是定态波函数。
而非定态则描述了定态之间的演化和转变过程。
从应用的角度来看,定态和非定态在量子力学的研究和实践中都具有重要意义。
定态广泛应用于量子力学的基础理论、电子结构计算、固体物理和化学等领域。
第四章习题解答4.1.求在动量表象中角动量x L 的矩阵元和2x L 的矩阵元。
解:⎰⋅⋅'-'-=τπd e p z p y e L r p i y z rp i p p x)ˆˆ()21()(3 ⎰⋅⋅'--=τπd e zp yp e r p i y z rp i)()21(3 ⎰⋅⋅'-∂∂-∂∂-=τπd e p p p p i e rp i zy y z r p i))(()21(3⎰⋅'-∂∂-∂∂-=τπd e p p p p i r p p i z y y z)(3)21)()(()()(p p p p p p i y z z y'-∂∂-∂∂= δ ⎰''=τψψd L x L p x p p p x 2*2)()( ⎰⋅⋅'--=τπd e p z p y e r p i y z r p i23)ˆˆ()21( ⎰⋅⋅'---=τπd e p z p y p z p y e r p i y z y z rp i)ˆˆ)(ˆˆ()21(3 ⎰''-∂∂-∂∂-=τπd e p p p p i p z p y e rp i yz z y y z r p i))()(ˆˆ()21(3 ⎰⋅⋅'--∂∂-∂∂=τπd e p z p y e p p p p i r p i y z rp i y z z y)ˆˆ()21)()((3 ⎰⋅'-∂∂-∂∂-=τπd e p p p p r p p i y z z y)(322)21()()()(22p p p p p p yz z y'-∂∂-∂∂-= δ #4.2 求能量表象中,一维无限深势阱的坐标与动量的矩阵元。
解:基矢:x a n a x u n πsin 2)(=能量:22222a n E n μπ =对角元:2sin 202a xdx a m x a x a mm ==⎰π 当时,n m ≠ ⎰⋅⋅=a mn dx ax x a m a x 0)(sin )(sin 2π[][]1)1()(4)(1)(11)1(])(sin )()(cos )([])(sin )()(cos )([1)(cos )(cos 12222222022202220---=⎥⎦⎤⎢⎣⎡+----=⎥⎥⎦⎤+++++-⎢⎢⎣⎡--+--=⎥⎦⎤⎢⎣⎡+--=--⎰n m n m a aa n m mnan m n m a x a n m n m ax x a n m n m a x a n m n m ax x a n m n m a a dx x a n m x a n m x a ππππππππππππ[][]a n m mn i n m n m a a n i x a n m n m a x a n m n m a a n i dxx a n m x a n m a n i xdxa n x a m an i xdxan dx d x a m a i dx x u p x u p n m nm aa a a n m mn )(21)1(]1)1()(1)(1 )(cos)()(cos )()(sin )(sin cos sin 2sin sin 2)(ˆ)(2220202020*---=--⎥⎦⎤⎢⎣⎡-++=⎥⎦⎤⎢⎣⎡--+++=⎥⎦⎤⎢⎣⎡-++-=⋅-=⋅-==--⎰⎰⎰⎰πππππππππππππππ#4.3 求在动量表象中线性谐振子的能量本征函数。
§16.3 一维定态薛定谔方程的建立和求解举例(一)一维运动自由粒子的薛定谔方程波函数随时间和空间而变化的基本方程,是薛定谔于1926年提出的,称为薛定谔波动方程,简称波动方程或薛定谔方程,它成为量子力学的基本方程.将(16.2.14)式分别对t 和x 求导,然后从这两式消去E 、p 、和ψ,便可得到一维运动自由粒子的薛定谔方程:ψ-=∂ψ∂)/iE (t 即ψ=∂ψ∂E t i (16.3.1)ψ=∂ψ∂22)/ip (x 2ψ=ψ∂-2222p⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡<<的薛定谔方程自由粒子轴运动的沿)c x (v方程(16.3.3)中不含有能量E 和动量p ,表明此方程是不受E 和p 的数值限制的普遍方程.请同学们自己试一试,如果上述波函数不用复数表式(16.2.14),改用类似于(16.2.1)式的余弦函数或正弦函数表式,就不会得到合乎要求的薛定谔方程(16.3.3)式❶.这薛定谔方程不是根据直接实验结果归纳而得,也不是由经典波动理论或其他理论推导出来的,它是在物质波假设的基础上,参照经典波动方程而建立起来的.薛定谔方程在微观领域中得到广泛的应用,它推导出来的结果,都与相关实验结果符合得很好,这才是薛定谔方程正确反映微观领域客观规律的最有力的证明.(二)一维运动自由粒子的定态薛定谔方程❶❷上述薛定谔方程(16.3.3)是偏微分方程,从此方程可解出波函数ψ(x ,t ).在量子力学中最重要的解,是可把波函数ψ(x,t )分离成空间部分u (x )和时间部分f (t )两函数的乘积的特解,即〔一维运动自由粒子的定态波函数〕 ψ(x,t )=u (x )f (t )(16.3.4)将此式代入(16.3.3)式得:222dx u d )t (f )m 2/(dt df )x (u i -=两边除以ψ=uf 得:222dx u d u 1)m 2/(dt df f 1i -=此式左边是时间t 的函数,右边是坐标x 的函数.已知t 与x 是互相独立的自变量,左右两边相等,必须是两边都等于同一常量E ,即❶ 郭敦仁《量子力学初步》16—17页,人民教育出版社1978年版.❶ 郭敦仁《量子力学初步》21—22页,人民教育出版社1978年版.❷ 周世勋编《量子力学》32—33页,上海科学技术出版社1961年版.(16.3.8) (16.3.9) (图16.3a )一维矩形深势阱E dt df f 1i = E dx u d u 1)m 2/(222=- (16.3.5)因此,一个偏微分方程(16.3.3)可分解成两个常微分方程(16.3.5)以求解.如〔附录16C 〕所示,(16.3.5)式的E 就是粒子的能量E .上述两个常微分方程的解分别为:〔时间波函数f (t )〕 /iEt Ce )t (f -= (16.3.6)〔空间波函数u (x )〕 (16.3.7)将上式的待定常量C 合并到A 和B 中,便可得到下式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡<<函数和几率密度的定态波子一维运动自由粒)c (v从此式可知,特解ψ=uf 使得几率密度|ψ|2与时间t 无关,这是粒子的几率分布与时间无关的恒定状态,因此称为定态.ψ=uf 称为定态波函数,其中空间部分u (x )可称空间波函数,时间部分f (t )可称时间波函数.如(16.3.9)式所示,定态的几率密度|ψ|2决定于空间波函数u ,与时间波函数f 无关.(16.3.5)式中空间波函数u 满足的方程,称为定态薛定谔方程,此方程重写如下: ⎥⎦⎤⎢⎣⎡<<的定态薛定谔方程一维运动自由粒子)c (v (16.3.10) (16.3.7)式表明,空间波函数u (x )的表式中有三个待定常量A 、B 、α,它们要由实际例子中的边界条件和归一化条件来确定.下面就要介绍确定常量A 、B 、α的一个实际例子.(三)一维矩形深势阱中,自由粒子的薛定谔方程定态解(1)金属中自由电子的运动金属中自由电子的运动,假设可简化为自由粒子的一维运动.在外界条件不变的情况下,可设想自由电子的几率分布是恒定的,不随时间而变.这就是上述定态的一维运动自由粒子的一个例子.上述(16.3.3)至(16.3.10)诸式均可应用于此例子.上述待定常量A 、B 、α,可按此例的边界条件和归一化条件确定之.(2)边界条件确定常量B 与α上述自由电子只能在金属中运动,可设定它的运动范围为0<x <b .在此范围内,设它的势能为零,即E p =0,E=E k .在此范围外,它的势能必须达到无限大,即E p →∞,E →∞.所谓E p →∞,就是用势能条件表示自由电子不能越出金属之外,也就是说,这些自由电子被限制在矩形无限深势阱中运动,如(图16.3a )所示.按几率来说,在金属表面以外没有自由电子,就是说,在x≤0和x ≥b 的范围中,这些电子的几率密度|ψ|2=0.因此,在此范围中,波函数ψ=0,u=0.这就是边界条件,或称边值条件./mE 2x cos B x sin A )x (u =+=ααα222/iEt |u |x cos B x sin A e )x cos B x sin A ()t (f )x (u )t ,x (=+=ψ+===ψ-αααα ()0Eu /m 2dx u d 222=+(16.3.16) (16.3.17) (图16.3b)一维矩形深势阱中、自由粒子的几率密度与能级将此边值条件代入(16.3.7)式便可确定B 与α的数值,计算如下:在x=0处:u (0)=Asin0°+Bcos0°=B=0 (16.3.11)∴u (x )=Asin αx (16.3.12)在x=b 处:u (b )=Asin αb=0,αb=n π即α=n π/b , n=1,2,3,…… (16.3.13)∴ψ(x,t )=Asin (n πx/b ) /iEt e - (16.3.14)在(16.3.13)式中,u (b )=0不选用A=0的答案.这因为A=0,则u (x )=0,|ψ|2=0.这是x 等于任何数值,都使|ψ|2=0的不合理答案.在(16.3.13)式,不选用n=0的答案.因为n=0则α=0、u (x )=0、|ψ|2=0,这也是处处都没有电子的不合理答案.在(16.3.13)式,如果选用n=-1,-2,-3,……所得ψ值,与选用n=1,2,3,……求得的ψ值,绝对值相等、正负号相反.因此,在计算|ψ|2时,不必要保留n 的负值.(3)归一化条件确定常量A将波函数表式(16.3.14)代入归一化条件式(16.2.11),按上述一维情况进行积分,并考虑到自由电子只在0<x <b 范围内运动,可得结论如下:1dx x sin A dx dx 2b 0 2b 0 2 ==ψ=ψ⎰⎰⎰∞∞-α即()()[]=-=-=⎰b 022b0 2x 2sin )4A (2b A dx x 2cos 12A 1ααα()[]2b A )b x n 2sin(n 4b A 2b A 2b 0 22=ππ-=. b /2A 2=∴, b /2A = (16.3.15)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡<<ψ的定态波函数自由粒子中一维无限深矩形势阱)c (v ,(四)一维矩形无限深势阱中、自由粒子的几率分布从(16.3.17)式可得上述自由粒子的几率密度|ψ|2的表式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡<<的几率密度自由粒子中一维矩形深势阱)c (v , (16.3.18)上述空间波函数u 和几率密度|ψ|2的图线,如(图16.3b )所示.自由粒子的运动范围限制在0<x <b ,因此(16.3.18)式的角度αx=n πx/b 的变化范围为0<αx <n π.当量子数n=1时,u 1(x )=)b /x sin(b /2π;,3,2,1n ,b x 0),b /x n sin(b /2)x (u ,e )b /x n sin(b /2)t ,x (/iEt =<<π=π=ψ- b x 0 ,,3,2,1n )b /x n sin()b /2(u 222<<=π==ψ21ψ=(2/b)sin 2(πx/b).如(图16.3b )所示,曲线u 1和21ψ的最高点都在πx/b=π/2,即x=b/2处.这就是说,当n=1时,在势阱中x=b/2处,粒子的几率密度最大.这与经典理论所说自由粒子应是均匀分布的结论不同.经典理论不能说明微观粒子的情况.当n=2时, )b /x 2(sin )b /2(),b /x 2sin(b /2)x (u 2222π=ψπ=.角度的变化范围是0<αx <2π.曲线u 2的最高点在2πx/b=π/2,即x=b/4处.曲线u 2的最低点在2πx/b=3π/2,即x=3b/4处.曲线u 2还有一个零点在2πx/b=π,即x=b/2处,如图所示.当n=2时,几率密度22ψ的曲线应有两个最高点,在x=b/4和x=3b/4处,有一个零点在x=b/2处.当n=3和n=4时的曲线图,由同学们在习题中计算分析.(图16.3b )所示曲线形状,与两端固定的弦线中,形成驻波的形状相似.虽然粒子的物质波与弦线中机械波的驻波,在本质上是不同的现象.但是人们仍然喜欢引用驻波中的熟悉名词描写微观粒子的几率分布,把2ψ=0的位置叫做波节或节点,把|ψ|2的最大位置叫做波腹或腹点.(五)一维矩形无限深势阱中、自由粒子的能级从(16.3.7)与(16.3.13)式可得到能量E 的表式: ⎢⎢⎢⎣⎡<<n E )c (的能级自由粒子中一维矩形深势阱v ,E n 是能量E 的本征值.粒子的能量E 只能具有这一系列分立的数值E n ,也就是说,能量E 是量子化的.上述的n 值相当于玻尔理论中的量子数.虽然能级E n 和量子数n 都是玻尔先提出的,但他只作为一种假设提出.而在量子力学中,从薛定谔方程解出波函数ψ的过程,很自然地得出E n 和n ,不必求助于人为的假设.最低的能级E 1是为基态能级,相当于n=1的E 1值.其他各级能量E n =n 2E 1,如(图16.3b )所示.粒子的能量不能小于E 1.但经典理论原以为,粒子的最小能量为零,所以最小能量E 1也被称为零点能.〔例题16.3A 〕已知原子核的线度为b=10-14米的数量级,质子的静质量为m=1.67×10-27千克.假设质子在原子核内作线性自由运动.求:(1)此质子的能量E 和速率v .(2)它的动量p 和物质波波长λ.(3)它的总能ε和频率ν.(4)它的空间波函数u(x)和几率密度|ψ|2.〔解〕(1)把此质子看做是在线度为b 的无限深矩形势阱中,作线性自由运动.应用(16.3.20)式可求得它的能量E (即动能E k ):E=n 2(h 2/8mb 2)=n 2×6.632×10-68/8×1.67×10-27×10-28= =n 2×3.29×10-13焦. E=E k =m v 2/2, v 2=2E/m=2n 2×3.29×10-13/1.67×10-27=n 2×3.94×1014,v =n ×1.98×107米/秒.当v <<c 时,可应用上述计算和下面的计算.(2)p=m v =1.67×10-27×n ×1.98×107=n ×3.31×10-20千克·米/秒.λ=h/p=6.63×10-34/n ×3.31×10-20=(1/n)×2.00×10-14米.(3)ε=E k +mc 2=n 2×3.29×10-13+1.67×10-27×9×1016= =n 2×3.29×10-13+1.50×10-10=1.50×10-10焦.ν=ε/h=1.50×10-10/6.63×10-34=2.26×1023赫,或ν=c 2/v λ=9×1016/n ×1.98×107×(1/n)×2×10-14=2.27×1023赫. (4)按(16.3.17)式可求得此质子的空间波函数u(x)和几率密度|ψ|2的表式,其图解如(图16.3b )所示. u(x)=)b /x n sin(b /2π=1.41×107sin (n πx ×1014)米-1/2.|ψ|2=|u|2=2×1014sin 2(n πx ×1014)米-1.〔说明〕请注意德布罗意波长λ=(1/n)×2b ,即势阱宽度b=n (λ/2).还请注意,本题讨论自由粒子的一维运动,它的|ψ|2与|u|2的单位决定于b 的单位.。