分子体系的薛定谔方程
- 格式:ppt
- 大小:387.50 KB
- 文档页数:10
薛定谔方程薛定谔方程推导薛定谔方程(Schrdinger equation)是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。
是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。
目录薛定谔方程在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。
力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。
这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当。
薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。
简介量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。
薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。
薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。
当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。
.薛定谔提出的量子力学基本方程。
建立于 1926年。
它是一个非相对论的波动方程。
它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。
设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程为。
在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。
由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。
薛定谔方程的四个量子数薛定谔方程是量子力学中重要的概念,它被认为是量子力学的基础。
许多量子力学的实际应用,如原子量子力学,核物理和分子物理,都是建立在薛定谔方程的基础上的。
重要的是,这个方程提供了有关原子及其各种场中分子系统的量子研究有用的理论工具。
所有原子,分子,原子核和分子核都是由彼此之间的关系排列构成的,称为量子数。
薛定谔方程有四个量子数,即n,l,m和s的量子数,它们用于描述原子或分子的能级结构。
N量子数对应原子或分子的总状态空间,称为主量子数。
它可以用来描述原子或分子的初始状态,可以用来确定原子的最小能量状态,它的取值范围从1到无限大,也就是说,原子或分子可以有无限多的独立能级。
L量子数对应原子或分子状态空间中的角动量变量,也称为角动量量子数。
它决定了原子或分子状态空间内的角动量的各种分量,它的取值范围从0到有N-1个单位。
由此可以得出,角动量的不同的分量可以由不同的L量子数代表,而不同的L量子数又可以代表不同原子或分子的不同分子状态。
M量子数对应原子或分子角动量的算符分量,也称为磁量子数。
它可以用来描述原子或分子状态空间内角动量的分量,它的取值范围从-L到L,可以用来确定原子或分子状态空间内角动量的各种算符分量。
S量子数对应原子或分子自旋量,也称为自旋量子数。
它可以用来描述原子或分子状态空间内自旋量的方向。
自旋量可以有平行的和反对的两种取值,通常被称为“+1/2”和“-1/2”,分别代表原子或分子自旋量的正和反方向。
薛定谔方程的四个量子数可以用来确定原子或分子的能级结构,这可以有效地简化量子力学的研究。
它们也可以用来解释原子或分子在不同能级之间的能量转换,以及电子在量子力学中具有什么样的行为。
薛定谔方程的四个量子数对研究量子力学有着重要的意义,它们是量子力学研究中不可或缺的重要工具。